This paper presents an analytical solution for the thermoelastic stress in a typical in-plane's thin-film micro- thermoelectric cooling device under different operating con- ditions. The distributions of the permissi...This paper presents an analytical solution for the thermoelastic stress in a typical in-plane's thin-film micro- thermoelectric cooling device under different operating con- ditions. The distributions of the permissible temperature fields in multilayered thin-films are analytically obtained, and the characteristics, including maximum temperature dif- ference and maximum refrigerating output of the thermo- electric device, are discussed for two operating conditions. Analytical expressions of the thermoelastic stresses in the layered thermoelectric thin-films induced by the tempera- ture difference are formulated based on the theory of mul- tilayer system. The results demonstrate that, the geometric dimension is a significant factor which remarkably affects the thermoelastic stresses. The stress distributions in layers of semiconductor thermoelements, insulating and support- ing membrane show distinctly different features. The present work may profitably guide the optimization design of high- efficiency micro-thermoelectric cooling devices.展开更多
基金supported by the National Basic Research Program of China(2007CB607506)the Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China(111005)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(11121202)
文摘This paper presents an analytical solution for the thermoelastic stress in a typical in-plane's thin-film micro- thermoelectric cooling device under different operating con- ditions. The distributions of the permissible temperature fields in multilayered thin-films are analytically obtained, and the characteristics, including maximum temperature dif- ference and maximum refrigerating output of the thermo- electric device, are discussed for two operating conditions. Analytical expressions of the thermoelastic stresses in the layered thermoelectric thin-films induced by the tempera- ture difference are formulated based on the theory of mul- tilayer system. The results demonstrate that, the geometric dimension is a significant factor which remarkably affects the thermoelastic stresses. The stress distributions in layers of semiconductor thermoelements, insulating and support- ing membrane show distinctly different features. The present work may profitably guide the optimization design of high- efficiency micro-thermoelectric cooling devices.