期刊文献+
共找到451篇文章
< 1 2 23 >
每页显示 20 50 100
GaInX_3(X=S,Se,Te):Ultra-low thermal conductivity and excellent thermoelectric performance
1
作者 段志福 丁长浩 +6 位作者 丁中科 肖威华 谢芳 罗南南 曾犟 唐黎明 陈克求 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期460-465,共6页
Seeking intrinsically low thermal conductivity materials is a viable strategy in the pursuit of high-performance thermoelectric materials.Here,by using first-principles calculations and semiclassical Boltzmann transpo... Seeking intrinsically low thermal conductivity materials is a viable strategy in the pursuit of high-performance thermoelectric materials.Here,by using first-principles calculations and semiclassical Boltzmann transport theory,we systemically investigate the carrier transport and thermoelectric properties of monolayer Janus GaInX_(3)(X=S,Se,Te).It is found that the lattice thermal conductivities can reach values as low as 3.07 W·m^(-1)·K^(-1),1.16 W·m^(-1)·K^(-1)and 0.57 W·m^(-1)·K^(-1)for GaInS_(3),GaInSe_(3),and GaInTe_(3),respectively,at room temperature.This notably low thermal conductivity is attributed to strong acoustic-optical phonon coupling caused by the presence of low-frequency optical phonons in GaInX_(3) materials.Furthermore,by integrating the charac teristics of electronic and thermal transport,the dimensionless figure of merit ZT can reach maximum values of 0.95,2.37,and 3.00 for GaInS_(3),GaInSe_(3),and GaInTe_(3),respectively.Our results suggest that monolayer Janus GaInX_(3)(X=S,Se,Te)is a promising candidate for thermoelectric and heat management applications. 展开更多
关键词 thermoelectric performance thermal conductivity Boltzmann transport two-dimensional materials
下载PDF
Diameter-dependent ultra-high thermoelectric performance of ZnO nanowires
2
作者 聂祎楠 唐桂华 +2 位作者 李一斐 张敏 赵欣 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期86-94,共9页
Zinc oxide(ZnO)shows great potential in electronics,but its large intrinsic thermal conductivity limits its thermoelectric applications.In this work,we explore the significant carrier transport capacity and diameter-d... Zinc oxide(ZnO)shows great potential in electronics,but its large intrinsic thermal conductivity limits its thermoelectric applications.In this work,we explore the significant carrier transport capacity and diameter-dependent thermoelectric characteristics of wurtzite-ZnO(0001)nanowires based on first-principles and molecular dynamics simulations.Under the synergistic effect of band degeneracy and weak phonon-electron scattering,P-type(ZnO)_(73) nanowires achieve an ultrahigh power factor above 1500μW·cm^(-1)·K^(-2)over a wide temperature range.The lattice thermal conductivity and carrier transport properties of ZnO nanowires exhibit a strong diameter size dependence.When the ZnO nanowire diameter exceeds 12.72A,the carrier transport properties increase significantly,while the thermal conductivity shows a slight increase with the diameter size,resulting in a ZT value of up to 6.4 at 700 K for P-type(ZnO)_(73).For the first time,the size effect is also illustrated by introducing two geometrical configurations of the ZnO nanowires.This work theoretically depicts the size optimization strategy for the thermoelectric conversion of ZnO nanowires. 展开更多
关键词 ZnO nanowire size effect thermoelectric performance deformation potential theory
下载PDF
Effect of Molecular Weight on Thermoelectric Performance of P3HT Analogues with 2-Propoxyethyl Side Chains
3
作者 董得福 WANG Wei +3 位作者 ZHAN Chun LI Chenglong ZHOU Qisheng 肖生强 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期268-281,共14页
