Thermoelectric generators(TEGs)play a critical role in collecting renewable energy fromthe sun and deep space to generate clean electricity.With their environmentally friendly,reliable,and noise-free operation,TEGs of...Thermoelectric generators(TEGs)play a critical role in collecting renewable energy fromthe sun and deep space to generate clean electricity.With their environmentally friendly,reliable,and noise-free operation,TEGs offer diverse applications,including areas with limited power infrastructure,microelectronic devices,and wearable technology.The review thoroughly analyses TEG system configurations,performance,and applications driven by solar and/or radiative cooling,covering non-concentrating,concentrating,radiative cooling-driven,and dual-mode TEGs.Materials for solar absorbers and radiative coolers,simulation techniques,energy storage management,and thermal management strategies are explored.The integration of TEGs with combined heat and power systems is identified as a promising application.Additionally,TEGs hold potential as charging sources for electronic devices.This comprehensive review provides valuable insights into this energy collection approach,facilitating improved efficiency,reduced costs,and expanded applications.It also highlights current limitations and knowledge gaps,emphasizing the importance of further research and development in unlocking the full potential of TEGs for a sustainable and efficient energy future.展开更多
Thermoelectric generators(TEGs)are considered promising devices for waste heat recovery from various systems.The Seebeck effect can be utilized to generate power using the residual heat emitted by the filter dryer rec...Thermoelectric generators(TEGs)are considered promising devices for waste heat recovery from various systems.The Seebeck effect can be utilized to generate power using the residual heat emitted by the filter dryer receiver(FDR)of an air conditioning(A/C)system,which would otherwise go to waste.The study aims to build a set of thermoelectric generators(TEG)to collect the waste heat of the FDR and generate low-power electricity.A novel electrical circuit with two transformers is designed and fabricated to produce a more stable voltage for operation and charging.The thermoelectric generator(TEGs)was installed on the FDR of the A/C unit.The test showed that climate conditions have a significant impact on the output power generated from the system.The results showed that the peak voltage recorded in the current study is 5.2 V per day(wet,cold,and wind weather)with an output power of 0.2 W.These values are acceptable for powering the load and charging a single battery with 3.5 V as the voltage increases battery 0.1 V/20 min charge.A case study of operating the emergency signs in a building was considered.The current heat recovery system is deemed to be easily installed and can be connected to a network of TEGs to produce more power.展开更多
Our community currently deals with issues such as rising electricity costs,pollution,and global warming.Scientists work to improve energy harvesting-based power generators in order to reduce their impacts.The Seebeck ...Our community currently deals with issues such as rising electricity costs,pollution,and global warming.Scientists work to improve energy harvesting-based power generators in order to reduce their impacts.The Seebeck effect has been used to illustrate the capacity of thermoelectric generators(TEGs)to directly convert thermal energy to electrical energy.They are also ecologically beneficial since they do not include chemical products,function quietly because they lack mechanical structures and/or moving components,and may be built using different fabrication technologies such as three-dimentional(3D)printing,silicon technology,and screen printing,etc.TEGs are also position-independent and have a long operational lifetime.TEGs can be integrated into bulk and flexible devices.This review gives further investigation of TEGs,beginning with a full discussion of their operating principle,kinds,materials utilized,figure of merit,and improvement approaches,which include various thermoelectric material arrangements and utilised technologies.This paper also discusses the use of TEGs in a variety of disciplines such as automobile and biomedical.展开更多
With the rapid development of Internet of Things and miniaturized electronics, the demand for wearable power sources with high reliability and long duty cycle promotes the exploration of wearable thermoelectric genera...With the rapid development of Internet of Things and miniaturized electronics, the demand for wearable power sources with high reliability and long duty cycle promotes the exploration of wearable thermoelectric generators(TEGs). In particular, textile-based TEGs that can perpetually convert the ubiquitous temperature gradient between human body and ambience into electrical energy have attracted intensive attention to date.These lightweight and three-dimensional deformable TEGs comprised of fibers, filaments, yarns, or fabrics offer unique merits as wearable power source in comparison with conventional TEGs. In this review, we systematically summarize the state-of-the-art strategies for textile-based TEGs, including the structure design, fabrication, device performance, and application. Existing critical issues and future research emphasis are also discussed.展开更多
Segmented thermoelectric generators(STEGs)can exhibit present superior performance than those of the conventional thermoelectric generators.Thermal and electrical contact resistances exist between the thermoelectric m...Segmented thermoelectric generators(STEGs)can exhibit present superior performance than those of the conventional thermoelectric generators.Thermal and electrical contact resistances exist between the thermoelectric material interfaces in each thermoelectric leg.This may significantly hinder performance improvement.In this study,a five-layer STEG with three pairs of thermoelectric(TE)materials was investigated considering the thermal and electrical contact resistances on the material contact surface.The STEG performance under different contact resistances with various combinations of TE materials were analyzed.The relationship between the material sequence and performance indicators under different contact resistances is established by machine learning.Based on the genetic algorithm,for each contact resistance combination,the optimal material sequences were identified by maximizing the electric power and energy conversion efficiency.To reveal the underlying mechanism that determines the heat-to-electrical performance,the total electrical resistance,output voltage,ZT value,and temperature distribution under each optimized scenario were analyzed.The STEG can augment the heat-to-electricity performance only at small contact resistances.A large contact resistance significantly reduces the performance.At an electrical contact resistance of RE=10^(-3) K⋅m^(2)⋅W^(-1) and thermal contact resistance of RT=10-8Ω⋅m^(2),the maximum electric power was reduced to 5.71 mW(90.86 mW without considering the contact resistance).And the maximum energy conversion efficiency is lowered to 2.54%(12.59%without considering the contact resistance).展开更多
To satisfy the requirements of practical applications,thermoelectric generators should be highly efficient and mechanically robust.Recently,progress in designing high-performance thermoelectric generators has been mad...To satisfy the requirements of practical applications,thermoelectric generators should be highly efficient and mechanically robust.Recently,progress in designing high-performance thermoelectric generators has been made.However,the mechanical properties of thermoelectric generators are still unsatisfactory.In this review,studies on the mechanical properties of thermoelectric generators are summarized.The me-chanical properties of bulk thermoelectric generators will be first discussed.In this section,the mechan-ical properties of thermoelectric materials and the strategies for improving their mechanical properties are emphasized.Since the device’s failure usually occurs at the interface between the thermoelectric ma-terials and electrode,the joint strength of electrodes and thermoelectric materials will be overviewed.After that,the mechanical properties of the inorganic thin-film thermoelectric devices will be discussed.Since the figure of merit for the flexibility of thermoelectric materials depends on the film thickness,elastic modulus,and yield strength,the synthesis methods of thin-film thermoelectric materials will be reviewed.Finally,this review will be concluded with a discussion on flexible organic thermoelectric de-vices and flexible devices using bulk legs.展开更多
