期刊文献+
共找到154篇文章
< 1 2 8 >
每页显示 20 50 100
Self-Healable and Stretchable PAAc/XG/Bi_(2)Se_(0.3)Te_(2.7) Hybrid Hydrogel Thermoelectric Materials
1
作者 Jinmeng Li Tian Xu +7 位作者 Zheng Ma Wang Li Yongxin Qian Yang Tao Yinchao Wei Qinghui Jiang Yubo Luo Junyou Yang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期180-186,共7页
Thermoelectric power generators have attracted increasing interest in recent years owing to their great potential in wearable electronics power supply.It is noted that thermoelectric power generators are easy to damag... Thermoelectric power generators have attracted increasing interest in recent years owing to their great potential in wearable electronics power supply.It is noted that thermoelectric power generators are easy to damage in the dynamic service process,resulting in the formation of microcracks and performance degradation.Herein,we prepare a new hybrid hydrogel thermoelectric material PAAc/XG/Bi_(2)Se_(0.3)Te_(2.7)by an in situ polymerization method,which shows a high stretchable and self-healable performance,as well as a good thermoelectric performance.For the sample with Bi_(2)Se_(0.3)Te_(2.7)content of 1.5 wt%(i.e.,PAAc/XG/Bi2Se0.3Te27(1.5 wt%)),which has a room temperature Seebeck coefficient of-0.45 mV K^(-1),and exhibits an open-circuit voltage of-17.91 mV and output power of 38.1 nW at a temperature difference of 40 K.After being completely cut off,the hybrid thermoelectric hydrogel automatically recovers its electrical characteristics within a response time of 2.0 s,and the healed hydrogel remains more than 99%of its initial power output.Such stretchable and self-healable hybrid hydrogel thermoelectric materials show promising potential for application in dynamic service conditions,such as wearable electronics. 展开更多
关键词 bismuth telluride self healing thermoelectric material
下载PDF
Magnesium-based energy materials: Progress, challenges, and perspectives 被引量:2
2
作者 Guang Han Yangfan Lu +11 位作者 Hongxing Jia Zhao Ding Liang Wu Yue Shi Guoyu Wang Qun Luo Yu'an Chen Jingfeng Wang Guangsheng Huang Xiaoyuan Zhou Qian Li Fusheng Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第11期3896-3925,共30页
Magnesium-based energy materials, which combine promising energy-related functional properties with low cost, environmental compatibility and high availability, have been regarded as fascinating candidates for sustain... Magnesium-based energy materials, which combine promising energy-related functional properties with low cost, environmental compatibility and high availability, have been regarded as fascinating candidates for sustainable energy conversion and storage. In this review,we provide a timely summary on the recent progress in three types of important Mg-based energy materials, based on the fundamental strategies of composition and structure engineering. With regard to Mg-based materials for batteries, we systematically review and analyze different material systems, structure regulation strategies as well as the relevant performance in Mg-ion batteries(MIBs) and Mg-air batteries(MABs), covering cathodes, electrolytes, anodes for MIBs, and anodes for MABs;as to Mg-based hydrogen storage materials, we discuss how catalyst adding, composite, alloying and nanostructuring improve the kinetic and thermodynamic properties of de/hydrogenation reactions, and in particular, the impacts of composition and structure modification on hydrogen absorption/dissociation processes and free energy modification mechanism are focused;regarding Mg-based thermoelectric materials, the relations between composition/structure and electrical/thermal transport properties of Mg_(3)X_(2)(X = Sb, Bi), Mg_(2)X(X = Si, Ge, Sn) and Mg Ag Sb-based materials, together with the representative research progress of each material system, are summarized and discussed. Finally, by pointing out remaining challenges and providing possible solutions, this review aims to shed light on the directions and perspectives for practical applications of magnesium-based energy materials in the future. 展开更多
关键词 Mg-based battery materials Mg-based hydrogen storage materials Mg-based thermoelectric materials Composition regulation Structure engineering
下载PDF
Energy conversion materials for the space solar power station 被引量:2
3
作者 任晓娜 葛昌纯 +6 位作者 陈志培 伊凡 涂用广 张迎春 王立 刘自立 关怡秋 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第7期124-131,共8页
Since it was first proposed,the space solar power station(SSPS)has attracted great attention all over the world;it is a huge space system and provides energy for Earth.Although several schemes and abundant studies on ... Since it was first proposed,the space solar power station(SSPS)has attracted great attention all over the world;it is a huge space system and provides energy for Earth.Although several schemes and abundant studies on the SSPS have been proposed and conducted,it is still not realized.The reason why SSPS is still an idea is not only because it is a giant and complex project,but also due to the requirement for various excellent space materials.Among the diverse required materials,we believe energy materials are the most important.Herein,we review the space energy conversion materials for the SSPS. 展开更多