By replacing hexyl chains in poly(3-hexylthiophene)(P3HT)with 2-propoxyethyls,four poly(3-(2-propoxyethyl)thiophene)(P3POET)homopolymers with comparable polydispersity indexes(PDI)and regioregularities were prepared h... By replacing hexyl chains in poly(3-hexylthiophene)(P3HT)with 2-propoxyethyls,four poly(3-(2-propoxyethyl)thiophene)(P3POET)homopolymers with comparable polydispersity indexes(PDI)and regioregularities were prepared herein in addition with step increment of about 7 kDa on numberaverage molecular weight(M_(n))from around 11 to 32 kDa(accordingly denoted as P11k,P18k,P25k,and P32k).When doped in film by FeCl_(3)at the optimized conditions,the maximum power factor(PF_(max))increases greatly from 4.3μW·m^(-1)·K^(-2)for P11k to 8.8μW·m^(-1)·K^(-2)for P18k,and further to 9.7μW·m^(-1)·K^(-2)for P25k,followed by a slight decrease to 9.2μW·m^(-1)·K^(-2)for P32k.The close Seebeck coefficients(S)at PF_(max)are observed in these doped polymer films due to their consistent frontier orbital energy levels and Fermi levels.The main contribution to this PF_(max)evolution thus comes from the corresponding conductivities(σ).Theσvariation of the doped films can be rationally correlated with their microstructure evolution. 展开更多
关键词 conjugated polymer molecular weight MICROSTRUCTURE thermoelectric performance
下载PDF
Frictional contact analysis of a rigid solid with periodic surface sliding on the thermoelectric material
4
作者 Yali ZHANG Yueting ZHOU Shenghu DING 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第1期179-196,共18页
Understanding and characterizing rough contact and wavy surfaces are essential for developing effective strategies to mitigate wear,optimize lubrication,and enhance the overall performance and durability of mechanical... Understanding and characterizing rough contact and wavy surfaces are essential for developing effective strategies to mitigate wear,optimize lubrication,and enhance the overall performance and durability of mechanical systems.The sliding friction contact problem between a thermoelectric(TE)half-plane and a rigid solid with a periodic wavy surface is the focus of this investigation.To simplify the problem,we utilize mixed boundary conditions,leading to a set of singular integral equations(SIEs)with the Hilbert kernels.The analytical solutions for the energy flux and electric current density are obtained by the variable transform method in the context of the electric and temperature field.The contact problem for the elastic field is transformed into the second-kind SIE and solved by the Jacobi polynomials.Notably,the smoothness of the wavy contact surface ensures that there are no singularities in the surface contact stress,and ensures that it remains free at the contact edge.Based on the plane strain theory of elasticity,the analysis primarily examines the correlation between the applied load and the effective contact area.The distribution of the normal stress on the surface with or without TE loads is discussed in detail for various friction coefficients.Furthermore,the obtained results indicate that the in-plane stress decreases behind the trailing edge,while it increases ahead of the trailing edge when subjected to TE loads. 展开更多
关键词 wavy surface periodic contact thermoelectric(te)material Hilbert integral kernel
下载PDF
Control of interfacial reaction and defect formation in Gd/Bi_(2)Te_(2.7)Se_(0.3) composites with excellent thermoelectric and magnetocaloric properties
5
作者 薛天畅 魏平 +4 位作者 刘承姗 李龙舟 朱婉婷 聂晓蕾 赵文俞 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期474-481,共8页
