The rhombohedralα-GeTe can be approximated as a slightly distorted rock-salt structure along its[111]direction and possesses superb thermoelectric performance.However,the role of such a ferroelectric-like structural ...The rhombohedralα-GeTe can be approximated as a slightly distorted rock-salt structure along its[111]direction and possesses superb thermoelectric performance.However,the role of such a ferroelectric-like structural distortion on its transport properties remains unclear.Herein,we performed a systematic study on the crystal structure and electronic band structure evolutions of Ge_(1-x)Sn_(x)Te alloys where the degree of ferroelectric distortion is continuously tuned.It is revealed that the band gap is maximized while multiple valence bands are converged at x=0.6,where the ferroelectric distortion is the least but still works.Once undistorted,the band gap is considerably reduced,and the valence bands are largely separated again.Moreover,near the ferro-to-paraelectric phase transition Curie temperature,the lattice thermal conductivity reaches its minima because of significant lattice softening enabled by ferroelectric instability.We predict a peak ZT value of 2.6 at 673 K inα-GeTe by use of proper dopants which are powerful in suppressing the excess hole concentrations but meanwhile exert little influence on the ferroelectric distortion.展开更多
Despite notable progress in thermoelectric(TE)materials and devices,developing TE aerogels with high-temperature resistance,superior TE performance and excellent elasticity to enable self-powered high-temperature moni...Despite notable progress in thermoelectric(TE)materials and devices,developing TE aerogels with high-temperature resistance,superior TE performance and excellent elasticity to enable self-powered high-temperature monitoring/warning in industrial and wearable applications remains a great challenge.Herein,a highly elastic,flame-retardant and high-temperature-resistant TE aerogel,made of poly(3,4-ethylene dioxythiophene):poly(styrenesulfonate)/single-walled carbon nanotube(PEDOT:PSS/SWCNT)composites,has been fabricated,displaying attractive compression-induced power factor enhancement.The as-fabricated sensors with the aerogel can achieve accurately pressure stimuli detection and wide temperature range monitoring.Subsequently,a flexible TE generator is assembled,consisting of 25 aerogels connected in series,capable of delivering a maximum output power of 400μW when subjected to a temperature difference of 300 K.This demonstrates its outstanding high-temperature heat harvesting capability and promising application prospects for real-time temperature monitoring on industrial high-temperature pipelines.Moreover,the designed self-powered wearable sensing glove can realize precise wide-range temperature detection,high-temperature warning and accurate recognition of human hand gestures.The aerogel-based intelligent wearable sensing system developed for firefighters demonstrates the desired self-powered and highly sensitive high-temperature fire warning capability.Benefitting from these desirable properties,the elastic and high-temperature-resistant aerogels present various promising applications including self-powered high-temperature monitoring,industrial overheat warning,waste heat energy recycling and even wearable healthcare.展开更多
Exploitation of sustainable energy sources requires the use of unique conversion and storage systems,such as solar panels,batteries,fuel cells,and electronic equipment.Thermal load management of these energy conversio...Exploitation of sustainable energy sources requires the use of unique conversion and storage systems,such as solar panels,batteries,fuel cells,and electronic equipment.Thermal load management of these energy conversion and storage systems is one of their challenges and concerns.In this article,the thermal management of these systems using thermoelectric modules is reviewed.The results show that by choosing the right option to remove heat from the hot side of the thermoelectric modules,it will be a suitable local cooling,and the thermoelectric modules increase the power and lifespan of the system by reducing the spot temperature.Thermoelectric modules were effective in reducing panel temperature.They increase the time to reach a temperature above 50℃ in batteries by 3 to 4 times.Also,in their integration with fuel cells,they increase the power density of the fuel cell.展开更多
Silver selenide(Ag_(2)Se)stands out as a promising thermoelectric(TE)material,particularly for applications near room temper-atures.This research presents a novel approach for the fabrication of bulk Ag_(2)Se samples ...Silver selenide(Ag_(2)Se)stands out as a promising thermoelectric(TE)material,particularly for applications near room temper-atures.This research presents a novel approach for the fabrication of bulk Ag_(2)Se samples at a relatively low temperature(170℃)using the cold sintering process(CSP)with AgNO_(3)solution as a transient liquid agent.The effect of AgNO_(3)addition during CSP on the micro-structure and TE properties was investigated.The results from phase,composition and microstructure analyses showed that the introduc-tion of AgNO_(3)solution induced the formation of Ag nano-precipitates within the Ag_(2)Se matrix.Although the nano-precipitates do not af-fect the phase and crystal structure of orthorhombicβ-Ag_(2)Se,they suppressed crystal growth,leading to reduced crystallite sizes.The samples containing Ag nano-precipitates also exhibited high porosity and low bulk density.Consequently,these effects contributed to sig-nificantly enhanced electrical conductivity and a slight decrease in the Seebeck coefficient when small Ag concentrations were incorpor-ated.This resulted in an improved average power factor from~1540μW·m^(−1)·K^(−2)for pure Ag_(2)Se to~1670μW·m^(−1)·K^(−2)for Ag_(2)Se with additional Ag precipitates.However,excessive Ag addition had a detrimental effect on the power factor.Furthermore,thermal conductiv-ity was effectively suppressed in Ag_(2)Se fabricated using AgNO_(3)-assisted CSP,attributed to enhanced phonon scattering at crystal inter-faces,pores,and Ag nano-precipitates.The highest figure-of-merit(zT)of 0.92 at 300 K was achieved for the Ag_(2)Se with 0.5wt%Ag dur-ing CSP fabrication,equivalent to>20%improvement compared to the controlled Ag_(2)Se without extra Ag solution.Thus,the process outlined in this study presents an effective strategy to tailor the microstructure of bulk Ag_(2)Se and enhance its TE performance at room temperature.展开更多
Fire warning is vital to human life,economy and ecology.However,the development of effective warning systems faces great challenges of fast response,adjustable threshold and remote detecting.Here,we propose an intelli...Fire warning is vital to human life,economy and ecology.However,the development of effective warning systems faces great challenges of fast response,adjustable threshold and remote detecting.Here,we propose an intelligent self-powered remote IoT fire warning system,by employing single-walled carbon nanotube/titanium carbide thermoelectric composite films.The flexible films,prepared by a convenient solution mixing,display p-type characteristic with excellent high-temperature stability,flame retardancy and TE(power factor of 239.7±15.8μW m^(-1) K^(-2))performances.The comprehensive morphology and structural analyses shed light on the underlying mechanisms.And the assembled TE devices(TEDs)exhibit fast fire warning with adjustable warning threshold voltages(1–10 mV).Excitingly,an ultrafast fire warning response time of~0.1 s at 1 mV threshold voltage is achieved,rivaling many state-of-the-art systems.Furthermore,TE fire warning systems reveal outstanding stability after 50 repeated cycles and desired durability even undergoing 180 days of air exposure.Finally,a TED-based wireless intelligent fire warning system has been developed by coupling an amplifier,analogto-digital converter and Bluetooth module.By combining TE characteristics,high-temperature stability and flame retardancy with wireless IoT signal transmission,TE-based hybrid system developed here is promising for next-generation self-powered remote IoT fire warning applications.展开更多
