Gas metal arc welding experiments were conducted on two types of steels with 0.41% carbon equivalent(Ceq) and 0.31% Cequsing WER70T wire and 20% CO_(2)and 80% Ar as shielding gas.The two types of steels show satisfact...Gas metal arc welding experiments were conducted on two types of steels with 0.41% carbon equivalent(Ceq) and 0.31% Cequsing WER70T wire and 20% CO_(2)and 80% Ar as shielding gas.The two types of steels show satisfactory weldability.The transition temperatures of 50% upper shelf energy(Tk0.5) for Charpy-V impact test of both the welded joints are below-40 ℃.However, the toughness of the fusion line zone and heat-affected zone(HAZ) of the two steel joints exhibits differences, with the toughness of 0.41% Ceqsteel being better than that of 0.31% Ceqsteel.The Tk0.5of the fusion line zone and the HAZ of 0.41% Ceqsteel is below-60℃,whereas that of 0.31% Ceqsteel is above-40℃.The welded joint of 0.41% Ceqsteel has low hardness fluctuation, while that of 0.31% Ceqsteel exhibits a narrow, softened zone, which has no obvious influence on the tested tensile strength.The coarse grain heat-affected zone(CGHAZ)microstructure of 0.41% Ceqsteel is bainite, while that of 0.31% Ceqsteel is bainite with ferrite and minor pearlite.展开更多
The effect of relaxation after finished rolling on structures and properties of four microalloyed steel with different content of Nb and Ti was investigated. By alloy designing and control rolling + relaxation-precipi...The effect of relaxation after finished rolling on structures and properties of four microalloyed steel with different content of Nb and Ti was investigated. By alloy designing and control rolling + relaxation-precipitation-control phase trail storm ati on (RPC) process, a new 800 MPa grade HSLA plate steel could be obtained, the microstructure is composite ultra-fine lath bainite/martensite. The tempering process and mechanical properties of this kind of HSLA steel were investigated. The yield strength can achieve 800 MPa, and the ductility and impact toughness is satisfied.展开更多
针对海工平台中热机械控制工艺(Thermo Mechanical Control Process,TMCP)板材钢熔透焊焊接接头超声波检测实际中的应用方法做出讲解,通过现场直接对比法执行TMCP材料的相关超声波检验来代替传统检测方法,其检测方法的使用使缺陷位置的...针对海工平台中热机械控制工艺(Thermo Mechanical Control Process,TMCP)板材钢熔透焊焊接接头超声波检测实际中的应用方法做出讲解,通过现场直接对比法执行TMCP材料的相关超声波检验来代替传统检测方法,其检测方法的使用使缺陷位置的判定更准确,同时节约成本、提高效率,值得推广。展开更多
Demand of improving the mechanical properties and productivity of automotive components while minimizing environmental impact makes the development of special steel combined with advance heat treatment and surface mod...Demand of improving the mechanical properties and productivity of automotive components while minimizing environmental impact makes the development of special steel combined with advance heat treatment and surface modification technologies become an important research area. Recently,to reduce CO_2 emissions by saving the manufacturing time,the following new special steel and advance heat treatment methods were developed: (1 ) An anti-coarsening extra-fine case hardening steel for automobile gear was developed,whose carburizing temperature can be improved for conventional 930 - 950℃to 1 050℃without coarsening,and the carburizing time can be reduced by maximum 75%. (2) Various microalloyed steels for fracture splitting connecting rod were developed.By using the above-mentioned steel combined with Thermo Mechanical Control Process(TMCP) method,the manufacturing time can be reduced by 30%-40%. (3) Vacuum carburizing and mild carburizing combined with induction quenching are being developed to replace the traditional gas carburizing,and the CO_2 emissions can be reduced by 20%-40%. (4) Intensive quenching is another new quenching technology which can be defined as cooling usually with pure water quenchant or low concentration water/salt solutions at a rate several times higher than the rate of ' normal' or conventional quenching,and the conventional effective case hardening depth can be reduce greatly and carburizing time can reduced. In addition,the high pressure gas quenching for reducing the quenching distortion and dual shot-peening for improving fatigue strength of gear will also be discussed. In a word,the present paper will focus on how to use the interaction among the development of special steel, advance heat treatment and surface modification to improve the strength of automotive components while reducing the manufacturing cost and impact to environment.展开更多
Thermomechanical controlled processing (TMCP) of low carbon cold heading steel in different austenite conditions were conducted by a laboratory hot rolling mill. Effect of various processing parameters on the mechan...Thermomechanical controlled processing (TMCP) of low carbon cold heading steel in different austenite conditions were conducted by a laboratory hot rolling mill. Effect of various processing parameters on the mechanical properties of the steel was investigated. The results showed that the mechanical properties of the low carbon cold heading steel could be significantly improved by TMCP without heat treatment. The improvement of mechanical properties can be attributed mainly to the ferrite grain refinement due to low temperature rolling. In the experiments the better ultimate tensile strength and ductility are obtained by lowering finishing cooling temperature within the temperature range from 650 ℃ to 550 ℃ since the interlamellar space in pearlite colonies become smaller. Good mechanical properties can be obtained in a proper austenite condition and thermomechanical processing parameter. The ferrite morphology has a more pronounced effect on the mechanical behavior than refinement of the microstructure. It is possible to realize the replacement of medium-carbon by low-carbon for 490 MPa grade cold heading steel with TMCP.展开更多