The method to combine thermoelectric(TE)and magnetocaloric(MC)cooling techniques lies in developing a new material that simultaneously possesses a large TE and good MC cooling performance.In this work,using n-type Bi_... The method to combine thermoelectric(TE)and magnetocaloric(MC)cooling techniques lies in developing a new material that simultaneously possesses a large TE and good MC cooling performance.In this work,using n-type Bi_(2)Te_(2.7)Se_(0.3)(BTS)as the TE base material and Gd as the second-phase MC material,Gd/BTS composites were prepared by the spark plasma sintering method.In the composites,interfacial reaction between Gd and BTS was identified,resulting in the formation of Gd Te,which has a large impact on the electron concentration through the adjustment of defect concentration.The MC/TE composite containing 2.5 wt%Gd exhibited a ZT value of 0.6 at 300 K,essentially retaining the original TE performance,while all the composites largely maintained the excellent MC performance of Gd.This work provides a potential pathway to achieving high performance in MC/TE composites. 展开更多
关键词 thermo-electro-magnetic energy conversion materials interfacial reaction thermoelectric performance magnetic entropy change
下载PDF
Bilayer MSe_(2)(M=Zr,Hf,Mo,W)performance as a hopeful thermoelectric materials
6
作者 Mahmood Radhi Jobayr Ebtisam M-T.Salman 《Journal of Semiconductors》 EI CAS CSCD 2023年第3期43-51,共9页
Significant advancements in nanoscale material efficiency optimization have made it feasible to substantially adjust the thermoelectric transport characteristics of materials.Motivated by the prediction and enhanced u... Significant advancements in nanoscale material efficiency optimization have made it feasible to substantially adjust the thermoelectric transport characteristics of materials.Motivated by the prediction and enhanced understanding of the behavi-or of two-dimensional(2D)bilayers(BL)of zirconium diselenide(ZrSe_(2)),hafnium diselenide(HfSe_(2)),molybdenum diselenide(MoSe_(2)),and tungsten diselenide(WSe_(2)),we investigated the thermoelectric transport properties using information generated from experimental measurements to provide inputs to work with the functions of these materials and to determine the critical factor in the trade-off between thermoelectric materials.Based on the Boltzmann transport equation(BTE)and Barden-Shockley deformation potential(DP)theory,we carried out a series of investigative calculations related to the thermoelectric properties and characterization of these materials.The calculated dimensionless figure of merit(ZT)values of 2DBL-MSe_(2)(M=Zr,Hf,Mo,W)at room temperature were 3.007,3.611,1.287,and 1.353,respectively,with convenient electronic densities.In ad-dition,the power factor is not critical in the trade-off between thermoelectric materials but it can indicate a good thermoelec-tric performance.Thus,the overall thermal conductivity and power factor must be considered to determine the preference of thermoelectric materials. 展开更多
关键词 ZT thermoelectric property 2D-bilayer Boltzmann-transport equation te power factor
下载PDF
Performance analysis of aircraft low-power thermoelectric refrigeration system 被引量:2
7
作者 张兴娟 王羽白 《Journal of Southeast University(English Edition)》 EI CAS 2010年第2期372-374,共3页