关键词 space solar power station photovoltaic cell thermoelectric materials LASERS
下载PDF
High-entropy alloys in thermoelectric application:A selective review
4
作者 任凯 霍文燚 +3 位作者 陈帅 程渊 王彪 张刚 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期1-11,共11页
Since the superior mechanical,chemical and physical properties of high-entropy alloys(HEAs)were discovered,they have gradually become new emerging candidates for renewable energy applications.This review presents the ... Since the superior mechanical,chemical and physical properties of high-entropy alloys(HEAs)were discovered,they have gradually become new emerging candidates for renewable energy applications.This review presents the novel applications of HEAs in thermoelectric energy conversion.Firstly,the basic concepts and structural properties of HEAs are introduced.Then,we discuss a number of promising thermoelectric materials based on HEAs.Finally,the conclusion and outlook are presented.This article presents an advanced understanding of the thermoelectric properties of HEAs,which provides new opportunities for promoting their applications in renewable energy. 展开更多
关键词 high-entropy alloys thermoelectric materials thermal conduction
下载PDF
Single-and Two-band Transport Properties Crossover in Bi_(2)Te_(3)Based Thermoelectrics
5
作者 MENG Yuting WANG Xuemei +2 位作者 ZHANG Shuxian CHEN Zhiwei PEI Yanzhong 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2024年第11期1283-1291,共9页
Based on Peltier effect,Bi_(2)Te_(3)-based alloy is widely used in commercial solid-state refrigeration at room temperature.The mainstream strategies for enhancing room-temperature thermoelectric performance in Bi_(2)... Based on Peltier effect,Bi_(2)Te_(3)-based alloy is widely used in commercial solid-state refrigeration at room temperature.The mainstream strategies for enhancing room-temperature thermoelectric performance in Bi_(2)Te_(3)focus on band and microstructure engineering.However,a clear understanding of the modulation of band structure and scattering through such engineering remains still challenging,because the minority carriers compensate partially the overall transport properties for the narrow-gap Bi_(2)Te_(3)at room temperature(known as the bipolar effect).The purpose of this work is to model the transport properties near and far away from the bipolar effect region for Bi_(2)Te_(3)-based thermoelectric material by a two-band model taking contributions of both majority and minority carriers into account.This is endowed by shifting the Fermi level from the conduction band to the valence band during the modeling.A large amount of data of Bi_(2)Te_(3)-based materials is collected from various studies for the comparison between experimental and predicted properties.The fundamental parameters,such as the density of states effective masses and deformation potential coefficients,of Bi_(2)Te_(3)-based materials are quantified.The analysis can help find out the impact factors(e.g.the mobility ratio between conduction and valence bands)for the improvement of thermoelectric properties for Bi_(2)Te_(3)-based alloys.This work provides a convenient tool for analyzing and predicting the transport performance even in the presence of bipolar effect,which can facilitate the development of the narrow-gap thermoelectric semiconductors. 展开更多
关键词 thermoelectric material Bi_(2)Te_(3)-based alloy two-band model narrow-gap thermoelectric semiconductor
下载PDF
Frictional contact analysis of a rigid solid with periodic surface sliding on the thermoelectric material
6
作者 Yali ZHANG Yueting ZHOU Shenghu DING 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第1期179-196,共18页
Understanding and characterizing rough contact and wavy surfaces are essential for developing effective strategies to mitigate wear,optimize lubrication,and enhance the overall performance and durability of mechanical... Understanding and characterizing rough contact and wavy surfaces are essential for developing effective strategies to mitigate wear,optimize lubrication,and enhance the overall performance and durability of mechanical systems.The sliding friction contact problem between a thermoelectric(TE)half-plane and a rigid solid with a periodic wavy surface is the focus of this investigation.To simplify the problem,we utilize mixed boundary conditions,leading to a set of singular integral equations(SIEs)with the Hilbert kernels.The analytical solutions for the energy