Nanostructured surface is a promising photon management strategy to tune spectrum in design of the selective solar absorber.In this paper,we propose a nanocone structured surface as a perfect solar absorber in applica...Nanostructured surface is a promising photon management strategy to tune spectrum in design of the selective solar absorber.In this paper,we propose a nanocone structured surface as a perfect solar absorber in application of the solar thermoelectric generators(STEGs).The trade-off between the solar absorption and the mid-infrared emission is obtained to maximize the STEG efficiency.The effects of the geometric parameters,thermal concentration,incident angle and polarized state as well as the lattice arrangement are systematically investigated.The results show that the STEGs equipped with our proposed selective solar absorber can achieve a peak efficiency of 6.53%under AM1.5G condition(no optical concentration).Furthermore,the selective solar absorber exhibits insensitive behavior to the incident angle and polarization angle as well.This means that the proposed selective solar absorber can utilize solar energy as much as possible and be generally suitable in equipping the STEGs without optical concentration.展开更多
Solar thermoelectric generators (STEGs) are heat engines which can generate electricity from concentrated sunlight. The non-uniform illumination caused by the optical concentrator may affect the performance of solar...Solar thermoelectric generators (STEGs) are heat engines which can generate electricity from concentrated sunlight. The non-uniform illumination caused by the optical concentrator may affect the performance of solar thermoelectric generators. In this paper, a three- dimensional finite element model of solar thermoelectric generators is established. The two-dimensional Gaussian distribution is employed to modify the illumination profiles incident on the thermoelectric generator. Six non-uniformities of solar illumination are investigated while keeping the total energy constant. The influences of non-uniform illumination on the temperature distribution, the voltage distribution, and the maximum output power are respectively discussed. Three thermoelectric generators with 32, 18 and 8 pairs of thermocouples are compared to investigate their capability under non-uniform solar radiation. The result shows that the non-uniformity of the solar illumination has a great effect on the temperature distribution and the voltage distribution. Central thermoelectric legs can achieve a larger temperature difference and generate a larger voltage than peripheral ones. The non-uniform solar illumination will weaken the capability of the TE generator, and the maximum output power decrease by 1.4% among the range of non-uniformity studied in this paper. Reducing the number of the thermoelectric legs for non-uniform solar illumination can greatly increase the performance of the thermoelectric generator.展开更多
Wireless sensor networks are widely used for monitoring in remote areas. They mainly consist of wireless sensor nodes, which are usually powered by batteries with limited capacity, but are expected to last for long pe...Wireless sensor networks are widely used for monitoring in remote areas. They mainly consist of wireless sensor nodes, which are usually powered by batteries with limited capacity, but are expected to last for long periods of time. To overcome these limitations and achieve perpetual autonomy, an energy harvesting technique using a thermoelectric generator (TEG) coupled with storage on supercapacitors is proposed. The originality of the work lies in the presentation of a maintenance-free, robust, and tested solution, well adapted to a harsh industrial context with a permanent temperature gradient. The harvesting part, which is attached to the hot spot in a few seconds using magnets, can withstand temperatures of 200°C. The storage unit, which contains the electronics and supercapacitors, operates at temperatures of up to 80°C. More specifically, this article describes the final design of a 3.3 V 60 mA battery-free power supply. An analysis of the thermal potential and the electrical power that can be recovered is presented, followed by the design of the main electronic stages: energy recovery using a BQ25504, storage on supercapacitors and finally shaping the output voltage with a boost (TPS610995) followed by an LDO (TPS71533).展开更多
We chose a definition of heatwaves (HWs) that has ~4-year recurrence frequency at world hot spots. We first examined the 1940-2022 HWs climatology and trends in lifespan, severity, spatial extent, and recurrence frequ...We chose a definition of heatwaves (HWs) that has ~4-year recurrence frequency at world hot spots. We first examined the 1940-2022 HWs climatology and trends in lifespan, severity, spatial extent, and recurrence frequency. HWs are becoming more frequent and more severe for extratropical mid- and low-latitudes. To euphemize HWs, we here propose a novel clean energy-tapping concept that utilizes the available nano-technology, micro-meteorology knowledge of temperature distribution within/without buildings, and radiative properties of earth atmosphere. The key points for a practical electricity generation scheme from HWs are defogging, insulation, and minimizing the absorption of infrared downward radiation at the cold legs of the thermoelectric generators. One sample realization is presented which, through relay with existing photovoltaic devices, provides all-day electricity supply sufficient for providing air conditioning requirement for a residence (~2000-watt throughput). The provision of power to air conditioning systems, usually imposes a significant stress on traditional city power grids during heatwaves.展开更多
New alternatives and inventive renewable energy techniques which encompass both generation and power management solutions are fundamental for meeting remote residential energy supply and demand today, especially if th...New alternatives and inventive renewable energy techniques which encompass both generation and power management solutions are fundamental for meeting remote residential energy supply and demand today, especially if the grid is quasi-inexistent. Solar thermoelectric generators mounted on a dual-axis sun tracker can be a cost-effective alternative to photovoltaics for remote residential household power generation. A complete solar thermoelectric energy harvesting system is presented in this paper for energy delivery to remote residential areas in developing regions. To this end, the entire system was built, modeled, and then validated with the LTspice simulator software via the thermal-to-electrical analogy schemes. Valuable data in conjunction with a novel LTspice circuit were obtained, showing the achievability of analyzing transient heat transfer with the SPICE simulator; however a few of the problems to be solved remain at the practical level. Despite the unusual operation of the thermoelectric modules with the solar radiation, the simulation and measurements were in good agreement, thus validating the new modeling strategy.展开更多