An optimal design method for an aircraft low-power thermoelectric refrigeration system(TRS)is proposed using an existing experimental model as the research platform under given aircraft flight conditions.The variati... An optimal design method for an aircraft low-power thermoelectric refrigeration system(TRS)is proposed using an existing experimental model as the research platform under given aircraft flight conditions.The variation curves of the cooling capacities and the refrigeration coefficients of the system running at three flight altitudes are investigated.The performance of the system is evaluated by the minimum-entropy-generation method and the performance penalty is also calculated.The power variation curves of the cooling system are obtained by an electric power experiment.The peak values of these curves are less than the maximal electric power supply of airborne equipment,proving that the use of the low-power TRS for airborne equipment is feasible.The COP,cooling capacity and entropy generation of the system are relative to the flight altitude and the current of the TRS.Through the analyses of these data,the optimal values of the COP are obtained,and the optimization measures are proposed to maximize the use of the advantages of the TRS. 展开更多
关键词 thermoelectric refrigeration entropy generation anal-ysis aircraft cooling system performance penalty
下载PDF
A New Technology to Measure the Thermoelectric Performance of Nanowire Array Structure 被引量:1
8
作者 王为 王惠 高建平 《Transactions of Tianjin University》 EI CAS 2002年第4期243-245,共3页
Recently, the study on one-dimensional thermoelectric materials is getting more and more attention. For those one-dimensional thermoelectric materials with nanowire array structure fabricated with alumina film as temp... Recently, the study on one-dimensional thermoelectric materials is getting more and more attention. For those one-dimensional thermoelectric materials with nanowire array structure fabricated with alumina film as template, its thickness is often in the range of 10 to several tens micrometers, and the conventional measurement cannot be used. The key difficulties of the thermoelectric performance measurement for nanowire array materials include two aspects: 1) How to heat the two sides of the specimen uniformly and keep the temperature difference constantly at the same time; 2) How to measure the temperature of the two sides of the specimen with the thickness of 10 to several tens micrometers. A new type heating and temperature measuring technology has been used, and it can be simply described as liquid heating and separate temperature measurement. According to this principle, a thermoelectric performance measurement system has been established. 展开更多
关键词 measuring technology thermoelectric performance nanowire array structure thermoelectric materials
全文增补中
Te基热电器件反常界面层生长行为及界面稳定性研究
9
作者 苗鑫 闫世强 +3 位作者 韦金豆 吴超 樊文浩 陈少平 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2024年第8期903-910,I0004-I0007,共12页
单质Te具有优异的热电优值(ZT),但其与金属电极连接界面处的剧烈元素交互扩散及反应会引入较大的接触电阻率(ρc),导致器件的转换效率(η)较低。因此,寻找合适的阻挡层来优化Te与金属电极间的连接至关重要。本研究基于梯度结构报道了一... 单质Te具有优异的热电优值(ZT),但其与金属电极连接界面处的剧烈元素交互扩散及反应会引入较大的接触电阻率(ρc),导致器件的转换效率(η)较低。因此,寻找合适的阻挡层来优化Te与金属电极间的连接至关重要。本研究基于梯度结构报道了一种宽相场Ni-Te合金阻挡层NiTe_(2-m)(NixTe(x=0.500~0.908))。结果表明,当x=0.500时,Ni_(0.5)Te/Te_(0.985)Sb_(0.015)/Ni_(0.5)Te器件的界面处无任何反应层及微观缺陷,ρ_(c)小于10μΩ·cm^(2),η在180K温差(热端温度473K)时达到了理论值的75%。同时,界面具有良好的热稳定性,在473K老化期间,界面微观组织、ρ_(c)以及η无明显变化。当x>0.500时,界面反应层厚度随x增大而逐渐减小,即主导界面反应层生长行为的因素并非常规的界面反应能及浓度梯度等热力学因素。进一步分析表明,反常生长源于动力学因素中的“原子空位”对反应层生成的迟滞作用。 展开更多
关键词 te 热电器件 扩散动力学 阻挡层 热稳定性
下载PDF
Bi_(2)Te_(3)/KOH/PEDOT:PSS和SiO_(2)气凝胶增强钢丝绒热电性能研究
10
作者 彭小敏 雷洪 陈伽俊 《功能材料》 CAS CSCD 北大核心 2024年第6期6101-6107,6117,共8页
