期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
A waterproof,environment-friendly,multifunctional,and stretchable thermoelectric fabric for continuous self-powered personal health signal collection at high humidity 被引量:3
1
作者 Xinyang He Bingyi Li +6 位作者 Jiaxin Cai Honghua Zhang Chengzu Li Xinxin Li Jianyong Yu Liming Wang Xiaohong Qin 《SusMat》 SCIE EI 2023年第5期709-720,共12页
Thermoelectric sensors have attracted increasing attention in smart wearables due to the recognition of multiple signals in self-powered mode.However,present thermoelectric devices show disadvantages of low durability... Thermoelectric sensors have attracted increasing attention in smart wearables due to the recognition of multiple signals in self-powered mode.However,present thermoelectric devices show disadvantages of low durability,weak wearability,and complex preparation processes and are susceptible to moisture in the microenvironment of the human body,which hinders their further application in wearable electronics.Herein,we prepared a new thermoelectric fabric with thermoplastic polyurethane/carbon nanotubes(TPU/CNTs)by combining vacuum filtration and electrospraying techniques.Electrospraying TPU microsphere coating with good biocompatibility and environmental friendliness made the fabric worn directly and exhibits preferred water resistance,mechanical durability,and stability even after being bent 4000 times,stretched 1000 times,and washed 1000 times.Moreover,this fabric showed a Seebeck coefficient of 49μVK−1 and strain range of 250%and could collect signals well and avoided interference from moisture.Based on the biocompatibility and safety of the fabric,it can be fabricated into devices and mounted on the human face and elbow for long-term and continuous collection of data on the body’s motion and breathing simultaneously to provide collaborative support information.This thermoelectric fabric-based sensor will show great potential in advanced smart wearables for health monitoring,motion detection,and human–computer interaction. 展开更多
关键词 BIOCOMPATIBILITY health monitor self-powered sensing thermoelectric fabrics WATERPROOF
原文传递
多功能热电织物用于可穿戴无线传感系统 被引量:1
2
作者 Xinyang He Jiaxin Cai +6 位作者 Mingyuan Liu Xuepeng Ni Wendi Liu Hanyu Guo Jianyong Yu Liming Wang Xiaohong Qin 《Engineering》 SCIE EI CAS CSCD 2024年第4期158-167,共10页
Flexible thermoelectric materials play an important role in smart wearables,such as wearable power generation,self-powered sensing,and personal thermal management.However,with the rapid development of Internet of Thin... Flexible thermoelectric materials play an important role in smart wearables,such as wearable power generation,self-powered sensing,and personal thermal management.However,with the rapid development of Internet of Things(IoT)and artificial intelligence(AI),higher standards for comfort,multifunctionality,and sustainable operation of wearable electronics have been proposed,and it remains challenging to meet all the requirements of currently reported thermoelectric devices.Herein,we present a multifunctional,wearable,and wireless sensing system based on a thermoelectric knitted fabric with over 600 mm·s^(-1)air permeability and a stretchability of 120%.The device coupled with a wireless transmission system realizes self-powered monitoring of human respiration through an mobile phone application(APP).Furthermore,an integrated thermoelectric system was designed to combine photothermal conversion and passive radiative cooling,enabling the characteristics of being powered by solar-driven in-plane temperature differences and monitoring outdoor sunlight intensity through the APP.Additionally,we decoupled the complex signals of resistance and thermal voltage during deformation under solar irradiation based on the anisotropy of the knitted fabrics to enable the device to monitor and optimize the outdoor physical activity of the athlete via the APP.This novel thermoelectric fabricbased wearable and wireless sensing platform has promising applications in next-generation smart textiles. 展开更多
关键词 thermoelectric fabrics Wearable device WIRELESS Multifunctional sensing system Outdoor wearable signal monitoring
下载PDF
Design and Fabrication of Flexible Thermoelectric String-Based Fabrics
3
