The starting characteristics of thermodynamic undersea vehicle systems are determined by the geometry, size and combustion area of solid propellants, which directly effect liquid propellant pipeline design. It is nece...The starting characteristics of thermodynamic undersea vehicle systems are determined by the geometry, size and combustion area of solid propellants, which directly effect liquid propellant pipeline design. It is necessary to establish accurate burning models for solid propellants. Based on combustion models using powder rings and two different solid ignition grains, namely star-shaped ignition grains and stuffed ignition grains, a mathematic model of the ignition process of the propulsion system was built. With the help of Matlab, a series of calculations were made to determine the effects of different grains on ignition characteristics. The results show that stuffed ignition grain is best suited to be the ignition grain of a thermodynamic undersea vehicle system.展开更多
Aimed at the high temperature of tank's exhaust, the principle of applying thermoelectric generation technology to tank thermal restraint was analyzed. Its application experiments were conducted to test the exhaus...Aimed at the high temperature of tank's exhaust, the principle of applying thermoelectric generation technology to tank thermal restraint was analyzed. Its application experiments were conducted to test the exhaust temperature under different rotating speeds, The experiment results show that the thermoelectric generator can output sufficient electric energy to drive fans; the external surface temperature of radiator is reduced by over 65.0% compared with exhaust surface due to the combination effect of thermoelectric conversion, fan cooling and heat radiation; the exhaust surface temperature rise caused by increase of the engine's rotating speed results in the increases of the temperature difference of the thermoelectric generator's cold and hot sides, the fan's driving voltage and heat convection, thus, the effect of fan's cooling is more obvious than that of the temperature rise caused by exhaust.展开更多
文摘The starting characteristics of thermodynamic undersea vehicle systems are determined by the geometry, size and combustion area of solid propellants, which directly effect liquid propellant pipeline design. It is necessary to establish accurate burning models for solid propellants. Based on combustion models using powder rings and two different solid ignition grains, namely star-shaped ignition grains and stuffed ignition grains, a mathematic model of the ignition process of the propulsion system was built. With the help of Matlab, a series of calculations were made to determine the effects of different grains on ignition characteristics. The results show that stuffed ignition grain is best suited to be the ignition grain of a thermodynamic undersea vehicle system.
文摘Aimed at the high temperature of tank's exhaust, the principle of applying thermoelectric generation technology to tank thermal restraint was analyzed. Its application experiments were conducted to test the exhaust temperature under different rotating speeds, The experiment results show that the thermoelectric generator can output sufficient electric energy to drive fans; the external surface temperature of radiator is reduced by over 65.0% compared with exhaust surface due to the combination effect of thermoelectric conversion, fan cooling and heat radiation; the exhaust surface temperature rise caused by increase of the engine's rotating speed results in the increases of the temperature difference of the thermoelectric generator's cold and hot sides, the fan's driving voltage and heat convection, thus, the effect of fan's cooling is more obvious than that of the temperature rise caused by exhaust.