By replacing hexyl chains in poly(3-hexylthiophene)(P3HT)with 2-propoxyethyls,four poly(3-(2-propoxyethyl)thiophene)(P3POET)homopolymers with comparable polydispersity indexes(PDI)and regioregularities were prepared h...By replacing hexyl chains in poly(3-hexylthiophene)(P3HT)with 2-propoxyethyls,four poly(3-(2-propoxyethyl)thiophene)(P3POET)homopolymers with comparable polydispersity indexes(PDI)and regioregularities were prepared herein in addition with step increment of about 7 kDa on numberaverage molecular weight(M_(n))from around 11 to 32 kDa(accordingly denoted as P11k,P18k,P25k,and P32k).When doped in film by FeCl_(3)at the optimized conditions,the maximum power factor(PF_(max))increases greatly from 4.3μW·m^(-1)·K^(-2)for P11k to 8.8μW·m^(-1)·K^(-2)for P18k,and further to 9.7μW·m^(-1)·K^(-2)for P25k,followed by a slight decrease to 9.2μW·m^(-1)·K^(-2)for P32k.The close Seebeck coefficients(S)at PF_(max)are observed in these doped polymer films due to their consistent frontier orbital energy levels and Fermi levels.The main contribution to this PF_(max)evolution thus comes from the corresponding conductivities(σ).Theσvariation of the doped films can be rationally correlated with their microstructure evolution.展开更多
Zinc oxide(ZnO)shows great potential in electronics,but its large intrinsic thermal conductivity limits its thermoelectric applications.In this work,we explore the significant carrier transport capacity and diameter-d...Zinc oxide(ZnO)shows great potential in electronics,but its large intrinsic thermal conductivity limits its thermoelectric applications.In this work,we explore the significant carrier transport capacity and diameter-dependent thermoelectric characteristics of wurtzite-ZnO(0001)nanowires based on first-principles and molecular dynamics simulations.Under the synergistic effect of band degeneracy and weak phonon-electron scattering,P-type(ZnO)_(73) nanowires achieve an ultrahigh power factor above 1500μW·cm^(-1)·K^(-2)over a wide temperature range.The lattice thermal conductivity and carrier transport properties of ZnO nanowires exhibit a strong diameter size dependence.When the ZnO nanowire diameter exceeds 12.72A,the carrier transport properties increase significantly,while the thermal conductivity shows a slight increase with the diameter size,resulting in a ZT value of up to 6.4 at 700 K for P-type(ZnO)_(73).For the first time,the size effect is also illustrated by introducing two geometrical configurations of the ZnO nanowires.This work theoretically depicts the size optimization strategy for the thermoelectric conversion of ZnO nanowires.展开更多
Seeking intrinsically low thermal conductivity materials is a viable strategy in the pursuit of high-performance thermoelectric materials.Here,by using first-principles calculations and semiclassical Boltzmann transpo...Seeking intrinsically low thermal conductivity materials is a viable strategy in the pursuit of high-performance thermoelectric materials.Here,by using first-principles calculations and semiclassical Boltzmann transport theory,we systemically investigate the carrier transport and thermoelectric properties of monolayer Janus GaInX_(3)(X=S,Se,Te).It is found that the lattice thermal conductivities can reach values as low as 3.07 W·m^(-1)·K^(-1),1.16 W·m^(-1)·K^(-1)and 0.57 W·m^(-1)·K^(-1)for GaInS_(3),GaInSe_(3),and GaInTe_(3),respectively,at room temperature.This notably low thermal conductivity is attributed to strong acoustic-optical phonon coupling caused by the presence of low-frequency optical phonons in GaInX_(3) materials.Furthermore,by integrating the charac teristics of electronic and thermal transport,the dimensionless figure of merit ZT can reach maximum values of 0.95,2.37,and 3.00 for GaInS_(3),GaInSe_(3),and GaInTe_(3),respectively.Our results suggest that monolayer Janus GaInX_(3)(X=S,Se,Te)is a promising candidate for thermoelectric and heat management applications.展开更多
Multidimensional integration and multifunctional com-ponent assembly have been greatly explored in recent years to extend Moore’s Law of modern microelectronics.However,this inevitably exac-erbates the inhomogeneity ...Multidimensional integration and multifunctional com-ponent assembly have been greatly explored in recent years to extend Moore’s Law of modern microelectronics.However,this inevitably exac-erbates the inhomogeneity of temperature distribution in microsystems,making precise temperature control for electronic components extremely challenging.Herein,we report an on-chip micro temperature controller including a pair of thermoelectric legs with a total area of 50×50μm^(2),which are fabricated from dense and flat freestanding Bi2Te3-based ther-moelectric nano films deposited on a newly developed nano graphene oxide membrane substrate.Its tunable equivalent thermal resistance is controlled by electrical currents to achieve energy-efficient temperature control for low-power electronics.A large cooling temperature difference of 44.5 K at 380 K is achieved with a power consumption of only 445μW,resulting in an ultrahigh temperature control capability over 100 K mW^(-1).Moreover,an ultra-fast cooling rate exceeding 2000 K s^(-1) and excellent reliability of up to 1 million cycles are observed.Our proposed on-chip temperature controller is expected to enable further miniaturization and multifunctional integration on a single chip for microelectronics.展开更多
Solar-driven photocatalytic water/seawater splitting holds great potential for green hydrogen production.However,the practical application is hindered by the relatively low conversion efficiency resulting from the ina...Solar-driven photocatalytic water/seawater splitting holds great potential for green hydrogen production.However,the practical application is hindered by the relatively low conversion efficiency resulting from the inadequate utilization of solar spectrum with significant waste in the form of heat.Moreover,current equipment struggles to maintain all-day operation subjected to the lack of light during nighttime.Herein,a novel hybrid system integrating photothermal catalytic(PTC)reactor,thermoelectric generator(TEG),and phase change materials(PCM)was proposed and designed(named as PTC-TEG-PCM)to address these challenges and enable simultaneous overall seawater splitting and 24-hour power generation.The PTC system effectively maintains in an optimal temperature range to maximize photothermal-assisted photocatalytic hydrogen production.The TEG component recycles the low-grade waste heat for power generation,complementing the shortcoming of photocatalytic conversion and achieving cascade utilization of full-spectrum solar energy.Furthermore,exceptional thermal storage capability of PCM allow for the conversion of released heat into electricity during nighttime,contributing significantly to the overall power output and enabling PTC-TEG-PCM to operate for more than 12 h under the actual condition.Compared to traditional PTC system,the overall energy conversion efficiency of the PTC-TEG-PCM system can be increased by∼500%,while maintaining the solar-to-hydrogen efficiency.The advancement of this novel system demonstrated that recycling waste heat from the PTC system and utilizing heat absorption/release capability of PCM for thermoelectric application are effective strategies to improve solar energy conversion.With flexible parameter designing,PTC-TEG-PCM can be applied in various scenarios,offering high efficiency,stability,and sustainability.展开更多