flux and electric current density are obtained by the variable transform method in the context of the electric and temperature field.The contact problem for the elastic field is transformed into the second-kind SIE and solved by the Jacobi polynomials.Notably,the smoothness of the wavy contact surface ensures that there are no singularities in the surface contact stress,and ensures that it remains free at the contact edge.Based on the plane strain theory of elasticity,the analysis primarily examines the correlation between the applied load and the effective contact area.The distribution of the normal stress on the surface with or without TE loads is discussed in detail for various friction coefficients.Furthermore,the obtained results indicate that the in-plane stress decreases behind the trailing edge,while it increases ahead of the trailing edge when subjected to TE loads. 展开更多
关键词 wavy surface periodic contact thermoelectric(TE)material Hilbert integral kernel
下载PDF
Thermoelectrical properties of(FeNi)_xCo_(4-x)Sb_(12) prepared by MA-SPS
7
作者 Kegao Liu Jiuxing Zhang 《Journal of University of Science and Technology Beijing》 CSCD 2008年第3期272-275,共4页
Bulk skutterudite (FeNi)xCo4-xSbl2 with x varying from 0.05 to 1.0 were prepared by mechanical alloying and spark plasma sintering (MA-SPS). The phases of the samples were analyzed by X-ray diffraction, and their ... Bulk skutterudite (FeNi)xCo4-xSbl2 with x varying from 0.05 to 1.0 were prepared by mechanical alloying and spark plasma sintering (MA-SPS). The phases of the samples were analyzed by X-ray diffraction, and their thermoelectrical properties were tested by electrical constant instrument and laser thermal constant instrument. The experimental results show that bulk (FeNi)xCo4-xSb12 have the characteristic of typical semiconductor electricity. The addition of FeNi improves the electrical properties to a large extent; the samples of bulk (FeNi)xCo4-xSbl2 (x = 0.05-1.0) are n-type semiconducting materials; the increase of FeNi content can decrease the absolute value of Seebeck coefficient and therefore decrease the ZT value; FeNi with a higher content when x 〉 0.5 leads to an evident increase in thermal conductivity and also a decrease in ZT value. In general, for ZT value, the optimal added content of FeNi is 0.25-0.5 and the maximum ZT value is 0.2467 when x = 0.5 at 500℃. 展开更多
关键词 thermoelectrical materials thermoelectrical properties SKUTTERUDITE mechanical alloying spark plasma sintering
下载PDF
Recent Progress of Two-Dimensional Thermoelectric Materials 被引量:12
8
作者 Delong Li Youning Gong +6 位作者 Yuexing Chen Jiamei Lin Qasim Khan Yupeng Zhang Yu Li Han Zhang Heping Xie 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第3期77-116,共40页
Thermoelectric generators have attracted a wide research interest owing to their ability to directly convert heat into electrical power.Moreover,the thermoelectric properties of traditional inorganic and organic mater... Thermoelectric generators have attracted a wide research interest owing to their ability to directly convert heat into electrical power.Moreover,the thermoelectric properties of traditional inorganic and organic materials have been significantly improved over the past few decades.Among these compounds,layered two-dimensional(2D)materials,such as graphene,black phosphorus,transition metal dichalcogenides,IVA–VIA compounds,and MXenes,have generated a large research attention as a group of potentially high-performance thermoelectric materials.Due to their unique electronic,mechanical,thermal,and optoelectronic properties,thermoelectric devices based on such materials can be applied in a variety of applications.Herein,a comprehensive review on the development of 2D materials for thermoelectric applications,as well as theoretical simulations and experimental preparation,is presented.In addition,nanodevice and new applications of 2D thermoelectric materials are also introduced.At last,current challenges are discussed and several prospects in this field are proposed. 展开更多
关键词 Two-dimensional thermoelectric materials Black phosphorus analogue Tin selenide Transition metal dichalcogenides Photothermoelectric effect
下载PDF
Surface contact behavior of functionally graded thermoelectric materials indented by a conducting punch 被引量:2
9
作者 Xiaojuan TIAN Yueting ZHOU +1 位作者 Lihua WANG Shenghu DING 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第5期649-664,共16页