Energy harvesting plays a crucial role in modern society.In the past years,solar energy,owing to its renewable,green,and infinite attributes,has attracted increasing attention across a broad range of applications from...Energy harvesting plays a crucial role in modern society.In the past years,solar energy,owing to its renewable,green,and infinite attributes,has attracted increasing attention across a broad range of applications from small-scale wearable electronics to large-scale energy powering.However,the utility of solar cells in providing a stable power supply for vari-ous electrical appliances in practical applications is restricted by weather conditions.To address this issue,researchers have made many efforts to integrate solar cells with other types of energy harvesters,thus developing hybrid energy har-vesters(HEHs),which can harvest energy from the ambient environment via different working mechanisms.In this re-view,four categories of energy harvesters including solar cells,triboelectric nanogenerators(TENGs),piezoelectric nanogenerators(PENGs),and thermoelectric generators(TEGs)are introduced.In addition,we systematically summar-ize the recent progress in solar cell-based hybrid energy harvesters(SCHEHs)with a focus on their structure designs and the corresponding applications.Three hybridization designs through unique combinations of TENG,PENG,and TEG with solar cells are elaborated in detail.Finally,the main challenges and perspectives for the future development of SCHEHs are discussed.展开更多
Neurologists define the transmission of nerve impulses across the membranes of the neural cells as a result of difference in the concentration of ions while they measured an electric potential, called as an action pot...Neurologists define the transmission of nerve impulses across the membranes of the neural cells as a result of difference in the concentration of ions while they measured an electric potential, called as an action potential, which allows the propagation of such nerve impulses as electrical signals. Such measurements should guide them to a logical explanation of the nerve impulses as electric charges driven by the measured action potential. However, such logical conclusion, or explanation, is ignored due to a wrong definition of the flow of electric charges as a flow of electrons that cannot pass through neural networks. According to recent studies, electric charges are properly defined as electromagnetic (EM) waves whose energy is expressed as the product of its propagating electric potential times their entropy flow which is adhered to the flow of such energy. Such definition matches the logical conclusion of the nerve impulses as electric charges, as previously explained, and defines the entropy of the neural network, measured by Ammeters, in Watt or Joule/Volt. The measured entropy represents a neurodiagnostic property of the neural networks that measures its capacity to allow the flow of energy per unit action potential. Theoretical verification of the innovative definition of nerve impulses is presented by following an advanced entropy approach. A proper review of the machine records of the stimulating electric charges, used in the diagnosis of the neural networks, and the stimulated nerve impulses or stimulated responses, represents practical verifications of the innovative definitions of the electric charges and the nerve impulses. Comparing the functioning of the thermoelectric generators and the brain neurons, such neurons are defined as thermoelectric generators of the electric nerve impulses and their propagating, or action, potential.展开更多
The development of alternative renewable energy technologies is crucial for alleviating climate change and promoting energy transformation.Of the currently available technologies,solar energy has promising application...The development of alternative renewable energy technologies is crucial for alleviating climate change and promoting energy transformation.Of the currently available technologies,solar energy has promising application prospects owing to its merits of being clean,safe,and sustainable.Solar energy is converted into electricity through photovoltaic(PV)cells;however,the overall conversion efficiency of PV modules is relatively low,and most of the captured solar energy is dissipated in the form of heat.This not only reduces the power generation efficiency of solar cells but may also have a negative impact on the electrical parameters of PV modules and the service life of PV cells.To overcome the shortcomings,an efficient approach involves combining a PV cell with a thermoelectric generator(TEG)to form hybrid PV-TEG systems,which simultaneously improve the energy conversion efficiency of the PV system by reducing the operating temperature of the PV modules and increasing the power output by utilizing the waste heat generated from the PV system to generate electricity via the TEGs.Based on a thorough examination of the literature,this study comprehensively reviews 14 maximum power point tracking(MPPT)algorithms currently applied to hybrid PV-TEG systems and classifies them into five major categories for further discussion,namely conventional,mathematics-based,metaheuristic,artificial intelligence,and other algorithms.This review aims to inspire advanced ideas and research on MPPT algorithms for hybrid PV-TEG systems.展开更多
In this research,a modified fractional order proportional integral derivate(FOPID)control method is proposed for the photovoltaic(PV)and thermoelectric generator(TEG)combined hybrid renewable energy system.The faster ...In this research,a modified fractional order proportional integral derivate(FOPID)control method is proposed for the photovoltaic(PV)and thermoelectric generator(TEG)combined hybrid renewable energy system.The faster tracking and steady-state output are aimed at the suggested maximum power point tracking(MPPT)control technique.The derivative order number(μ)value in the improved FOPID(also known as PIλDμ)control structure will be dynamically updated utilizing the value of change in PV array voltage output.During the transient,the value ofμis changeable;it’s one at the start and after reaching the maximum power point(MPP),allowing for strong tracking characteristics.TEG will use the freely available waste thermal energy created surrounding the PVarray for additional power generation,increasing the system’s energy conversion efficiency.A high-gain DC-DC converter circuit is included in the system to maintain a high amplitude DC input voltage to the inverter circuit.The proposed approach’s performance was investigated using an extensive MATLAB software simulation and validated by comparing findings with the perturbation and observation(P&O)type MPPT control method.The study results demonstrate that the FOPID controller-based MPPT control outperforms the P&O method in harvesting the maximum power achievable from the PV-TEG hybrid source.There is also a better control action and a faster response.展开更多
The generation of electricity,considering environmental and eco-nomic factors is one of the most important challenges of recent years.In this article,a thermoelectric generator(TEG)is proposed to use the thermal energ...The generation of electricity,considering environmental and eco-nomic factors is one of the most important challenges of recent years.In this article,a thermoelectric generator(TEG)is proposed to use the thermal energy of an electric water heater(EWH)to generate electricity independently.To improve the energy conversion efficiency of the TEG,a fuzzy logic con-troller(FLC)-based perturb&observe(P&O)type maximum power point tracking(MPPT)control algorithm is used in this study.An EWH is one of the major electricity consuming household appliances which causes a higher electricity price for consumers.Also,a significant amount of thermal energy generated by EWH is wasted every day,especially during the winter season.In recent years,TEGs have been widely developed to convert surplus or unused thermal energy into usable electricity.In this context,the proposed model is designed to use the thermal energy stored in the EWH to generate electricity.In addition,the generated electricity can be easily stored in a battery storage system to supply electricity to various household appliances with low-power-consumption.The proposed MPPT control algorithm helps the system to quickly reach the optimal point corresponding to the maximum power output and maintains the system operating point at the maximum power output level.To validate the usefulness of the proposed scheme,a study model was developed in the MATLAB Simulink environment and its performance was investigated by simulation under steady state and transient conditions.The results of the study confirmed that the system is capable of generating adequate power from the available thermal energy of EWH.It was also found that the output power and efficiency of the system can be improved by maintaining a higher temperature difference at the input terminals of the TEG.Moreover,the real-time temperature data of Abha city in Saudi Arabia is considered to analyze the feasibility of the proposed system for practical implementation.展开更多