在热电材料研究领域,一般认为金属的Seebeck系数较低,因此有关金属的热电性能的研究并不多见。但研究发现金属的物理形态对其热电性能具有影响。考察了金属纤维钢丝绒(SW)的热电性能。发现SW(主要成分为Fe)的Seebeck系数是块体铁的2倍... 在热电材料研究领域,一般认为金属的Seebeck系数较低,因此有关金属的热电性能的研究并不多见。但研究发现金属的物理形态对其热电性能具有影响。考察了金属纤维钢丝绒(SW)的热电性能。发现SW(主要成分为Fe)的Seebeck系数是块体铁的2倍。在此基础上,将SW与有机和无机热电材料进行复合,并在其空隙中填充SiO_(2)气凝胶,最终制备出了Bi_(2)Te_(3)/KOH/PEDOT:PSS@SW-SiO_(2)气凝胶复合材料,使其热电性能得到了进一步提升。结果表明,气凝胶的加入可使SW的导热系数降低34%。电导率(σ)、热导率(κ)和Seebeck系数(S)得到解耦。Bi_(2)Te_(3)/KOH/PEDOT:PSS@SW-SiO_(2)气凝胶的Seebeck系数、热电优值(ZT)和功率因子(PF)分别是纯SW的1.2、3.4、2.4倍。通过改变材料物理形态和添加气凝胶来提高材料热电性能的方式有望为其他热电材料的研究提供新的思路和有益参考。 展开更多
关键词 钢丝绒 热电材料 热电性能 金属纤维复合物 SiO_(2)气凝胶
下载PDF
Bi_(2)Te_(3)基热电材料输运性质优化策略研究进展
11
作者 曹毅 郭文斌 +5 位作者 客洪亮 宗子厚 高兴鹏 吴松全 李诵斌 李阁平 《铜业工程》 CAS 2024年第1期100-107,共8页
随着能源需求的持续增长和不可再生资源的不断耗竭,世界各国高度关注新型能源的开发,同时也致力于提高工业废热的回收率和利用率。热电材料是一种能够实现热能和电能直接转换的固态介质,以其为核心的热电器件不含运动附件且不排放污染物... 随着能源需求的持续增长和不可再生资源的不断耗竭,世界各国高度关注新型能源的开发,同时也致力于提高工业废热的回收率和利用率。热电材料是一种能够实现热能和电能直接转换的固态介质,以其为核心的热电器件不含运动附件且不排放污染物,已在半导体制冷和局部热管理领域实现商业化,例如户外制冷机、车载冷柜、光电芯片和功率激光器的控温装置等。热电制冷非常适于小空间热源的主动冷却,可能成为下一代通讯和信息技术的热管理难题中唯一可行的解决方案。Bi_(2)Te_(3)基化合物作为近室温区兼具稳定理化性质和优异输运性质的热电材料,一直受到学术界和产业界的广泛关注。本文在概述热电材料研究背景和制备方法的基础上,从能带工程、声子散射工程、热变形工艺、结构低维化等方面对热电性能的优化方法进行了归纳,并对未来机遇进行了展望。 展开更多
关键词 热电性能 碲化铋 能带工程 声子散射 技术策略
下载PDF
Thermodynamic Performance of Three-Terminal Hybrid Quantum Dot Thermoelectric Devices 被引量:1
12
作者 施志成 符婧 +1 位作者 秦伟锋 何济洲 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第11期6-10,共5页
We propose four different models of three-terminal quantum dot thermoelectric devices. From general thermodynamic laws, we examine the rew;rsible efficiencies of the four different models. Based on the master equation... We propose four different models of three-terminal quantum dot thermoelectric devices. From general thermodynamic laws, we examine the rew;rsible efficiencies of the four different models. Based on the master equation, the expressions for the efficiency and power output are derived and the corresponding working regions are determined. Moreover, we particularly analyze the performance of a three-terminal hybrid quantum dot refrigerator. The performance characteristic curves and the optimal performance parameters are obtained. Finally, we discuss the influence of the nonradiative effects on the optimal performance parameters in detail. 展开更多
关键词 Thermodynamic performance of Three-terminal Hybrid Quantum Dot thermoelectric Devices
下载PDF
Donor-acceptor conjugated copolymer with high thermoelectric performance:A case study of the oxidation process within chemical doping
13
作者 Liangjun Chen Wei Wang +1 位作者 Shengqiang Xiao Xinfeng Tang 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第2期80-88,共9页
The doping process and thermoelectric properties of donor-acceptor(D-A)type copolymers are investigated with the representative poly([2,6-4,8-di(5-ethylhexylthienyl)benzo[1,2-b;3,3-b]dithiophene]3-fluoro-2-[(2-ethylhe... The doping process and thermoelectric properties of donor-acceptor(D-A)type copolymers are investigated with the representative poly([2,6-4,8-di(5-ethylhexylthienyl)benzo[1,2-b;3,3-b]dithiophene]3-fluoro-2-[(2-ethylhexyl)-carbonyl]thieno[3,4-b]thiophenediyl))(PTB7-Th).The PTB7-Th is doped by Fe Cl;and only polarons are induced in its doped films.The results reveal that the electron-rich donor units within PTB7-Th lose electrons preferentially at the initial stage of the oxidation and then the acceptor units begin to be oxidized at a high doping concentration.The energy levels of polarons and the Fermi level of the doped PTB7-Th remain almost unchange with different doping levels.However,the morphology of the PTB7-Th films could be deteriorated as the doping levels are improved,which is one of the main reasons for the decrease of electrical conductivity at the later stage of doping.The best electrical conductivity and power factor are obtained to be 42.3 S·cm^(-1);and 33.9μW·mK^(-1),respectively,in the doped PTB7-Th film at room temperature.The power factor is further improved to 38.3μW·mK^(-1);at 75℃.This work may provide meaningful experience for development of D-A type thermoelectric copolymers and may further improve the doping efficiency. 展开更多