The contact problem for thermoelectric materials with functionally graded properties is considered.The material properties,such as the electric conductivity,the thermal conductivity,the shear modulus,and the thermal e... The contact problem for thermoelectric materials with functionally graded properties is considered.The material properties,such as the electric conductivity,the thermal conductivity,the shear modulus,and the thermal expansion coefficient,vary in an exponential function.Using the Fourier transform technique,the electro-thermoelastic problems are transformed into three sets of singular integral equations which are solved numerically in terms of the unknown normal electric current density,the normal energy flux,and the contact pressure.Meanwhile,the complex homogeneous solutions of the displacement fields caused by the gradient parameters are simplified with the help of Euler’s formula.After addressing the non-linearity excited by thermoelectric effects,the particular solutions of the displacement fields can be assessed.The effects of various combinations of material gradient parameters and thermoelectric loads on the contact behaviors of thermoelectric materials are presented.The results give a deep insight into the contact damage mechanism of functionally graded thermoelectric materials(FGTEMs). 展开更多
关键词 thermoelectric material functionally graded property conducting punch conjugate complex root energy flux contact pressure
下载PDF
Electronic structure engineering in organic thermoelectric materials 被引量:2
10
作者 Xiaojuan Dai Qing Meng +3 位作者 Fengjiao Zhang Ye Zou Chong-an Di Daoben Zhu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第11期204-219,I0005,共17页
Electronic structures, which play a key role in determining electrical and optical properties of π-conjugated organic materials, have attracted tremendous interest. Efficient thermoelectric (TE) conversion of organic... Electronic structures, which play a key role in determining electrical and optical properties of π-conjugated organic materials, have attracted tremendous interest. Efficient thermoelectric (TE) conversion of organic materials has rigorous requirements on electronic structures. Recently, the rational design and precise modulation of electronic structures have exhibited great potential in exploring state-of-the-art organic TE materials. This review focuses on the regulation of electronic structures of organic materials toward efficient TE conversion. First, we present the basic knowledge regarding electronic structures and the requirements for efficient TE conversion of organic materials, followed by a brief introduction of commonly used methods for electronic structure characterization. Next, we highlight the key strategies of electronic structure engineering for high-performance organic TE materials. Finally, an overview of the electronic structure engineering of organic TE materials, along with current challenges and future research directions, are provided. 展开更多
关键词 Organic thermoelectric materials Electronic structure Organic semiconductors
下载PDF
Enhanced thermoelectric properties of Co_(1-x-y)Ni_(x+y)Sb_(3-x)Sn_x materials 被引量:1
11
作者 Hong-quan Liu Sheng-nan Zhang +3 位作者 Tie-jun Zhu Xin-bing Zhao Yi-jie Gu Hong-zhi Cui 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第3期240-244,共5页
Co1-x-yNix+ySb3-xSnx polycrystals were fabricated by vacuum melting combined with hot-press sintering. The effect of alloying on the thermoelectric properties of unfilled skutterudite CO1-xNixSb3-xSnx was investigate... Co1-x-yNix+ySb3-xSnx polycrystals were fabricated by vacuum melting combined with hot-press sintering. The effect of alloying on the thermoelectric properties of unfilled skutterudite CO1-xNixSb3-xSnx was investigated. A leap of electrical conductivity from the Co0.93Ni0.07Sb2.93Sn0.07 sample to the Co0.88Ni0.12Sb288Sn0.12 sample occurs during the measurement of electrical conductivity, indicating the adjustment of band structure by proper alloying. The results show that alloying enhances the power factor of the materials. On the basis of alloying, the thermoelectric properties of Coo.88Nio.12Sb2.ssSno.12 are improved by Ni-doping. The thermal conductivities of Ni-doping samples have no reduction, but their power factors have obvious enhancement. The power factor of Co0.81Ni0.09Sb2.88Sn0.12 reaches 3.0 mW-m-1·K-2 by Ni doping. The dimensionless thermoelectric figure of merit reaches 0.55 at 773 K for the unfilled Co0.81Ni0.19 Sb2.88Sn0.12, 展开更多
关键词 thermoelectric material POLYCRYSTALS skuttemdites ALLOYING thermoelectric properties clopping
下载PDF
Thermoelectric properties of porous (Bi_(0.15)Sb_(0.85))_2Te_3 thermoelectric materials 被引量:1
12
作者 Guiying Xu, Tingjie Chen, Jianqiang Liu, and Zhangjian ZhouLaboratory of Special Ceramics and Powder Metallurgy, Materials Science and Engineering School, University of Science and Technology Beijing, Beijing 100083, China 《Journal of University of Science and Technology Beijing》 CSCD 2003年第5期39-43,共5页