Low carbon steels microalloyed with small amount of carbide and/or nitride forming elements such as Nb,Ti and V with Thermomechanical controlled processing (TMCP) can give fine grained ferrite structure with high stre...Low carbon steels microalloyed with small amount of carbide and/or nitride forming elements such as Nb,Ti and V with Thermomechanical controlled processing (TMCP) can give fine grained ferrite structure with high strength and superior toughness.The present study was aimed at identifying rolling parameters as well as microstructural characterization for accomplishing high yield strength and high charpy impact property at-60℃ by controlling hot rolling parameters and microstructure Grain size distribution was also monitored and related to mechanical properties of steel.展开更多
文摘Gas metal arc welding experiments were conducted on two types of steels with 0.41% carbon equivalent(Ceq) and 0.31% Cequsing WER70T wire and 20% CO_(2)and 80% Ar as shielding gas.The two types of steels show satisfactory weldability.The transition temperatures of 50% upper shelf energy(Tk0.5) for Charpy-V impact test of both the welded joints are below-40 ℃.However, the toughness of the fusion line zone and heat-affected zone(HAZ) of the two steel joints exhibits differences, with the toughness of 0.41% Ceqsteel being better than that of 0.31% Ceqsteel.The Tk0.5of the fusion line zone and the HAZ of 0.41% Ceqsteel is below-60℃,whereas that of 0.31% Ceqsteel is above-40℃.The welded joint of 0.41% Ceqsteel has low hardness fluctuation, while that of 0.31% Ceqsteel exhibits a narrow, softened zone, which has no obvious influence on the tested tensile strength.The coarse grain heat-affected zone(CGHAZ)microstructure of 0.41% Ceqsteel is bainite, while that of 0.31% Ceqsteel is bainite with ferrite and minor pearlite.
文摘The effect of relaxation after finished rolling on structures and properties of four microalloyed steel with different content of Nb and Ti was investigated. By alloy designing and control rolling + relaxation-precipitation-control phase trail storm ati on (RPC) process, a new 800 MPa grade HSLA plate steel could be obtained, the microstructure is composite ultra-fine lath bainite/martensite. The tempering process and mechanical properties of this kind of HSLA steel were investigated. The yield strength can achieve 800 MPa, and the ductility and impact toughness is satisfied.
文摘针对海工平台中热机械控制工艺(Thermo Mechanical Control Process,TMCP)板材钢熔透焊焊接接头超声波检测实际中的应用方法做出讲解,通过现场直接对比法执行TMCP材料的相关超声波检验来代替传统检测方法,其检测方法的使用使缺陷位置的判定更准确,同时节约成本、提高效率,值得推广。
文摘Demand of improving the mechanical properties and productivity of automotive components while minimizing environmental impact makes the development of special steel combined with advance heat treatment and surface modification technologies become an important research area. Recently,to reduce CO_2 emissions by saving the manufacturing time,the following new special steel and advance heat treatment methods were developed: (1 ) An anti-coarsening extra-fine case hardening steel for automobile gear was developed,whose carburizing temperature can be improved for conventional 930 - 950℃to 1 050℃without coarsening,and the carburizing time can be reduced by maximum 75%. (2) Various microalloyed steels for fracture splitting connecting rod were developed.By using the above-mentioned steel combined with Thermo Mechanical Control Process(TMCP) method,the manufacturing time can be reduced by 30%-40%. (3) Vacuum carburizing and mild carburizing combined with induction quenching are being developed to replace the traditional gas carburizing,and the CO_2 emissions can be reduced by 20%-40%. (4) Intensive quenching is another new quenching technology which can be defined as cooling usually with pure water quenchant or low concentration water/salt solutions at a rate several times higher than the rate of ' normal' or conventional quenching,and the conventional effective case hardening depth can be reduce greatly and carburizing time can reduced. In addition,the high pressure gas quenching for reducing the quenching distortion and dual shot-peening for improving fatigue strength of gear will also be discussed. In a word,the present paper will focus on how to use the interaction among the development of special steel, advance heat treatment and surface modification to improve the strength of automotive components while reducing the manufacturing cost and impact to environment.
基金Sponsored by National Natural Science Foundation of China (50334010)Shenyang City Application Basic Research Project (1071198-1-00)
文摘Thermomechanical controlled processing (TMCP) of low carbon cold heading steel in different austenite conditions were conducted by a laboratory hot rolling mill. Effect of various processing parameters on the mechanical properties of the steel was investigated. The results showed that the mechanical properties of the low carbon cold heading steel could be significantly improved by TMCP without heat treatment. The improvement of mechanical properties can be attributed mainly to the ferrite grain refinement due to low temperature rolling. In the experiments the better ultimate tensile strength and ductility are obtained by lowering finishing cooling temperature within the temperature range from 650 ℃ to 550 ℃ since the interlamellar space in pearlite colonies become smaller. Good mechanical properties can be obtained in a proper austenite condition and thermomechanical processing parameter. The ferrite morphology has a more pronounced effect on the mechanical behavior than refinement of the microstructure. It is possible to realize the replacement of medium-carbon by low-carbon for 490 MPa grade cold heading steel with TMCP.
文摘Low carbon steels microalloyed with small amount of carbide and/or nitride forming elements such as Nb,Ti and V with Thermomechanical controlled processing (TMCP) can give fine grained ferrite structure with high strength and superior toughness.The present study was aimed at identifying rolling parameters as well as microstructural characterization for accomplishing high yield strength and high charpy impact property at-60℃ by controlling hot rolling parameters and microstructure Grain size distribution was also monitored and related to mechanical properties of steel.