关键词 donor-acceptor copolymer DOPING oxidization process thermoelectric performance
下载PDF
Improved thermoelectric performance in p-type Bi_(0.48)Sb_(1.52)Te_3 bulk material by adding MnSb_2Se_4
14
作者 Binglei Cao Jikang Jian +4 位作者 Binghui Ge Shanming Li Hao Wang Jiao Liu Huaizhou Zhao 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第1期403-409,共7页
Bismuth telluride(Bi2Te3) based alloys, such as p-type Bi(0.5)Sb(1.5)Te3, have been leading candidates for near room temperature thermoelectric applications. In this study, Bi(0.48)Sb(1.52)Te3 bulk materials... Bismuth telluride(Bi2Te3) based alloys, such as p-type Bi(0.5)Sb(1.5)Te3, have been leading candidates for near room temperature thermoelectric applications. In this study, Bi(0.48)Sb(1.52)Te3 bulk materials with MnSb2Se4 were prepared using high-energy ball milling and spark plasma sintering(SPS) process. The addition of MnSb2Se4 to Bi(0.48)Sb(1.52)Te3 increased the hole concentration while slightly decreasing the Seebeck coefficient, thus optimising the electrical transport properties of the bulk material. In addition, the second phases of MnSb2Se4 and Bi(0.48)Sb(1.52)Te3 were observed in the Bi(0.48)Sb(1.52)Te3 matrix. The nanoparticles in the semi-coherent second phase of MnSb2Se4 behaved as scattering centres for phonons,yielding a reduction in the lattice thermal conductivity. Substantial enhancement of the figure of merit, ZT, has been achieved for Bi(0.48)Sb(1.52)Te3 by adding an Mn(0.8)Cu(0.2)Sb2Se4(2mol%) sample, for a wide range of temperatures, with a peak value of 1.43 at 375 K, corresponding to -40% improvement over its Bi(0.48)Sb(1.52)Te3 counterpart. Such enhancement of the thermoelectric(TE) performance of p-type Bi2Te3 based materials is believed to be advantageous for practical applications. 展开更多
关键词 Bi0.48Sb1.52te3 thermoelectric materials semi-coherent second phase ZT enhancement
下载PDF
Fabrication and performance evaluation of the thermoelectric generation and performance measuring system
15
作者 王禹 Zheng Wenbo Wu Zhifei 《High Technology Letters》 EI CAS 2008年第2期199-204,共6页
A novel thennoelectric generating and performance measuring system (TGPMS) was designed and fabricated. TGPMS can not only achieve the function of thennoelectric generation, but also measure the thennoelectric perfo... A novel thennoelectric generating and performance measuring system (TGPMS) was designed and fabricated. TGPMS can not only achieve the function of thennoelectric generation, but also measure the thennoelectric performance parameters of the bismuth-telluride-based thennoelectric device accurately. These thennoelectric performance parameters mainly include the dependence of the Seebeck coefficient of the thennoelectric device on the device's temperature in the low temperature range (about 40 ~ 190~C ), and the dependence of the power output and thermoelectric conversion efficiency on the temperature dif- ference or output load. With the optimum load, the optimal value of the power output is 3.39W when the temperature difference reaches 231.2~C, and the optimal value of the conversion efficiency is 3.22% when the temperature difference reaches 208.9~C. TGPMS provides an experimental foundation for the application of the thennoelectric generators in the space field. 展开更多