In order to obtain thermoelectric materials with high figure of merit, theconcept of Hollow (Vacuum) Quantum Structure or Effect and related thermoelectric materials designwere proposed. To demonstrate the theory, the... In order to obtain thermoelectric materials with high figure of merit, theconcept of Hollow (Vacuum) Quantum Structure or Effect and related thermoelectric materials designwere proposed. To demonstrate the theory, the materials of (Bi_(0.15)Sb_(0.85))_2Te_3 with porousstructure have been fabricated. Their thermoelectric properties and the microstructure wereinvestigated and compared with their density structure. It was found that the porous structure couldimprove their properties greatly. 展开更多
关键词 thermoelectric materials Bi_xSb_(1-x) Bi_2Te_3 hollow quantum effect
下载PDF
An Overview of Advanced Chalcogenide Thermoelectric Materials and Their Applications 被引量:1
13
作者 Fiseha Tesfaye Mykola Moroz 《Journal of Electronic Research and Application》 2018年第2期28-41,共14页
Thermoelectricity is a strong scientific and technological interest due to its wide application ranging from clean energy producing to photon sensing devices.Recent developments in theoretical studies on the thermoele... Thermoelectricity is a strong scientific and technological interest due to its wide application ranging from clean energy producing to photon sensing devices.Recent developments in theoretical studies on the thermoelectric(TE)effects as well as the newly discovered thermoelectric materials provide new opportunities for several applications.Though the scale of production is limited,thermoelectric technology provides an alternative to traditional methods of power generation,heating and cooling systems.TE technologies can be used in power generation,heating and cooling applications.They potentially offer significant energy savings through waste heat recovery and augmented cooling.This article critically discusses the current progress in chalcogenide TE materials and the advantages and limitations associated with the TE technologies.The need for new materials discoveries from the point of view of achieving higher figure-of-merit combined with thermal stabilities in intermediate-and hightemperature Peltier and Seebeck effects applications is also emphasized.Besides,this article aims to evaluate the main features of recently characterized multicomponent chalcogenide ionic compounds with high thermal stabilities as potential TE materials to harvest electric power from high-temperature heat flux via thermoelectricity. 展开更多
关键词 Thermoelectric materials CONDUCTIVITY thermal stability renewable energy
下载PDF
Thermoelectric properties of BiSb_x (x=0.6-0.8) thermoelectric materials fabricated by different processing
14
作者 Guiying Xu, Zhangjian Zhou, Sitong Niu, and Jianqiang LiuLaboratory of Special Ceramics and Powder Metallurgy, University of Science and Technology Beijing, Beijing 100083, China 《Journal of University of Science and Technology Beijing》 CSCD 2003年第2期65-67,共3页
In order to improve the thermoelectric properties, hot-pressing sintering andultra high pressure sintering methods were adopted to fabricate BiSb_x. The phase and crystalstructures were determined by X-ray diffraction... In order to improve the thermoelectric properties, hot-pressing sintering andultra high pressure sintering methods were adopted to fabricate BiSb_x. The phase and crystalstructures were determined by X-ray diffraction analysis (XRD). The thermoelectric properties weremeasured at 303 K along the direction parallel to the pressing direction. The electric conductivityof the samples was measured at 303 K by the four-probe technique. To measure the Seebeckcoefficient, heat was applied to the samples placed between two Cu discs. The thermoelectricelectromotive force (E) was measured upon applying small temperature differences (DELTA T<2 deg C)between the both ends of the samples. The Seebeck coefficient of the samples was determined from thevalue of E/DELTA T. The results indicate that the thermoelectric properties of the samplesfabricated by UHPS (ultra high pressure sintering) method are much higher than that by HPS (hotpressing sintering) method and have the highest values at x=0.7. 展开更多
关键词 thermoelectric property thermoelectric material ultra high pressuresintering BiSb_x
下载PDF
Thermoelectric Properties of N-typer Bi_2Te_3-PbTe Graded Thermoelectric Materials with Different Barriers
15
作者 Guiying Xu, Changchun Ge, Yanping Gao, Weiping Shen Laboratory of Special Ceramics and Powder Metallurgy, University of Science and Technology Beijing. Beijing 100083, China 《Journal of University of Science and Technology Beijing》 CSCD 2001年第4期267-269,共3页