Bismuth telluride-based devices are capable of converting low-quality thermal energy into electrical power via the Seebeck effect.This transformative process not only extends the spectrum of energy utilization but als...Bismuth telluride-based devices are capable of converting low-quality thermal energy into electrical power via the Seebeck effect.This transformative process not only extends the spectrum of energy utilization but also significantly amplifies energy efficiency.This review serves as a comprehensive guide,elucidating the intricate design considerations essential for optimizing bismuth telluride-based devices in both electrical and structural design.By exploring various application scenarios,it identifies critical parameters crucial for device effectiveness.Furthermore,the current landscape of thermoelectric(TE)devices is meticulously analyzed,synthesizing their developmental trajectory and contrasting it with stringent design requirements.Through this comprehensive analysis,it pinpoints key challenges that impede the maximal performance of existing TE devices.Envisioning the trajectory of bismuth telluride-based TE materials,this review makes projections regarding their future application trends.Traversing through contemporary mechanisms and technologies,it offers practical solutions and po-tential avenues aimed at enhancing the efficiency of TE devices.Ultimately,this discourse endeavors to provide invaluable insights,furnishing a roadmap for the advancement and refinement of TE devices in the years ahead.By proposing feasible solutions and charting plausible directions,it aspires to stimulate inno-vation and drive transformative progress in the domain of TE materials and science.展开更多
The human body contains a near-infinite supply of energy in chemical,thermal,and mechanical forms.However,the majority of implantable and wear-able devices are still operated by batteries,whose insufficient capacity a...The human body contains a near-infinite supply of energy in chemical,thermal,and mechanical forms.However,the majority of implantable and wear-able devices are still operated by batteries,whose insufficient capacity and large size limit their lifespan and increase the risk of hazardous material leakage.Such energy can be used to exceed the battery power limits of implantable and wear-able devices.Moreover,novel materials and fabrication methods can be used to create various medical therapies and life-enhancing technologies.This review paper focuses on energy-harvesting technologies used in medical and health applications,primarily power collectors from the human body.Current approaches to energy harvesting from the bodies of living subjects for self-powered electronics are summarized.Using the human body as an energy source encompasses numer-ous topics:thermoelectric generators,power harvesting by kinetic energy,cardi-ovascular energy harvesting,and blood pressure.The review considers various perspectives on future research,which can provide a new forum for advancing new technologies for the diagnosis,treatment,and prevention of diseases by integrating different energy harvesters with advanced electronics.展开更多
Thermoelectric devices are one of the technologies used either to generate electricity by applying a temperature difference using thermal energy or as a heating/cooling system by applying an electrical voltage.The num...Thermoelectric devices are one of the technologies used either to generate electricity by applying a temperature difference using thermal energy or as a heating/cooling system by applying an electrical voltage.The number of materials required to produce a product is an important factor in determining its price.Production costs associated with these materials,as well as their availability and quality,play a crucial role in price determination by manufacturers.In this context,a method that employs a uniform volume distribution was implemented.This approach enabled the analysis to focus on other variables,thereby promoting a more precise and relevant evaluation of overall performance.Based on the finite element method,this study investigated the influence of geometric shape,including Rect-leg,Y-leg,Pin-leg and X-leg designs,on the performance of solar thermoelectric generators and thermoelectric coolers.The study was conducted considering the same hot alumina junction surface that receives solar radiation;however,the ef-fective surface,which corresponded to the heat flow area and had a similar area near the exposed surface,varied depending on the chosen leg geometry,thus impacting the heat flux due to the variation in thermal resistance.In the case of a solar thermoelectric generator,the Rect-leg model,having the same effective surface area,presented the lowest heat loss value resulting from convection and radiation in the heat spreader and the hot alumina plate.Under the same conditions,the Y-leg showed the highest value.The Rect-leg design generated,by using thermal and optical concentration,the highest output power of 0.028 and 0.054 W,and efficiency of 3.47%and 4.7%,respectively,whereas the Y-leg generated lower values of 0.006523 and 0.018744 W for power,and 2.83%and 2.71%for efficiency,respectively.In the case of the thermoelectric coolers,the Y-leg generated the highest temperature difference between the hot and cold sides of 67.28 K at an electric current value of 1.8 A,whereas the Rect-leg,Pin-leg and X-leg generated~66.25,~67.02 and~67.19 K at 6.1,2.7 and 2.6 A.展开更多
Recently the concern about energy consumption across the globe has become more severe due to global warming. One essential way to address this problem is to maximize the efficiency of existing renewable energy resourc...Recently the concern about energy consumption across the globe has become more severe due to global warming. One essential way to address this problem is to maximize the efficiency of existing renewable energy resources and effectively eliminate their power losses. The previous studies on energy harvesting of photovoltaic (PV) modules try to cope with this problem using gradient-based control techniques and pay little attention to the significant loss of solar energy in the form of waste heat. To reconcile these waste-heat problems, this paper investigates hybrid photovoltaic-thermoelectric generation (PV-TEG) systems. We implement the generalized particle swarm optimization (GEPSO) technique to maximize the power of PV systems under dynamic conditions by utilizing the waste heat to produce electricity through embedding the thermoelectric generator (TEG) with the PV module. The removal of waste heat increases the efficiency of PV systems and also adds significant electrical power. As a control method, the proposed GEPSO can maximize the output power. Simulations confirm that GEPSO outperforms some state-of-the-art methods, e.g., the perturb and observe (PO), cuckoo search (CS), incremental conductance (INC), and particle swarm optimization (PSO), in terms of accuracy and tracking speed.展开更多
基金supported by the Hong Kong Polytechnic University through Projects of RCRE(Project No.1-BBEG)sponsored by the Research Grants Council of HongKong and the NationalNatural Science Foundation of China(Project No.N_PolyU513/18).