关键词 thermoelectric generation performance measuring power output thermoelectric conversion efficiency
下载PDF
Predicted High Thermoelectric Performance of Quasi-Two-Dimensional Compound GeAs Using First-Principles Calculations
16
作者 邹代峰 余传斌 +1 位作者 李宇豪 欧云 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第11期80-83,共4页
The electronic structure of binary quasi-two-dimensional GeAs is investigated using first-principles calculations, and it is found that the anisotropic structure of the layered compound GeAs brings about the anisotrop... The electronic structure of binary quasi-two-dimensional GeAs is investigated using first-principles calculations, and it is found that the anisotropic structure of the layered compound GeAs brings about the anisotropy of the transport properties. Meanwhile, the band structure of GeAs exhibits a relatively large dispersion near the valence-band maximum in the Z –V direction while it is rather flat in the Z –Γ direction, which is highly desirable for good thermoelectric performance. The calculated partial charge density distribution also reveals that GeAs possesses anisotropic electrical conductivity. Based on the semi-classical Boltzmann transport theory, the anisotropic transport properties are observed, and the optimal doping concentrations are estimated. The temperature dependence transport properties of p-type GeAs are compared with the experimental data in good agreement, and the theoretical figure-of-merit ZT has been predicted as well. 展开更多
关键词 As Predicted High thermoelectric performance of Quasi-Two-Dimensional Compound GeAs Using First-Principles Calculations SEEBECK
下载PDF
Optimal Performance Analysis of a Three-Terminal Thermoelectric Refrigerator with Ideal Tunneling Quantum Dots
17
作者 苏豪 施志成 何济洲 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第10期17-21,共5页
The model of a three-terminal thermoelectric refrigerator with ideal tunneling quantum dots is established. It consists of a cavity connected to two quantum dots embedded between two electron reservoirs at different t... The model of a three-terminal thermoelectric refrigerator with ideal tunneling quantum dots is established. It consists of a cavity connected to two quantum dots embedded between two electron reservoirs at different temperatures and chemical potentials. According to the Landauer formula the expressions for the heat current, the cooling rate and the coefficient of performance (COP) are derived analytically. The performance characteristic curves of the cooling rate versus the coefficient of performance are plotted with numerical calculation. The optimal regions of the cooling rate and the COP are determined. Moreover, we optimize the cooling rate and the COP with respect to the position of energy level of the right quantum dot, respectively. The influence of the width of energy level and the temperature ratio on performance of the three-terminal thermoelectric refrigerator is analyzed. Lastly, when the width of energy level is small enough, the optimal performance of the refrigerator is discussed in detail. 展开更多
关键词 COP Optimal performance Analysis of a Three-terminal thermoelectric Refrigerator with Ideal Tunneling Quantum Dots
下载PDF
Thermoelectric Performance of Micro/Nano-Structured Bismuth-Antimony-Telluride Bulk from Low Cost Mechanical Alloying
18