The method to combine thermoelectric(TE)and magnetocaloric(MC)cooling techniques lies in developing a new material that simultaneously possesses a large TE and good MC cooling performance.In this work,using n-type Bi_...The method to combine thermoelectric(TE)and magnetocaloric(MC)cooling techniques lies in developing a new material that simultaneously possesses a large TE and good MC cooling performance.In this work,using n-type Bi_(2)Te_(2.7)Se_(0.3)(BTS)as the TE base material and Gd as the second-phase MC material,Gd/BTS composites were prepared by the spark plasma sintering method.In the composites,interfacial reaction between Gd and BTS was identified,resulting in the formation of Gd Te,which has a large impact on the electron concentration through the adjustment of defect concentration.The MC/TE composite containing 2.5 wt%Gd exhibited a ZT value of 0.6 at 300 K,essentially retaining the original TE performance,while all the composites largely maintained the excellent MC performance of Gd.This work provides a potential pathway to achieving high performance in MC/TE composites.展开更多
We employ advanced first principles methodology,merging self-consistent phonon theory and the Boltzmann transport equation,to comprehensively explore the thermal transport and thermoelectric properties of KCdAs.Notabl...We employ advanced first principles methodology,merging self-consistent phonon theory and the Boltzmann transport equation,to comprehensively explore the thermal transport and thermoelectric properties of KCdAs.Notably,the study accounts for the impact of quartic anharmonicity on phonon group velocities in the pursuit of lattice thermal conductivity and investigates 3ph and 4ph scattering processes on phonon lifetimes.Through various methodologies,including examining atomic vibrational modes and analyzing 3ph and 4ph scattering processes,the article unveils microphysical mechanisms contributing to the lowκL within KCdAs.Key features include significant anisotropy in Cd atoms,pronounced anharmonicity in K atoms,and relative vibrations in non-equivalent As atomic layers.Cd atoms,situated between As layers,exhibit rattling modes and strong lattice anharmonicity,contributing to the observed lowκL.Remarkably flat bands near the valence band maximum translate into high PF,aligning with ultralowκL for exceptional thermoelectric performance.Under optimal temperature and carrier concentration doping,outstanding ZT values are achieved:4.25(a(b)-axis,p-type,3×10^(19)cm^(−3),500 K),0.90(c-axis,p-type,5×10^(20)cm^(−3),700 K),1.61(a(b)-axis,n-type,2×10^(18)cm^(−3),700 K),and 3.06(c-axis,n-type,9×10^(17)cm^(−3),700 K).展开更多
Understanding and characterizing rough contact and wavy surfaces are essential for developing effective strategies to mitigate wear,optimize lubrication,and enhance the overall performance and durability of mechanical...Understanding and characterizing rough contact and wavy surfaces are essential for developing effective strategies to mitigate wear,optimize lubrication,and enhance the overall performance and durability of mechanical systems.The sliding friction contact problem between a thermoelectric(TE)half-plane and a rigid solid with a periodic wavy surface is the focus of this investigation.To simplify the problem,we utilize mixed boundary conditions,leading to a set of singular integral equations(SIEs)with the Hilbert kernels.The analytical solutions for the energy flux and electric current density are obtained by the variable transform method in the context of the electric and temperature field.The contact problem for the elastic field is transformed into the second-kind SIE and solved by the Jacobi polynomials.Notably,the smoothness of the wavy contact surface ensures that there are no singularities in the surface contact stress,and ensures that it remains free at the contact edge.Based on the plane strain theory of elasticity,the analysis primarily examines the correlation between the applied load and the effective contact area.The distribution of the normal stress on the surface with or without TE loads is discussed in detail for various friction coefficients.Furthermore,the obtained results indicate that the in-plane stress decreases behind the trailing edge,while it increases ahead of the trailing edge when subjected to TE loads.展开更多
Ductile Ag_(2)(Te,S)pseudobinary compounds have attracted great attention in thermoelectric community since they can be fabricated into high-performance flexible and hetero-shaped thermoelectric devices.However,in spi...Ductile Ag_(2)(Te,S)pseudobinary compounds have attracted great attention in thermoelectric community since they can be fabricated into high-performance flexible and hetero-shaped thermoelectric devices.However,in spite of the numerous studies,the‘brittleeductile’transition boundary in Ag_(2)(Te,S)is still unclear.In this work,a series of Te-rich Ag_(2)(Te,S)pseudobinary compounds have been prepared.The structure characterizations confirm they belong to the new-concept of meta-phase.The systematically investigation on the mechanical properties demonstrate that the‘brittl-eductile’transition boundary appears around x=0.1.Unexpected good ductility is observed in the Te-rich Ag_(2)Te_(1-x)S_(x)crystalizing in the Ag_(2)Te room-temperature monoclinic structure and high-temperature cubic structure,which are thought to be brittle before.Likewise,Ag content is found to be a very critical parameter determining the ductility of Te-rich Ag_(2)Te_(1-x)S_(x).Very slight Ag-deficiency can greatly deteriorate the ductility.The ther-moelectric properties of these ductile Te-rich Ag_(2)Te_(1-x)S_(x)pseudobinary compounds are investigated.A maximum thermoelectric figure-of-merit of 0.6 is obtained for Ag_(2)Te_(0.9)S_(0.1)at 600 K.This work sheds light on the future investigation of Ag_(2)(Te,S)pseudobinary compounds.展开更多
Novel two-dimensional thermoelectric materials have attracted significant attention in the field of thermoelectric due to their low lattice thermal conductivity.A comprehensive understanding of their microscopic struc...Novel two-dimensional thermoelectric materials have attracted significant attention in the field of thermoelectric due to their low lattice thermal conductivity.A comprehensive understanding of their microscopic structures is crucial for driving further the optimization of materials properties and developing novel functional materials.Here,by using in situ scanning tunneling microscopy,we report the atomic layer evolution and surface reconstruction on the cleaved thermoelectric material KCu_(4)Se_(3) for the first time.We clearly revealed each atomic layer,including the naturally cleaved K atomic layer,the intermediate Se^(2-)atomic layer,and the Se^(-)atomic layer that emerges in the thermodynamic-stable state.Departing from the maj ority of studies that predominantly concentrate on macroscopic measurements of the charge transport,our results reveal the coexistence of potassium disorder and complex reconstructed patterns of selenium,which potentially influences charge carrier and lattice dynamics.These results provide direct insight into the surface microstructures and evolution of KCu_(4)Se_(3),and shed useful light on designing functional materials with superior performance.展开更多
Since the superior mechanical,chemical and physical properties of high-entropy alloys(HEAs)were discovered,they have gradually become new emerging candidates for renewable energy applications.This review presents the ...Since the superior mechanical,chemical and physical properties of high-entropy alloys(HEAs)were discovered,they have gradually become new emerging candidates for renewable energy applications.This review presents the novel applications of HEAs in thermoelectric energy conversion.Firstly,the basic concepts and structural properties of HEAs are introduced.Then,we discuss a number of promising thermoelectric materials based on HEAs.Finally,the conclusion and outlook are presented.This article presents an advanced understanding of the thermoelectric properties of HEAs,which provides new opportunities for promoting their applications in renewable energy.展开更多