In order to investigate the adaptability of thermoelectric materials system with different barriers to functional graded thermoelectric materials, n-type Bi2Te, and PbTe two segments graded thermoelectric materials (G... In order to investigate the adaptability of thermoelectric materials system with different barriers to functional graded thermoelectric materials, n-type Bi2Te, and PbTe two segments graded thermoelectric materials (GTM) with different barriers were fabricated by conventional hot pressing method. Metals Cu, Al, Fe, Co and Ni were used as barriers between two segments. The effects of different barriers on thermoelectric properties of GTM were investigated. The phase and crystal structures were determined by x-ray diffraction analysis (XRD). The distributions of different compositions were analyzed by electron microprobe analysis (EMA). The thermoelectric properties were measured at 303 K along the direction parallel to the pressing direction. The electric conductivity of samples was measured at 303 K by the four-probe technique. To measure the Seebeck coefficient, heat was applied to the samples, which were placed between two Cu discs. The thermoelectric electromotive force (E) was measured upon applying small temperature differences (DeltaT<275 K) between the both ends of the samples. The Seebeck coefficient of the samples was determined from the E/&UDelta;T. 展开更多
关键词 thermoelectric property Bi2Te3-PbTe graded thermoelectric materials
下载PDF
Thermoelectric properties of p-type Bi-Sb-Te compositionally graded thermoelectric materials with different barriers
16
作者 GuyingXu ChangchunGe 《Journal of University of Science and Technology Beijing》 CSCD 2002年第5期386-388,共3页
In order to find more suitable materials as barriers and to improve the thermoelectric properties, p-type (Bi1-xSbx) 2Te3 (x = 0.85, 0.9) two segments compositionally graded thermoelectric materials (CGTM) with differ... In order to find more suitable materials as barriers and to improve the thermoelectric properties, p-type (Bi1-xSbx) 2Te3 (x = 0.85, 0.9) two segments compositionally graded thermoelectric materials (CGTM) with different barriers were fabricated by conventional hot pressure method. Metals Fe, Co, Cu and Al were used as barriers between two segments. The effects of different barriers on thermoelectric properties of CGTM were investigated. The results show that metal Fe is more stable and suitable as the barrier. 展开更多
关键词 compositionally graded thermoelectric materials BARRIER thermoelectric property
下载PDF
Extremely Anisotropic Thermoelectric Properties of SnSe Under Pressure 被引量:1
17
作者 Wei Cao Ziyu Wang +2 位作者 Ling Miao Jing Shi Rui Xiong 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期58-65,共8页
SnSe has attracted extensive attention due to its ultralow thermal conductivity and excellent thermoelectric properties.In this work,pressure-induced thermoelectric properties of Pnma SnSe are investigated via first-p... SnSe has attracted extensive attention due to its ultralow thermal conductivity and excellent thermoelectric properties.In this work,pressure-induced thermoelectric properties of Pnma SnSe are investigated via first-principles calculations.We uncover distinct energy isosurfaces topology transition of conduction band by applying pressure.The newly created conduction band valley caused by pressure has a distinct anisotropic shape compared to the old one.Inducing pressure can greatly enhance the anisotropy of electronic transport properties of the n-type Pnma SnSe.Furthermore,the lattice thermal conductivity also exhibits anisotropic behavior under pressure due to a special collaged phonon mode.The pressure-induced lattice thermal conductivity along the a-axis shows a slower growth trend than that along the b-axis and c-axis.The optimal ZT value of the n-type Pnma SnSe along the a-axis can reach 1.64 at room temperature.These results would be helpful for designing the Pnma SnSe-based materials for the potential thermoelectric and valleytronic applications. 展开更多
关键词 first-principles calculations PRESSURE SnSe thermoelectric materials
下载PDF
Strategies to advance thermoelectric performance of PbSe and PbS materials 被引量:1
18
作者 Zheng-Hao Hou Xin Qian +2 位作者 Qiu-Juan Cui Shu-Fang Wang Li-Dong Zhao 《Rare Metals》 SCIE EI CAS CSCD 2024年第9期4099-4114,共16页
Thermoelectric materials possess the unique capability to convert thermal energy into electric energy and vice versa,making them promising for waste heat recovery and efficient cooling systems.Currently,extensively in... Thermoelectric materials possess the unique capability to convert thermal energy into electric energy and vice versa,making them promising for waste heat recovery and efficient cooling systems.Currently,extensively investigated thermoelectric materials such as Bi2Te3,PbTe and GeTe exhibit superior thermoelectric properties at room temperature and medium temperature regions.However,the broad application of these thermoelectric materials has been impeded by the high cost and restricted accessibility of Te and Ge in the earth's crust.Over the past few years,researchers have shown increasing