文摘Thermoelectric generators(TEGs)play a critical role in collecting renewable energy fromthe sun and deep space to generate clean electricity.With their environmentally friendly,reliable,and noise-free operation,TEGs offer diverse applications,including areas with limited power infrastructure,microelectronic devices,and wearable technology.The review thoroughly analyses TEG system configurations,performance,and applications driven by solar and/or radiative cooling,covering non-concentrating,concentrating,radiative cooling-driven,and dual-mode TEGs.Materials for solar absorbers and radiative coolers,simulation techniques,energy storage management,and thermal management strategies are explored.The integration of TEGs with combined heat and power systems is identified as a promising application.Additionally,TEGs hold potential as charging sources for electronic devices.This comprehensive review provides valuable insights into this energy collection approach,facilitating improved efficiency,reduced costs,and expanded applications.It also highlights current limitations and knowledge gaps,emphasizing the importance of further research and development in unlocking the full potential of TEGs for a sustainable and efficient energy future.
文摘Thermoelectric generators(TEGs)are considered promising devices for waste heat recovery from various systems.The Seebeck effect can be utilized to generate power using the residual heat emitted by the filter dryer receiver(FDR)of an air conditioning(A/C)system,which would otherwise go to waste.The study aims to build a set of thermoelectric generators(TEG)to collect the waste heat of the FDR and generate low-power electricity.A novel electrical circuit with two transformers is designed and fabricated to produce a more stable voltage for operation and charging.The thermoelectric generator(TEGs)was installed on the FDR of the A/C unit.The test showed that climate conditions have a significant impact on the output power generated from the system.The results showed that the peak voltage recorded in the current study is 5.2 V per day(wet,cold,and wind weather)with an output power of 0.2 W.These values are acceptable for powering the load and charging a single battery with 3.5 V as the voltage increases battery 0.1 V/20 min charge.A case study of operating the emergency signs in a building was considered.The current heat recovery system is deemed to be easily installed and can be connected to a network of TEGs to produce more power.
文摘Our community currently deals with issues such as rising electricity costs,pollution,and global warming.Scientists work to improve energy harvesting-based power generators in order to reduce their impacts.The Seebeck effect has been used to illustrate the capacity of thermoelectric generators(TEGs)to directly convert thermal energy to electrical energy.They are also ecologically beneficial since they do not include chemical products,function quietly because they lack mechanical structures and/or moving components,and may be built using different fabrication technologies such as three-dimentional(3D)printing,silicon technology,and screen printing,etc.TEGs are also position-independent and have a long operational lifetime.TEGs can be integrated into bulk and flexible devices.This review gives further investigation of TEGs,beginning with a full discussion of their operating principle,kinds,materials utilized,figure of merit,and improvement approaches,which include various thermoelectric material arrangements and utilised technologies.This paper also discusses the use of TEGs in a variety of disciplines such as automobile and biomedical.
基金financial support from the Fundamental Research Funds for the Central Universities(2232019A3-05 and 2232019D3-11)the National Natural Science Foundation of China(No.51603036)+2 种基金Young Elite Scientists Sponsorship Program by CAST(2017QNRC001)Shanghai Sailing Program(19YF1400700)DHU Distinguished Young Professor Program
文摘With the rapid development of Internet of Things and miniaturized electronics, the demand for wearable power sources with high reliability and long duty cycle promotes the exploration of wearable thermoelectric generators(TEGs). In particular, textile-based TEGs that can perpetually convert the ubiquitous temperature gradient between human body and ambience into electrical energy have attracted intensive attention to date.These lightweight and three-dimensional deformable TEGs comprised of fibers, filaments, yarns, or fabrics offer unique merits as wearable power source in comparison with conventional TEGs. In this review, we systematically summarize the state-of-the-art strategies for textile-based TEGs, including the structure design, fabrication, device performance, and application. Existing critical issues and future research emphasis are also discussed.
基金supported by the National Natural Science Foundation of China(Grant No.:52176070).
文摘Segmented thermoelectric generators(STEGs)can exhibit present superior performance than those of the conventional thermoelectric generators.Thermal and electrical contact resistances exist between the thermoelectric material interfaces in each thermoelectric leg.This may significantly hinder performance improvement.In this study,a five-layer STEG with three pairs of thermoelectric(TE)materials was investigated considering the thermal and electrical contact resistances on the material contact surface.The STEG performance under different contact resistances with various combinations of TE materials were analyzed.The relationship between the material sequence and performance indicators under different contact resistances is established by machine learning.Based on the genetic algorithm,for each contact resistance combination,the optimal material sequences were identified by maximizing the electric power and energy conversion efficiency.To reveal the underlying mechanism that determines the heat-to-electrical performance,the total electrical resistance,output voltage,ZT value,and temperature distribution under each optimized scenario were analyzed.The STEG can augment the heat-to-electricity performance only at small contact resistances.A large contact resistance significantly reduces the performance.At an electrical contact resistance of RE=10^(-3) K⋅m^(2)⋅W^(-1) and thermal contact resistance of RT=10-8Ω⋅m^(2),the maximum electric power was reduced to 5.71 mW(90.86 mW without considering the contact resistance).And the maximum energy conversion efficiency is lowered to 2.54%(12.59%without considering the contact resistance).