Because poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS)is water processable,thermally stable,and highly conductive,PEDOT:PSS and its composites have been considered to be one of the most promising f...Because poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS)is water processable,thermally stable,and highly conductive,PEDOT:PSS and its composites have been considered to be one of the most promising flexible thermoelectric materials.However,the PEDOT:PSS film prepared from its commercial aqueous dispersion usually has very low conductivity,thus cannot be directly utilized for TE applications.Here,a simple environmental friendly strategy via femtosecond laser irradiation without any chemical dopants and treatments was demonstrated.Under optimal conditions,the electrical conductivity of the treated film is increased to 803.1 S cm^(-1)from 1.2 S cm^(-1)around three order of magnitude higher,and the power factor is improved to 19.0μW m^(-1)K^(-2),which is enhanced more than 200 times.The mechanism for such remarkable enhancement was attributed to the transition of the PEDOT chains from a coil to a linear or expanded coil conformation,reduction of the interplanar stacking distance,and the removal of insulating PSS with increasing the oxidation level of PEDOT,facilitating the charge transportation.This work presents an effective route for fabricating high-performance flexible conductive polymer films and wearable thermoelectric devices.展开更多
Use of a flexible thermoelectric source is a feasible approach to realizing selfpowered wearable electronics and the Internet of Things.Inorganic thin films are promising candidates for fabricating flexible power supp...Use of a flexible thermoelectric source is a feasible approach to realizing selfpowered wearable electronics and the Internet of Things.Inorganic thin films are promising candidates for fabricating flexible power supply,but obtaining highthermoelectric‐performance thin films remains a big challenge.In the present work,a p‐type Bi_(x)Sb_(2−x)Te_(3) thin film is designed with a high figure of merit of 1.11 at 393 K and exceptional flexibility(less than 5%increase in resistance after 1000 cycles of bending at a radius of∼5 mm).The favorable comprehensive performance of the Bi_(x)Sb_(2−x)Te_(3) flexible thin film is due to its excellent crystallinity,optimized carrier concentration,and low elastic modulus,which have been verified by experiments and theoretical calculations.Further,a flexible device is fabricated using the prepared p‐type Bi_(x)Sb_(2−x)Te_(3) and n‐type Ag_(2)Se thin films.Consequently,an outstanding power density of∼1028μWcm^(−2)is achieved at a temperature difference of 25 K.This work extends a novel concept to the fabrication of highperformance flexible thin films and devices for wearable energy harvesting.展开更多
The rapid development of the global economy and population growth are accompanied by the production of numerous waste textiles.This leads to a waste of limited resources and serious environmental pollution problems ca...The rapid development of the global economy and population growth are accompanied by the production of numerous waste textiles.This leads to a waste of limited resources and serious environmental pollution problems caused by improper disposal.The rational recycling of wasted textiles and their transformation into high-value-added emerging products,such as smart wearable devices,is fascinating.Here,we propose a novel roadmap for turning waste cotton fabrics into three-dimensional elastic fiber-based thermoelectric aerogels by a one-step lyophilization process with decoupled self-powered temperature-compression strain dual-parameter sensing properties.The thermoelectric aerogel exhibits a fast compression response time of 0.2 s,a relatively high Seebeck coefficient of 43μV·K^(-1),and an ultralow thermal conductivity of less than 0.04 W·m^(-1)·K^(-1).The cross-linking of trimethoxy(methyl)silane(MTMS)and cellulose endowed the aerogel with excellent elasticity,allowing it to be used as a compressive strain sensor for guessing games and facial expression recognition.In addition,based on the thermoelectric effect,the aerogel can perform temperature detection and differentiation in self-powered mode with the output thermal voltage as the stimulus signal.Furthermore,the wearable system,prepared by connecting the aerogel-prepared array device with a wireless transmission module,allows for temperature alerts in a mobile phone application without signal interference due to the compressive strains generated during gripping.Hence,our strategy is significant for reducing global environmental pollution and provides a revelatory path for transforming waste textiles into high-value-added smart wearable devices.展开更多
Thermoelectric power generators have attracted increasing interest in recent years owing to their great potential in wearable electronics power supply.It is noted that thermoelectric power generators are easy to damag...Thermoelectric power generators have attracted increasing interest in recent years owing to their great potential in wearable electronics power supply.It is noted that thermoelectric power generators are easy to damage in the dynamic service process,resulting in the formation of microcracks and performance degradation.Herein,we prepare a new hybrid hydrogel thermoelectric material PAAc/XG/Bi_(2)Se_(0.3)Te_(2.7)by an in situ polymerization method,which shows a high stretchable and self-healable performance,as well as a good thermoelectric performance.For the sample with Bi_(2)Se_(0.3)Te_(2.7)content of 1.5 wt%(i.e.,PAAc/XG/Bi2Se0.3Te27(1.5 wt%)),which has a room temperature Seebeck coefficient of-0.45 mV K^(-1),and exhibits an open-circuit voltage of-17.91 mV and output power of 38.1 nW at a temperature difference of 40 K.After being completely cut off,the hybrid thermoelectric hydrogel automatically recovers its electrical characteristics within a response time of 2.0 s,and the healed hydrogel remains more than 99%of its initial power output.Such stretchable and self-healable hybrid hydrogel thermoelectric materials show promising potential for application in dynamic service conditions,such as wearable electronics.展开更多
基金the financial support from the National Natural Science Foundation of China(Grant No.52171221)the National Key Research and Development Program of China(Grant No.2019YFA0704900)the support from the Core Facility of Wuhan University for their assistance with EPMA analysis
文摘The rhombohedralα-GeTe can be approximated as a slightly distorted rock-salt structure along its[111]direction and possesses superb thermoelectric performance.However,the role of such a ferroelectric-like structural distortion on its transport properties remains unclear.Herein,we performed a systematic study on the crystal structure and electronic band structure evolutions of Ge_(1-x)Sn_(x)Te alloys where the degree of ferroelectric distortion is continuously tuned.It is revealed that the band gap is maximized while multiple valence bands are converged at x=0.6,where the ferroelectric distortion is the least but still works.Once undistorted,the band gap is considerably reduced,and the valence bands are largely separated again.Moreover,near the ferro-to-paraelectric phase transition Curie temperature,the lattice thermal conductivity reaches its minima because of significant lattice softening enabled by ferroelectric instability.We predict a peak ZT value of 2.6 at 673 K inα-GeTe by use of proper dopants which are powerful in suppressing the excess hole concentrations but meanwhile exert little influence on the ferroelectric distortion.