作者 Z. Li G. L. Zhao +2 位作者 P. Zhang S. Guo J. Tang 《Materials Sciences and Applications》 2012年第12期833-837,共5页
In this work, micro/nano-structured Bi0.5Sb1.5Te3bulk thermoelectric materials were synthesized by mechanical alloying from elemental shots of Bi, Sb, and Te. Cold pressing and subsequent heat treatments with hydrogen... In this work, micro/nano-structured Bi0.5Sb1.5Te3bulk thermoelectric materials were synthesized by mechanical alloying from elemental shots of Bi, Sb, and Te. Cold pressing and subsequent heat treatments with hydrogen reduction were used to form bulk solid samples with good thermoelectric properties in the temperature range around 75℃to 100℃. In comparison to crystal growth methods and chemical solution synthesis, the reported technique can be readily implemented for mass production with relatively low cost. 展开更多
关键词 thermoelectric Bi0.5Sb1.5te3 Mechanical ALLOYING Hydrogen Reduction
下载PDF
柔性PEDOT:PSS修饰Te纳米棒/PEDOT纳米线复合薄膜的制备及热电性能
19
作者 杜永 郭思思 +1 位作者 秦杰 孟秋风 《应用技术学报》 2024年第1期43-47,共5页
通过改进的自组装胶束软模板法和湿化学法分别成功合成了聚(3,4-乙烯二氧噻吩)纳米线(PEDOT NW)和聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸(PEDOT:PSS)修饰的Te纳米棒(PC-Te),采用真空抽滤工艺制备了柔性自支撑PC-Te/PEDOT NW复合薄膜。通过... 通过改进的自组装胶束软模板法和湿化学法分别成功合成了聚(3,4-乙烯二氧噻吩)纳米线(PEDOT NW)和聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸(PEDOT:PSS)修饰的Te纳米棒(PC-Te),采用真空抽滤工艺制备了柔性自支撑PC-Te/PEDOT NW复合薄膜。通过透射电子显微镜等对PC-Te的显微结构进行表征,研究了PC-Te的添加量对复合薄膜的热电性能的影响规律。随着PC-Te含量的增加,复合薄膜的Seebeck系数增大,电导率减小,PC-Te含量为70%时,复合薄膜的功率因子的最大值达到47.4μW/mK^(2)(380 K)。该薄膜具有良好的柔性,弯曲500次后,其电阻变化率为9.2%。 展开更多
关键词 碲纳米棒 聚(3 4-乙烯二氧噻吩):聚苯乙烯磺酸 聚(3 4-乙烯二氧噻吩)纳米线 热电性能
下载PDF
Clathrate structure of YB_(3)C_(3) for high-performance thermoelectrics with superior mechanical properties
20
作者 Yangfan Cui Shuai Duan +5 位作者 Xiaojun Wang Qinghang Tang Jinyang Xi Xiaobing Liu Yongsheng Zhang Xin Chen 《Journal of Materiomics》 SCIE CSCD 2024年第4期783-791,共9页
Exploring high-performance thermoelectric materials with improved mechanical properties is important for broadening the application scope and the assembly requirement of stable devices.This work presents an effective ... Exploring high-performance thermoelectric materials with improved mechanical properties is important for broadening the application scope and the assembly requirement of stable devices.This work presents an effective strategy to discover hard thermoelectric material by inserting foreign atoms in the rigid covalent framework.We demonstrate this in boron-carbon clathrate VII structure,showing a promising candidate for highly efficient thermoelectric energy conversion,especially with Y atom filled in the cage,with a peak zT of 0.73 at 1,000 K.The ab initio calculations indicate that YB_(3)C_(3) system has low lattice thermal conductivity of 4.5 W/(m·K)at 1,000 K due to the strong rattling of encaged Y atom.The strongly covalent framework provides highly degenerate band structures consisting of heavy and light electron pockets,which can maintain high carrier mobility arising from small effective mass and thus large group velocity.Consequently,high power factor can be achieved in YB_(3)C_(3) for both electron and hole doping.In addition,it exhibits well mechanical properties and a Vickers hardness of 23.7 GPa because of the strong covalent boron-carbon framework.This work provides a novel avenue for the search of high-performance thermoelectric materials with excellent mechanical properties,based on boron-carbon clathrate structure. 展开更多
关键词 Clathrate structure thermoelectric performance First-principles calculations Mechanical properties Thermal conductivity
原文传递
上一页 1 2 23 下一页 到第
使用帮助 返回顶部