基金financially supported by the Shenzhen Sci-ence and Technology Program(No.KQTD20200820113045081)the State Key Laboratory of Advanced Welding and Join-ing,Harbin Institute of Technology+7 种基金the financial support from the National Natural Science Foun-dation of China(Nos.52172194,51971081)the Natural Sci-ence Foundation for Distinguished Young Scholars of Guangdong Province of China(No.2020B1515020023)the Natural Science Foundation for Distinguished Young Scholars of Shenzhen(No.RCJC20210609103733073)the Key Project of Shenzhen Funda-mental Research Projects(No.JCYJ20200109113418655)the financial support from the National Natural Sci-ence Foundation of China(No.51871081)the financial support from the National Natural Science Foundation of China(No.52101248)Shenzhen fundamental research projects(No.JCYJ20210324132808020)the start-up funding of Shenzhen,and the start-up funding of Harbin Institute of Technology(Shen-zhen).
文摘To satisfy the requirements of practical applications,thermoelectric generators should be highly efficient and mechanically robust.Recently,progress in designing high-performance thermoelectric generators has been made.However,the mechanical properties of thermoelectric generators are still unsatisfactory.In this review,studies on the mechanical properties of thermoelectric generators are summarized.The me-chanical properties of bulk thermoelectric generators will be first discussed.In this section,the mechan-ical properties of thermoelectric materials and the strategies for improving their mechanical properties are emphasized.Since the device’s failure usually occurs at the interface between the thermoelectric ma-terials and electrode,the joint strength of electrodes and thermoelectric materials will be overviewed.After that,the mechanical properties of the inorganic thin-film thermoelectric devices will be discussed.Since the figure of merit for the flexibility of thermoelectric materials depends on the film thickness,elastic modulus,and yield strength,the synthesis methods of thin-film thermoelectric materials will be reviewed.Finally,this review will be concluded with a discussion on flexible organic thermoelectric de-vices and flexible devices using bulk legs.
基金supported by the National Natural Science Foundation of China(Grant No.51336003)the 333 Scientific Research Project of Jiangsu Province(Grant No.BRA2011134)
文摘Nanostructured surface is a promising photon management strategy to tune spectrum in design of the selective solar absorber.In this paper,we propose a nanocone structured surface as a perfect solar absorber in application of the solar thermoelectric generators(STEGs).The trade-off between the solar absorption and the mid-infrared emission is obtained to maximize the STEG efficiency.The effects of the geometric parameters,thermal concentration,incident angle and polarized state as well as the lattice arrangement are systematically investigated.The results show that the STEGs equipped with our proposed selective solar absorber can achieve a peak efficiency of 6.53%under AM1.5G condition(no optical concentration).Furthermore,the selective solar absorber exhibits insensitive behavior to the incident angle and polarization angle as well.This means that the proposed selective solar absorber can utilize solar energy as much as possible and be generally suitable in equipping the STEGs without optical concentration.
基金This work was supported by the National Natural Science Foundation of China (Grant No.51590903).
文摘Solar thermoelectric generators (STEGs) are heat engines which can generate electricity from concentrated sunlight. The non-uniform illumination caused by the optical concentrator may affect the performance of solar thermoelectric generators. In this paper, a three- dimensional finite element model of solar thermoelectric generators is established. The two-dimensional Gaussian distribution is employed to modify the illumination profiles incident on the thermoelectric generator. Six non-uniformities of solar illumination are investigated while keeping the total energy constant. The influences of non-uniform illumination on the temperature distribution, the voltage distribution, and the maximum output power are respectively discussed. Three thermoelectric generators with 32, 18 and 8 pairs of thermocouples are compared to investigate their capability under non-uniform solar radiation. The result shows that the non-uniformity of the solar illumination has a great effect on the temperature distribution and the voltage distribution. Central thermoelectric legs can achieve a larger temperature difference and generate a larger voltage than peripheral ones. The non-uniform solar illumination will weaken the capability of the TE generator, and the maximum output power decrease by 1.4% among the range of non-uniformity studied in this paper. Reducing the number of the thermoelectric legs for non-uniform solar illumination can greatly increase the performance of the thermoelectric generator.
文摘Wireless sensor networks are widely used for monitoring in remote areas. They mainly consist of wireless sensor nodes, which are usually powered by batteries with limited capacity, but are expected to last for long periods of time. To overcome these limitations and achieve perpetual autonomy, an energy harvesting technique using a thermoelectric generator (TEG) coupled with storage on supercapacitors is proposed. The originality of the work lies in the presentation of a maintenance-free, robust, and tested solution, well adapted to a harsh industrial context with a permanent temperature gradient. The harvesting part, which is attached to the hot spot in a few seconds using magnets, can withstand temperatures of 200°C. The storage unit, which contains the electronics and supercapacitors, operates at temperatures of up to 80°C. More specifically, this article describes the final design of a 3.3 V 60 mA battery-free power supply. An analysis of the thermal potential and the electrical power that can be recovered is presented, followed by the design of the main electronic stages: energy recovery using a BQ25504, storage on supercapacitors and finally shaping the output voltage with a boost (TPS610995) followed by an LDO (TPS71533).
文摘We chose a definition of heatwaves (HWs) that has ~4-year recurrence frequency at world hot spots. We first examined the 1940-2022 HWs climatology and trends in lifespan, severity, spatial extent, and recurrence frequency. HWs are becoming more frequent and more severe for extratropical mid- and low-latitudes. To euphemize HWs, we here propose a novel clean energy-tapping concept that utilizes the available nano-technology, micro-meteorology knowledge of temperature distribution within/without buildings, and radiative properties of earth atmosphere. The key points for a practical electricity generation scheme from HWs are defogging, insulation, and minimizing the absorption of infrared downward radiation at the cold legs of the thermoelectric generators. One sample realization is presented which, through relay with existing photovoltaic devices, provides all-day electricity supply sufficient for providing air conditioning requirement for a residence (~2000-watt throughput). The provision of power to air conditioning systems, usually imposes a significant stress on traditional city power grids during heatwaves.
文摘New alternatives and inventive renewable energy techniques which encompass both generation and power management solutions are fundamental for meeting remote residential energy supply and demand today, especially if the grid is quasi-inexistent. Solar thermoelectric generators mounted on a dual-axis sun tracker can be a cost-effective alternative to photovoltaics for remote residential household power generation. A complete solar thermoelectric energy harvesting system is presented in this paper for energy delivery to remote residential areas in developing regions. To this end, the entire system was built, modeled, and then validated with the LTspice simulator software via the thermal-to-electrical analogy schemes. Valuable data in conjunction with a novel LTspice circuit were obtained, showing the achievability of analyzing transient heat transfer with the SPICE simulator; however a few of the problems to be solved remain at the practical level. Despite the unusual operation of the thermoelectric modules with the solar radiation, the simulation and measurements were in good agreement, thus validating the new modeling strategy.