基金financially supported by the Guangdong Basic and Applied Basic Research Foundation(2022A1515110296,2022A1515110432)the Shenzhen Science and Technology Program(20231120171032001)the National Natural Science Foundation of China(No.52242305).
文摘Despite notable progress in thermoelectric(TE)materials and devices,developing TE aerogels with high-temperature resistance,superior TE performance and excellent elasticity to enable self-powered high-temperature monitoring/warning in industrial and wearable applications remains a great challenge.Herein,a highly elastic,flame-retardant and high-temperature-resistant TE aerogel,made of poly(3,4-ethylene dioxythiophene):poly(styrenesulfonate)/single-walled carbon nanotube(PEDOT:PSS/SWCNT)composites,has been fabricated,displaying attractive compression-induced power factor enhancement.The as-fabricated sensors with the aerogel can achieve accurately pressure stimuli detection and wide temperature range monitoring.Subsequently,a flexible TE generator is assembled,consisting of 25 aerogels connected in series,capable of delivering a maximum output power of 400μW when subjected to a temperature difference of 300 K.This demonstrates its outstanding high-temperature heat harvesting capability and promising application prospects for real-time temperature monitoring on industrial high-temperature pipelines.Moreover,the designed self-powered wearable sensing glove can realize precise wide-range temperature detection,high-temperature warning and accurate recognition of human hand gestures.The aerogel-based intelligent wearable sensing system developed for firefighters demonstrates the desired self-powered and highly sensitive high-temperature fire warning capability.Benefitting from these desirable properties,the elastic and high-temperature-resistant aerogels present various promising applications including self-powered high-temperature monitoring,industrial overheat warning,waste heat energy recycling and even wearable healthcare.
文摘Exploitation of sustainable energy sources requires the use of unique conversion and storage systems,such as solar panels,batteries,fuel cells,and electronic equipment.Thermal load management of these energy conversion and storage systems is one of their challenges and concerns.In this article,the thermal management of these systems using thermoelectric modules is reviewed.The results show that by choosing the right option to remove heat from the hot side of the thermoelectric modules,it will be a suitable local cooling,and the thermoelectric modules increase the power and lifespan of the system by reducing the spot temperature.Thermoelectric modules were effective in reducing panel temperature.They increase the time to reach a temperature above 50℃ in batteries by 3 to 4 times.Also,in their integration with fuel cells,they increase the power density of the fuel cell.
基金supported by the National Research Council of Thailand(NRCT)(Nos.N42A650237 and N41A661163)the National Science,Research and Innovation Fund(NSRF)via the Fundamental Fund of Khon Kaen Universitythe NSRF via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation(No.B37G660011).
文摘Silver selenide(Ag_(2)Se)stands out as a promising thermoelectric(TE)material,particularly for applications near room temper-atures.This research presents a novel approach for the fabrication of bulk Ag_(2)Se samples at a relatively low temperature(170℃)using the cold sintering process(CSP)with AgNO_(3)solution as a transient liquid agent.The effect of AgNO_(3)addition during CSP on the micro-structure and TE properties was investigated.The results from phase,composition and microstructure analyses showed that the introduc-tion of AgNO_(3)solution induced the formation of Ag nano-precipitates within the Ag_(2)Se matrix.Although the nano-precipitates do not af-fect the phase and crystal structure of orthorhombicβ-Ag_(2)Se,they suppressed crystal growth,leading to reduced crystallite sizes.The samples containing Ag nano-precipitates also exhibited high porosity and low bulk density.Consequently,these effects contributed to sig-nificantly enhanced electrical conductivity and a slight decrease in the Seebeck coefficient when small Ag concentrations were incorpor-ated.This resulted in an improved average power factor from~1540μW·m^(−1)·K^(−2)for pure Ag_(2)Se to~1670μW·m^(−1)·K^(−2)for Ag_(2)Se with additional Ag precipitates.However,excessive Ag addition had a detrimental effect on the power factor.Furthermore,thermal conductiv-ity was effectively suppressed in Ag_(2)Se fabricated using AgNO_(3)-assisted CSP,attributed to enhanced phonon scattering at crystal inter-faces,pores,and Ag nano-precipitates.The highest figure-of-merit(zT)of 0.92 at 300 K was achieved for the Ag_(2)Se with 0.5wt%Ag dur-ing CSP fabrication,equivalent to>20%improvement compared to the controlled Ag_(2)Se without extra Ag solution.Thus,the process outlined in this study presents an effective strategy to tailor the microstructure of bulk Ag_(2)Se and enhance its TE performance at room temperature.
基金supported by the Guangdong Basic and Applied Basic Research Foundation(2022A1515110296,2022A1515110432)the Shenzhen Science and Technology Program(No.20231120171032001,20231122125728001).
文摘Fire warning is vital to human life,economy and ecology.However,the development of effective warning systems faces great challenges of fast response,adjustable threshold and remote detecting.Here,we propose an intelligent self-powered remote IoT fire warning system,by employing single-walled carbon nanotube/titanium carbide thermoelectric composite films.The flexible films,prepared by a convenient solution mixing,display p-type characteristic with excellent high-temperature stability,flame retardancy and TE(power factor of 239.7±15.8μW m^(-1) K^(-2))performances.The comprehensive morphology and structural analyses shed light on the underlying mechanisms.And the assembled TE devices(TEDs)exhibit fast fire warning with adjustable warning threshold voltages(1–10 mV).Excitingly,an ultrafast fire warning response time of~0.1 s at 1 mV threshold voltage is achieved,rivaling many state-of-the-art systems.Furthermore,TE fire warning systems reveal outstanding stability after 50 repeated cycles and desired durability even undergoing 180 days of air exposure.Finally,a TED-based wireless intelligent fire warning system has been developed by coupling an amplifier,analogto-digital converter and Bluetooth module.By combining TE characteristics,high-temperature stability and flame retardancy with wireless IoT signal transmission,TE-based hybrid system developed here is promising for next-generation self-powered remote IoT fire warning applications.