interest in PbSe-and PbS-based materials,primarily attributed to their abundant elemental supply and relatively low costs.The assessment of research progress and a comprehensive overview of optimization strategies in time can significantly contribute to further improving the thermoelectric performance.These strategies include optimizing carrier concentration(aliovalent doping,dynamic doping and defect state),enhancing density-of-state effective mass(band convergence,band flattening and energy filtering effect),optimizing carrier mobility(band sharpening and band alignment)and reducing lattice thermal conductivity(all-scale hierarchical defect structures designing).This systematic summary and analysis provide novel insights and perspectives for the development of thermoelectric materials. 展开更多
关键词 PbSe and PbS thermoelectric materials Carrier concentration Density-of-state effective mass Carrier mobility Lattice thermal conductivity
原文传递
Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
19
作者 陆静远 崔春凤 +4 位作者 欧阳滔 李金 何朝宇 唐超 钟建新 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期109-117,共9页
The gamma-graphyne nanoribbons(γ-GYNRs) incorporating diamond-shaped segment(DSSs) with excellent thermoelectric properties are systematically investigated by combining nonequilibrium Green’s functions with adaptive... The gamma-graphyne nanoribbons(γ-GYNRs) incorporating diamond-shaped segment(DSSs) with excellent thermoelectric properties are systematically investigated by combining nonequilibrium Green’s functions with adaptive genetic algorithm. Our calculations show that the adaptive genetic algorithm is efficient and accurate in the process of identifying structures with excellent thermoelectric performance. In multiple rounds, an average of 476 candidates(only 2.88% of all16512 candidate structures) are calculated to obtain the structures with extremely high thermoelectric conversion efficiency.The room temperature thermoelectric figure of merit(ZT) of the optimal γ-GYNR incorporating DSSs is 1.622, which is about 5.4 times higher than that of pristine γ-GYNR(length 23.693 nm and width 2.660 nm). The significant improvement of thermoelectric performance of the optimal γ-GYNR is mainly attributed to the maximum balance of inhibition of thermal conductance(proactive effect) and reduction of thermal power factor(side effect). Moreover, through exploration of the main variables affecting the genetic algorithm, it is revealed that the efficiency of the genetic algorithm can be improved by optimizing the initial population gene pool, selecting a higher individual retention rate and a lower mutation rate. The results presented in this paper validate the effectiveness of genetic algorithm in accelerating the exploration of γ-GYNRs with high thermoelectric conversion efficiency, and could provide a new development solution for carbon-based thermoelectric materials. 展开更多
关键词 adaptive genetic algorithm thermoelectric material diamond-like quantum dots gamma-graphyne nanoribbon
下载PDF
Prediction of lattice thermal conductivity with two-stage interpretable machine learning
20
作者 胡锦龙 左钰婷 +10 位作者 郝昱州 舒国钰 王洋 冯敏轩 李雪洁 王晓莹 孙军 丁向东 高志斌 朱桂妹 李保文 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期11-18,共8页
Thermoelectric and thermal materials are essential in achieving carbon neutrality. However, the high cost of lattice thermal conductivity calculations and the limited applicability of classical physical models have le... Thermoelectric and thermal materials are essential in achieving carbon neutrality. However, the high cost of lattice thermal conductivity calculations and the limited applicability of classical physical models have led to the inefficient development of thermoelectric materials. In this study, we proposed a two-stage machine learning framework with physical interpretability incorporating domain knowledge to calculate high/low thermal conductivity rapidly. Specifically, crystal graph convolutional neural network(CGCNN) is constructed to predict the fundamental physical parameters related to lattice thermal conductivity. Based on the above physical parameters, an interpretable machine learning model–sure independence screening and sparsifying operator(SISSO), is trained to predict the lattice thermal conductivity. We have predicted the lattice thermal conductivity of all available materials in the open quantum materials database(OQMD)(https://www.oqmd.org/). The proposed approach guides the next step of searching for materials with ultra-high or ultralow lattice thermal conductivity and promotes the development of new thermal insulation materials and thermoelectric materials. 展开更多
关键词 low lattice thermal conductivity interpretable machine learning thermoelectric materials physical domain knowledge
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部