基金We are grateful for financial support from the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)via Germany’s Excellence Strategy-EXC 2089/1-390776260(e-conversion)and via the International Research Training Group 2022 the Alberta/Technical University of Munich International Graduate School for Environmentally Responsible Functional Materials(ATUMS),TUM.
文摘Energy harvesting plays a crucial role in modern society.In the past years,solar energy,owing to its renewable,green,and infinite attributes,has attracted increasing attention across a broad range of applications from small-scale wearable electronics to large-scale energy powering.However,the utility of solar cells in providing a stable power supply for vari-ous electrical appliances in practical applications is restricted by weather conditions.To address this issue,researchers have made many efforts to integrate solar cells with other types of energy harvesters,thus developing hybrid energy har-vesters(HEHs),which can harvest energy from the ambient environment via different working mechanisms.In this re-view,four categories of energy harvesters including solar cells,triboelectric nanogenerators(TENGs),piezoelectric nanogenerators(PENGs),and thermoelectric generators(TEGs)are introduced.In addition,we systematically summar-ize the recent progress in solar cell-based hybrid energy harvesters(SCHEHs)with a focus on their structure designs and the corresponding applications.Three hybridization designs through unique combinations of TENG,PENG,and TEG with solar cells are elaborated in detail.Finally,the main challenges and perspectives for the future development of SCHEHs are discussed.
文摘Neurologists define the transmission of nerve impulses across the membranes of the neural cells as a result of difference in the concentration of ions while they measured an electric potential, called as an action potential, which allows the propagation of such nerve impulses as electrical signals. Such measurements should guide them to a logical explanation of the nerve impulses as electric charges driven by the measured action potential. However, such logical conclusion, or explanation, is ignored due to a wrong definition of the flow of electric charges as a flow of electrons that cannot pass through neural networks. According to recent studies, electric charges are properly defined as electromagnetic (EM) waves whose energy is expressed as the product of its propagating electric potential times their entropy flow which is adhered to the flow of such energy. Such definition matches the logical conclusion of the nerve impulses as electric charges, as previously explained, and defines the entropy of the neural network, measured by Ammeters, in Watt or Joule/Volt. The measured entropy represents a neurodiagnostic property of the neural networks that measures its capacity to allow the flow of energy per unit action potential. Theoretical verification of the innovative definition of nerve impulses is presented by following an advanced entropy approach. A proper review of the machine records of the stimulating electric charges, used in the diagnosis of the neural networks, and the stimulated nerve impulses or stimulated responses, represents practical verifications of the innovative definitions of the electric charges and the nerve impulses. Comparing the functioning of the thermoelectric generators and the brain neurons, such neurons are defined as thermoelectric generators of the electric nerve impulses and their propagating, or action, potential.
基金This work was supported by National Natural Science Foundation of China(61963020,62263014)Yunnan Provincial Basic Research Project(202201AT070857).
文摘The development of alternative renewable energy technologies is crucial for alleviating climate change and promoting energy transformation.Of the currently available technologies,solar energy has promising application prospects owing to its merits of being clean,safe,and sustainable.Solar energy is converted into electricity through photovoltaic(PV)cells;however,the overall conversion efficiency of PV modules is relatively low,and most of the captured solar energy is dissipated in the form of heat.This not only reduces the power generation efficiency of solar cells but may also have a negative impact on the electrical parameters of PV modules and the service life of PV cells.To overcome the shortcomings,an efficient approach involves combining a PV cell with a thermoelectric generator(TEG)to form hybrid PV-TEG systems,which simultaneously improve the energy conversion efficiency of the PV system by reducing the operating temperature of the PV modules and increasing the power output by utilizing the waste heat generated from the PV system to generate electricity via the TEGs.Based on a thorough examination of the literature,this study comprehensively reviews 14 maximum power point tracking(MPPT)algorithms currently applied to hybrid PV-TEG systems and classifies them into five major categories for further discussion,namely conventional,mathematics-based,metaheuristic,artificial intelligence,and other algorithms.This review aims to inspire advanced ideas and research on MPPT algorithms for hybrid PV-TEG systems.
基金The authors extend their appreciation to the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the Project Number(IF-PSAU-2021/01/18128).
文摘In this research,a modified fractional order proportional integral derivate(FOPID)control method is proposed for the photovoltaic(PV)and thermoelectric generator(TEG)combined hybrid renewable energy system.The faster tracking and steady-state output are aimed at the suggested maximum power point tracking(MPPT)control technique.The derivative order number(μ)value in the improved FOPID(also known as PIλDμ)control structure will be dynamically updated utilizing the value of change in PV array voltage output.During the transient,the value ofμis changeable;it’s one at the start and after reaching the maximum power point(MPP),allowing for strong tracking characteristics.TEG will use the freely available waste thermal energy created surrounding the PVarray for additional power generation,increasing the system’s energy conversion efficiency.A high-gain DC-DC converter circuit is included in the system to maintain a high amplitude DC input voltage to the inverter circuit.The proposed approach’s performance was investigated using an extensive MATLAB software simulation and validated by comparing findings with the perturbation and observation(P&O)type MPPT control method.The study results demonstrate that the FOPID controller-based MPPT control outperforms the P&O method in harvesting the maximum power achievable from the PV-TEG hybrid source.There is also a better control action and a faster response.
基金Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the project number (IF2-PSAU/2022/01/22797).