基金Funded by the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan Univesity of Technology。
文摘By replacing hexyl chains in poly(3-hexylthiophene)(P3HT)with 2-propoxyethyls,four poly(3-(2-propoxyethyl)thiophene)(P3POET)homopolymers with comparable polydispersity indexes(PDI)and regioregularities were prepared herein in addition with step increment of about 7 kDa on numberaverage molecular weight(M_(n))from around 11 to 32 kDa(accordingly denoted as P11k,P18k,P25k,and P32k).When doped in film by FeCl_(3)at the optimized conditions,the maximum power factor(PF_(max))increases greatly from 4.3μW·m^(-1)·K^(-2)for P11k to 8.8μW·m^(-1)·K^(-2)for P18k,and further to 9.7μW·m^(-1)·K^(-2)for P25k,followed by a slight decrease to 9.2μW·m^(-1)·K^(-2)for P32k.The close Seebeck coefficients(S)at PF_(max)are observed in these doped polymer films due to their consistent frontier orbital energy levels and Fermi levels.The main contribution to this PF_(max)evolution thus comes from the corresponding conductivities(σ).Theσvariation of the doped films can be rationally correlated with their microstructure evolution.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.52130604 and 51825604)。
文摘Zinc oxide(ZnO)shows great potential in electronics,but its large intrinsic thermal conductivity limits its thermoelectric applications.In this work,we explore the significant carrier transport capacity and diameter-dependent thermoelectric characteristics of wurtzite-ZnO(0001)nanowires based on first-principles and molecular dynamics simulations.Under the synergistic effect of band degeneracy and weak phonon-electron scattering,P-type(ZnO)_(73) nanowires achieve an ultrahigh power factor above 1500μW·cm^(-1)·K^(-2)over a wide temperature range.The lattice thermal conductivity and carrier transport properties of ZnO nanowires exhibit a strong diameter size dependence.When the ZnO nanowire diameter exceeds 12.72A,the carrier transport properties increase significantly,while the thermal conductivity shows a slight increase with the diameter size,resulting in a ZT value of up to 6.4 at 700 K for P-type(ZnO)_(73).For the first time,the size effect is also illustrated by introducing two geometrical configurations of the ZnO nanowires.This work theoretically depicts the size optimization strategy for the thermoelectric conversion of ZnO nanowires.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12104145,62201208,and 12374040)。
文摘Seeking intrinsically low thermal conductivity materials is a viable strategy in the pursuit of high-performance thermoelectric materials.Here,by using first-principles calculations and semiclassical Boltzmann transport theory,we systemically investigate the carrier transport and thermoelectric properties of monolayer Janus GaInX_(3)(X=S,Se,Te).It is found that the lattice thermal conductivities can reach values as low as 3.07 W·m^(-1)·K^(-1),1.16 W·m^(-1)·K^(-1)and 0.57 W·m^(-1)·K^(-1)for GaInS_(3),GaInSe_(3),and GaInTe_(3),respectively,at room temperature.This notably low thermal conductivity is attributed to strong acoustic-optical phonon coupling caused by the presence of low-frequency optical phonons in GaInX_(3) materials.Furthermore,by integrating the charac teristics of electronic and thermal transport,the dimensionless figure of merit ZT can reach maximum values of 0.95,2.37,and 3.00 for GaInS_(3),GaInSe_(3),and GaInTe_(3),respectively.Our results suggest that monolayer Janus GaInX_(3)(X=S,Se,Te)is a promising candidate for thermoelectric and heat management applications.
基金The authors thank D.Berger,D.Hofmann and C.Kupka in IFW Dresden for helpful technical support.H.R.acknowledges funding from the DFG(Deutsche Forschungsgemeinschaft)within grant number RE3973/1-1.Q.J.,H.R.and K.N.conceived the work.With the support from N.Y.and X.J.,Q.J.and T.G.fabricated the thermoelectric films and conducted the structural and compositional characterizations.Q.J.prepared microchips and fabricated the on-chip micro temperature controllers.Q.J.and N.P.carried out the temperature-dependent material and device performance measurements.Q.J.and H.R.performed the simulation and analytical calculations.Q.J.,H.R.and K.N.wrote the manuscript with input from the other coauthors.All the authors discussed the results and commented on the manuscript.
文摘Multidimensional integration and multifunctional com-ponent assembly have been greatly explored in recent years to extend Moore’s Law of modern microelectronics.However,this inevitably exac-erbates the inhomogeneity of temperature distribution in microsystems,making precise temperature control for electronic components extremely challenging.Herein,we report an on-chip micro temperature controller including a pair of thermoelectric legs with a total area of 50×50μm^(2),which are fabricated from dense and flat freestanding Bi2Te3-based ther-moelectric nano films deposited on a newly developed nano graphene oxide membrane substrate.Its tunable equivalent thermal resistance is controlled by electrical currents to achieve energy-efficient temperature control for low-power electronics.A large cooling temperature difference of 44.5 K at 380 K is achieved with a power consumption of only 445μW,resulting in an ultrahigh temperature control capability over 100 K mW^(-1).Moreover,an ultra-fast cooling rate exceeding 2000 K s^(-1) and excellent reliability of up to 1 million cycles are observed.Our proposed on-chip temperature controller is expected to enable further miniaturization and multifunctional integration on a single chip for microelectronics.
基金supported by the Basic Science Center Program for Ordered Energy Conversion of the National Natural Science Foundation of China(52488201)the National Natural Science Foundation of China(52376209)+1 种基金the China Postdoctoral Science Foundation(2020T130503 and 2020M673386)the China Fundamental Research Funds for the Central Universities.
文摘Solar-driven photocatalytic water/seawater splitting holds great potential for green hydrogen production.However,the practical application is hindered by the relatively low conversion efficiency resulting from the inadequate utilization of solar spectrum with significant waste in the form of heat.Moreover,current equipment struggles to maintain all-day operation subjected to the lack of light during nighttime.Herein,a novel hybrid system integrating photothermal catalytic(PTC)reactor,thermoelectric generator(TEG),and phase change materials(PCM)was proposed and designed(named as PTC-TEG-PCM)to address these challenges and enable simultaneous overall seawater splitting and 24-hour power generation.The PTC system effectively maintains in an optimal temperature range to maximize photothermal-assisted photocatalytic hydrogen production.The TEG component recycles the low-grade waste heat for power generation,complementing the shortcoming of photocatalytic conversion and achieving cascade utilization of full-spectrum solar energy.Furthermore,exceptional thermal storage capability of PCM allow for the conversion of released heat into electricity during nighttime,contributing significantly to the overall power output and enabling PTC-TEG-PCM to operate for more than 12 h under the actual condition.Compared to traditional PTC system,the overall energy conversion efficiency of the PTC-TEG-PCM system can be increased by∼500%,while maintaining the solar-to-hydrogen efficiency.The advancement of this novel system demonstrated that recycling waste heat from the PTC system and utilizing heat absorption/release capability of PCM for thermoelectric application are effective strategies to improve solar energy conversion.With flexible parameter designing,PTC-TEG-PCM can be applied in various scenarios,offering high efficiency,stability,and sustainability.