作者 AHMAAD Hasib Ud Din DU Minzhi +8 位作者 HAN Xue JING Yuanyuan YANG Xiaona ZHANG Juan CHEN Xinyi SYED Rashedul Islam HUANG Fuli XU Jinchuan ZHANG Kun 《Journal of Donghua University(English Edition)》 CAS 2024年第5期474-481,共8页
Flexible thermoelectric(TE)materials that convert heat into electricity have been widely used in wearable electronics and other flexible devices.In this work,inorganic TE pillars were combined with thermoplastic polyu... Flexible thermoelectric(TE)materials that convert heat into electricity have been widely used in wearable electronics and other flexible devices.In this work,inorganic TE pillars were combined with thermoplastic polyurethane(TPU)to assemble a flexible string-shaped TE generator(TEG)for the fabrication of the thermoelectric fabric(TEF).Moreover,finite element analysis(FEA)was used to optimize the dimensions of the TE string and evaluate its performance.The FEA results showed that the inter-pillar spacing significantly affected the temperature difference,the output voltage and the internal resistance.A maximum power density of 3.43μW/cm^(2)(temperate gradientΔT=10.5 K)was achieved by the TE string with a diameter of 3.5 mm and an inter-pillar spacing of 2 mm.However,under the experimental condition,the achievable power density of the fabricated three-dimensional(3D)TEF was limited to 29%of the simulation result because of the inclination of the TE string within the fabric concerning heat plate contact and copper wire-TE pillar connections.The actual TE string also demonstrated high flexibility and stable mechanical properties after 450 bending cycles.Thus,the study would provide a foundation for future research in developing more efficient TEFs to offer a comfortable and conformable option for wearable energy harvesting applications. 展开更多
关键词 thermoelectric fabric(TEF) thermoelectric(TE)pillar thermoplastic polyurethane(TPU) finite element analysis(FEA)
下载PDF
All‑Fiber Integrated Thermoelectrically Powered Physiological Monitoring Biosensor 被引量:3
4
作者 Xing Qing Huijun Chen +9 位作者 Fanjia Zeng Kangyu Jia Qing Shu Jianmei Wu Huimin Xu Weiwei Lei Dan Liu Xungai Wang Mufang Li Dong Wang 《Advanced Fiber Materials》 SCIE EI 2023年第3期1025-1036,共12页
Advanced fabric electronics for long-term personal physiological monitoring,with a self-sufficient energy source,high integrity,sensitivity,wearing comfort,and homogeneous components are urgently desired.Instead of as... Advanced fabric electronics for long-term personal physiological monitoring,with a self-sufficient energy source,high integrity,sensitivity,wearing comfort,and homogeneous components are urgently desired.Instead of assembling a self-powered biosensor,comprising a variety of materials with different levels of hardness,and supplementing with a booster or energy storage device,herein,an all-fiber integrated thermoelectrically powered physiological monitoring device(FPMD),is proposed and evaluated for production at an industrial scale.For the first time,an organic electrochemical transistor(OECT)biosensor is enabled by thermoelectric fabrics(TEFs)adaptively,sustainably and steadily without any additional accessories.Moreover,both the OECT and TEFs are constructed using a cotton/poly(3,4-ethylenedioxythiophene):poly(styrenesulfon ate)/dimethylsulfoxide/(3-glycidyloxypropyl)trimethoxysilane(PDG)yarn,which is lightweight,robust(90°bending for 1000 cycles)and sweat-resistant(ΔR/R0=1.9%).A small temperature gradient(ΔT=2.2 K)between the environment and the human body can drive the high-gain OECT(71.08 mS)with high fidelity,and a good signal to noise ratio.For practical applications,the on-body FPMD produced an enduring and steady output signal and demonstrated a linear monitoring region(sensitivity of 30.4 NCR(normalized current response)/dec,10 nM~50µM)for glucose in artificial sweat with reliable performance regarding anti-interference and reproducibility.This device can be expanded to the monitoring of various bio-markers and provides a new strategy for constructing wearable,comfortable,highly integrated and self-powered biosensors. 展开更多
关键词 Self-powered biosensor All-fiber integrated device thermoelectric fabrics Fiber-assembled transistor Personal healthcare monitoring
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部