文摘The generation of electricity,considering environmental and eco-nomic factors is one of the most important challenges of recent years.In this article,a thermoelectric generator(TEG)is proposed to use the thermal energy of an electric water heater(EWH)to generate electricity independently.To improve the energy conversion efficiency of the TEG,a fuzzy logic con-troller(FLC)-based perturb&observe(P&O)type maximum power point tracking(MPPT)control algorithm is used in this study.An EWH is one of the major electricity consuming household appliances which causes a higher electricity price for consumers.Also,a significant amount of thermal energy generated by EWH is wasted every day,especially during the winter season.In recent years,TEGs have been widely developed to convert surplus or unused thermal energy into usable electricity.In this context,the proposed model is designed to use the thermal energy stored in the EWH to generate electricity.In addition,the generated electricity can be easily stored in a battery storage system to supply electricity to various household appliances with low-power-consumption.The proposed MPPT control algorithm helps the system to quickly reach the optimal point corresponding to the maximum power output and maintains the system operating point at the maximum power output level.To validate the usefulness of the proposed scheme,a study model was developed in the MATLAB Simulink environment and its performance was investigated by simulation under steady state and transient conditions.The results of the study confirmed that the system is capable of generating adequate power from the available thermal energy of EWH.It was also found that the output power and efficiency of the system can be improved by maintaining a higher temperature difference at the input terminals of the TEG.Moreover,the real-time temperature data of Abha city in Saudi Arabia is considered to analyze the feasibility of the proposed system for practical implementation.
基金supported by the National Key Research and Development Program of China(2023YFB3809400)the National Natural Science of China(U23A20553)+2 种基金the Key Research and Development Program of Zhejiang Province(2022C01131 and 2021C01026)Zhejiang Provincial Natural Science Foundation of China(LD22E020005)Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(2022SZ-TD001).
文摘Bismuth telluride-based devices are capable of converting low-quality thermal energy into electrical power via the Seebeck effect.This transformative process not only extends the spectrum of energy utilization but also significantly amplifies energy efficiency.This review serves as a comprehensive guide,elucidating the intricate design considerations essential for optimizing bismuth telluride-based devices in both electrical and structural design.By exploring various application scenarios,it identifies critical parameters crucial for device effectiveness.Furthermore,the current landscape of thermoelectric(TE)devices is meticulously analyzed,synthesizing their developmental trajectory and contrasting it with stringent design requirements.Through this comprehensive analysis,it pinpoints key challenges that impede the maximal performance of existing TE devices.Envisioning the trajectory of bismuth telluride-based TE materials,this review makes projections regarding their future application trends.Traversing through contemporary mechanisms and technologies,it offers practical solutions and po-tential avenues aimed at enhancing the efficiency of TE devices.Ultimately,this discourse endeavors to provide invaluable insights,furnishing a roadmap for the advancement and refinement of TE devices in the years ahead.By proposing feasible solutions and charting plausible directions,it aspires to stimulate inno-vation and drive transformative progress in the domain of TE materials and science.
文摘The human body contains a near-infinite supply of energy in chemical,thermal,and mechanical forms.However,the majority of implantable and wear-able devices are still operated by batteries,whose insufficient capacity and large size limit their lifespan and increase the risk of hazardous material leakage.Such energy can be used to exceed the battery power limits of implantable and wear-able devices.Moreover,novel materials and fabrication methods can be used to create various medical therapies and life-enhancing technologies.This review paper focuses on energy-harvesting technologies used in medical and health applications,primarily power collectors from the human body.Current approaches to energy harvesting from the bodies of living subjects for self-powered electronics are summarized.Using the human body as an energy source encompasses numer-ous topics:thermoelectric generators,power harvesting by kinetic energy,cardi-ovascular energy harvesting,and blood pressure.The review considers various perspectives on future research,which can provide a new forum for advancing new technologies for the diagnosis,treatment,and prevention of diseases by integrating different energy harvesters with advanced electronics.
文摘Thermoelectric devices are one of the technologies used either to generate electricity by applying a temperature difference using thermal energy or as a heating/cooling system by applying an electrical voltage.The number of materials required to produce a product is an important factor in determining its price.Production costs associated with these materials,as well as their availability and quality,play a crucial role in price determination by manufacturers.In this context,a method that employs a uniform volume distribution was implemented.This approach enabled the analysis to focus on other variables,thereby promoting a more precise and relevant evaluation of overall performance.Based on the finite element method,this study investigated the influence of geometric shape,including Rect-leg,Y-leg,Pin-leg and X-leg designs,on the performance of solar thermoelectric generators and thermoelectric coolers.The study was conducted considering the same hot alumina junction surface that receives solar radiation;however,the ef-fective surface,which corresponded to the heat flow area and had a similar area near the exposed surface,varied depending on the chosen leg geometry,thus impacting the heat flux due to the variation in thermal resistance.In the case of a solar thermoelectric generator,the Rect-leg model,having the same effective surface area,presented the lowest heat loss value resulting from convection and radiation in the heat spreader and the hot alumina plate.Under the same conditions,the Y-leg showed the highest value.The Rect-leg design generated,by using thermal and optical concentration,the highest output power of 0.028 and 0.054 W,and efficiency of 3.47%and 4.7%,respectively,whereas the Y-leg generated lower values of 0.006523 and 0.018744 W for power,and 2.83%and 2.71%for efficiency,respectively.In the case of the thermoelectric coolers,the Y-leg generated the highest temperature difference between the hot and cold sides of 67.28 K at an electric current value of 1.8 A,whereas the Rect-leg,Pin-leg and X-leg generated~66.25,~67.02 and~67.19 K at 6.1,2.7 and 2.6 A.
文摘Recently the concern about energy consumption across the globe has become more severe due to global warming. One essential way to address this problem is to maximize the efficiency of existing renewable energy resources and effectively eliminate their power losses. The previous studies on energy harvesting of photovoltaic (PV) modules try to cope with this problem using gradient-based control techniques and pay little attention to the significant loss of solar energy in the form of waste heat. To reconcile these waste-heat problems, this paper investigates hybrid photovoltaic-thermoelectric generation (PV-TEG) systems. We implement the generalized particle swarm optimization (GEPSO) technique to maximize the power of PV systems under dynamic conditions by utilizing the waste heat to produce electricity through embedding the thermoelectric generator (TEG) with the PV module. The removal of waste heat increases the efficiency of PV systems and also adds significant electrical power. As a control method, the proposed GEPSO can maximize the output power. Simulations confirm that GEPSO outperforms some state-of-the-art methods, e.g., the perturb and observe (PO), cuckoo search (CS), incremental conductance (INC), and particle swarm optimization (PSO), in terms of accuracy and tracking speed.