基金Project supported by the National Key Research and Development Program of China (Grant Nos.2019YFA0704900 and 2023YFB3809400)the National Natural Science Foundation of China (Grant Nos.52130203 and 52172232)the Basic and Applied Basic Research Foundation of Guangdong Province (Grant No.2022B1515120005)。
文摘The method to combine thermoelectric(TE)and magnetocaloric(MC)cooling techniques lies in developing a new material that simultaneously possesses a large TE and good MC cooling performance.In this work,using n-type Bi_(2)Te_(2.7)Se_(0.3)(BTS)as the TE base material and Gd as the second-phase MC material,Gd/BTS composites were prepared by the spark plasma sintering method.In the composites,interfacial reaction between Gd and BTS was identified,resulting in the formation of Gd Te,which has a large impact on the electron concentration through the adjustment of defect concentration.The MC/TE composite containing 2.5 wt%Gd exhibited a ZT value of 0.6 at 300 K,essentially retaining the original TE performance,while all the composites largely maintained the excellent MC performance of Gd.This work provides a potential pathway to achieving high performance in MC/TE composites.
基金supported by the Natural Science Foundation of Shandong Province for Major Basic Research under Grant No.ZR2023ZD09the National Natural Science Foundation of China under Grant Nos.12174327,11974302,and 92270104.
文摘We employ advanced first principles methodology,merging self-consistent phonon theory and the Boltzmann transport equation,to comprehensively explore the thermal transport and thermoelectric properties of KCdAs.Notably,the study accounts for the impact of quartic anharmonicity on phonon group velocities in the pursuit of lattice thermal conductivity and investigates 3ph and 4ph scattering processes on phonon lifetimes.Through various methodologies,including examining atomic vibrational modes and analyzing 3ph and 4ph scattering processes,the article unveils microphysical mechanisms contributing to the lowκL within KCdAs.Key features include significant anisotropy in Cd atoms,pronounced anharmonicity in K atoms,and relative vibrations in non-equivalent As atomic layers.Cd atoms,situated between As layers,exhibit rattling modes and strong lattice anharmonicity,contributing to the observed lowκL.Remarkably flat bands near the valence band maximum translate into high PF,aligning with ultralowκL for exceptional thermoelectric performance.Under optimal temperature and carrier concentration doping,outstanding ZT values are achieved:4.25(a(b)-axis,p-type,3×10^(19)cm^(−3),500 K),0.90(c-axis,p-type,5×10^(20)cm^(−3),700 K),1.61(a(b)-axis,n-type,2×10^(18)cm^(−3),700 K),and 3.06(c-axis,n-type,9×10^(17)cm^(−3),700 K).
基金Project supported by the National Natural Science Foundation of China(Nos.12262033,12272269,12062021,and 12062022)Ningxia Hui Autonomous Region Science and Technology Innovation Leading Talent Training Project of China(No.2020GKLRLX01)the Natural Science Foundation of Ningxia of China(Nos.2023AAC02003 and 2022AAC03001)。
文摘Understanding and characterizing rough contact and wavy surfaces are essential for developing effective strategies to mitigate wear,optimize lubrication,and enhance the overall performance and durability of mechanical systems.The sliding friction contact problem between a thermoelectric(TE)half-plane and a rigid solid with a periodic wavy surface is the focus of this investigation.To simplify the problem,we utilize mixed boundary conditions,leading to a set of singular integral equations(SIEs)with the Hilbert kernels.The analytical solutions for the energy flux and electric current density are obtained by the variable transform method in the context of the electric and temperature field.The contact problem for the elastic field is transformed into the second-kind SIE and solved by the Jacobi polynomials.Notably,the smoothness of the wavy contact surface ensures that there are no singularities in the surface contact stress,and ensures that it remains free at the contact edge.Based on the plane strain theory of elasticity,the analysis primarily examines the correlation between the applied load and the effective contact area.The distribution of the normal stress on the surface with or without TE loads is discussed in detail for various friction coefficients.Furthermore,the obtained results indicate that the in-plane stress decreases behind the trailing edge,while it increases ahead of the trailing edge when subjected to TE loads.
基金supported by the National Natural Science Foundation of China(grants 52122213,52232010,91963208)the Shanghai Pilot Program for Basic Research-Chinese Academy of Science,Shanghai Branch(JCYJ-SHFY-2022-002)Shanghai Government(20JC1415100).
文摘Ductile Ag_(2)(Te,S)pseudobinary compounds have attracted great attention in thermoelectric community since they can be fabricated into high-performance flexible and hetero-shaped thermoelectric devices.However,in spite of the numerous studies,the‘brittleeductile’transition boundary in Ag_(2)(Te,S)is still unclear.In this work,a series of Te-rich Ag_(2)(Te,S)pseudobinary compounds have been prepared.The structure characterizations confirm they belong to the new-concept of meta-phase.The systematically investigation on the mechanical properties demonstrate that the‘brittl-eductile’transition boundary appears around x=0.1.Unexpected good ductility is observed in the Te-rich Ag_(2)Te_(1-x)S_(x)crystalizing in the Ag_(2)Te room-temperature monoclinic structure and high-temperature cubic structure,which are thought to be brittle before.Likewise,Ag content is found to be a very critical parameter determining the ductility of Te-rich Ag_(2)Te_(1-x)S_(x).Very slight Ag-deficiency can greatly deteriorate the ductility.The ther-moelectric properties of these ductile Te-rich Ag_(2)Te_(1-x)S_(x)pseudobinary compounds are investigated.A maximum thermoelectric figure-of-merit of 0.6 is obtained for Ag_(2)Te_(0.9)S_(0.1)at 600 K.This work sheds light on the future investigation of Ag_(2)(Te,S)pseudobinary compounds.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12374196,92165201,11634011,and 22109153)the Innovation Program for Quantum Science and Technology (Grant No.2021ZD0302800)+4 种基金the CAS Project for Young Scientists in Basic Research (Grant No.YSBR-046)the Fundamental Research Funds for the Central Universities (Grant Nos.WK3510000006 and WK3430000003)the Fund of Anhui Initiative in Quantum Information Technologies (Grant No.AHY170000)the University Synergy Innovation Program of Anhui Province,China (Grant No.GXXT-2022-008)the National Synchrotron Radiation Laboratory Joint Funds of University of Science and Technology of China (Grant No.KY2060000241)。
文摘Novel two-dimensional thermoelectric materials have attracted significant attention in the field of thermoelectric due to their low lattice thermal conductivity.A comprehensive understanding of their microscopic structures is crucial for driving further the optimization of materials properties and developing novel functional materials.Here,by using in situ scanning tunneling microscopy,we report the atomic layer evolution and surface reconstruction on the cleaved thermoelectric material KCu_(4)Se_(3) for the first time.We clearly revealed each atomic layer,including the naturally cleaved K atomic layer,the intermediate Se^(2-)atomic layer,and the Se^(-)atomic layer that emerges in the thermodynamic-stable state.Departing from the maj ority of studies that predominantly concentrate on macroscopic measurements of the charge transport,our results reveal the coexistence of potassium disorder and complex reconstructed patterns of selenium,which potentially influences charge carrier and lattice dynamics.These results provide direct insight into the surface microstructures and evolution of KCu_(4)Se_(3),and shed useful light on designing functional materials with superior performance.
基金Project supported by the Natural Science Foundation of Jiangsu Province of China(Grant Nos.BK20220407 and BK20220428)。
文摘Since the superior mechanical,chemical and physical properties of high-entropy alloys(HEAs)were discovered,they have gradually become new emerging candidates for renewable energy applications.This review presents the novel applications of HEAs in thermoelectric energy conversion.Firstly,the basic concepts and structural properties of HEAs are introduced.Then,we discuss a number of promising thermoelectric materials based on HEAs.Finally,the conclusion and outlook are presented.This article presents an advanced understanding of the thermoelectric properties of HEAs,which provides new opportunities for promoting their applications in renewable energy.
基金supported by the National Key Research and Development Program of China(2020YFA0715000)the Guangdong Basic and Applied Basic Research Foundation(2020A1515110250,2021B1515120041)+1 种基金the Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory(XHT2020-005)the Fundamental Research Funds for the Central Universities(2020IVA068,2021lll007JC)
文摘Because poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS)is water processable,thermally stable,and highly conductive,PEDOT:PSS and its composites have been considered to be one of the most promising flexible thermoelectric materials.However,the PEDOT:PSS film prepared from its commercial aqueous dispersion usually has very low conductivity,thus cannot be directly utilized for TE applications.Here,a simple environmental friendly strategy via femtosecond laser irradiation without any chemical dopants and treatments was demonstrated.Under optimal conditions,the electrical conductivity of the treated film is increased to 803.1 S cm^(-1)from 1.2 S cm^(-1)around three order of magnitude higher,and the power factor is improved to 19.0μW m^(-1)K^(-2),which is enhanced more than 200 times.The mechanism for such remarkable enhancement was attributed to the transition of the PEDOT chains from a coil to a linear or expanded coil conformation,reduction of the interplanar stacking distance,and the removal of insulating PSS with increasing the oxidation level of PEDOT,facilitating the charge transportation.This work presents an effective route for fabricating high-performance flexible conductive polymer films and wearable thermoelectric devices.
基金National Natural Science Foundation of China,Grant/Award Number:62274112Guangdong Basic and Applied Basic Research Foundation,Grant/Award Number:2022A1515010929Science and Technology Plan project of Shenzhen,Grant/Award Numbers:JCYJ20220531103601003,20220810154601001。
文摘Use of a flexible thermoelectric source is a feasible approach to realizing selfpowered wearable electronics and the Internet of Things.Inorganic thin films are promising candidates for fabricating flexible power supply,but obtaining highthermoelectric‐performance thin films remains a big challenge.In the present work,a p‐type Bi_(x)Sb_(2−x)Te_(3) thin film is designed with a high figure of merit of 1.11 at 393 K and exceptional flexibility(less than 5%increase in resistance after 1000 cycles of bending at a radius of∼5 mm).The favorable comprehensive performance of the Bi_(x)Sb_(2−x)Te_(3) flexible thin film is due to its excellent crystallinity,optimized carrier concentration,and low elastic modulus,which have been verified by experiments and theoretical calculations.Further,a flexible device is fabricated using the prepared p‐type Bi_(x)Sb_(2−x)Te_(3) and n‐type Ag_(2)Se thin films.Consequently,an outstanding power density of∼1028μWcm^(−2)is achieved at a temperature difference of 25 K.This work extends a novel concept to the fabrication of highperformance flexible thin films and devices for wearable energy harvesting.
基金supported by the grants(51973027 and 52003044)from the National Natural Science Foundation of Chinathe Fundamental Research Funds for the Central Universities(2232023A-05)+4 种基金the International Cooperation Fund of Science and Technology Commission of Shanghai Municipality(21130750100)Major Scientific and Technological Innovation Projects of Shandong Province(2021CXGC011004)This work has also been supported by the State Key Laboratory for Modification of Chemical Fibers and Polymer Materials(KF2216)the Donghua University Distinguished Young Professor Program to Prof.Liming Wangthe Fundamental Research Funds for the Central Universities and Graduate Student Innovation Fund of Donghua University(CUSF-DH-D-2022040)to Xinyang He.
文摘The rapid development of the global economy and population growth are accompanied by the production of numerous waste textiles.This leads to a waste of limited resources and serious environmental pollution problems caused by improper disposal.The rational recycling of wasted textiles and their transformation into high-value-added emerging products,such as smart wearable devices,is fascinating.Here,we propose a novel roadmap for turning waste cotton fabrics into three-dimensional elastic fiber-based thermoelectric aerogels by a one-step lyophilization process with decoupled self-powered temperature-compression strain dual-parameter sensing properties.The thermoelectric aerogel exhibits a fast compression response time of 0.2 s,a relatively high Seebeck coefficient of 43μV·K^(-1),and an ultralow thermal conductivity of less than 0.04 W·m^(-1)·K^(-1).The cross-linking of trimethoxy(methyl)silane(MTMS)and cellulose endowed the aerogel with excellent elasticity,allowing it to be used as a compressive strain sensor for guessing games and facial expression recognition.In addition,based on the thermoelectric effect,the aerogel can perform temperature detection and differentiation in self-powered mode with the output thermal voltage as the stimulus signal.Furthermore,the wearable system,prepared by connecting the aerogel-prepared array device with a wireless transmission module,allows for temperature alerts in a mobile phone application without signal interference due to the compressive strains generated during gripping.Hence,our strategy is significant for reducing global environmental pollution and provides a revelatory path for transforming waste textiles into high-value-added smart wearable devices.
基金supported by the National Natural Science Foundation of China under Grant Nos.92163211,52002137,51872102,and 51802070the Fundamental Research Funds for the Central Universities under Grant Nos.2021XXJS008 and 2018KFYXKJC002Graduates’Innovation Fund,Huazhong University of Science and Technology under Grant No.2020yjs CXCY022
文摘Thermoelectric power generators have attracted increasing interest in recent years owing to their great potential in wearable electronics power supply.It is noted that thermoelectric power generators are easy to damage in the dynamic service process,resulting in the formation of microcracks and performance degradation.Herein,we prepare a new hybrid hydrogel thermoelectric material PAAc/XG/Bi_(2)Se_(0.3)Te_(2.7)by an in situ polymerization method,which shows a high stretchable and self-healable performance,as well as a good thermoelectric performance.For the sample with Bi_(2)Se_(0.3)Te_(2.7)content of 1.5 wt%(i.e.,PAAc/XG/Bi2Se0.3Te27(1.5 wt%)),which has a room temperature Seebeck coefficient of-0.45 mV K^(-1),and exhibits an open-circuit voltage of-17.91 mV and output power of 38.1 nW at a temperature difference of 40 K.After being completely cut off,the hybrid thermoelectric hydrogel automatically recovers its electrical characteristics within a response time of 2.0 s,and the healed hydrogel remains more than 99%of its initial power output.Such stretchable and self-healable hybrid hydrogel thermoelectric materials show promising potential for application in dynamic service conditions,such as wearable electronics.