X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses were carried out to investigate the surface species and interfacial reactions during bioleaching of chalcopyrite by different strains of ...X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses were carried out to investigate the surface species and interfacial reactions during bioleaching of chalcopyrite by different strains of moderately thermophilic bacteria (45 °C). Results show that monosulfide (CuS), disulfide (S22?), polysulfide (Sn2?), elemental sulfur (S0) and sulfate (SO42?) are the main intermediate species on the surface of chalcopyrite during bioleaching byA. caldus,S. thermosulfidooxidans andL. ferriphilum. The low kinetics of dissolution of chalcopyrite inA. caldus can be mainly attributed to the incomplete dissolution of chalcopyrite and the passivation layer of polysulfide. Polysulfide and jarosite should be mainly responsible for the passivation of chalcopyrite in bioleaching byL. ferriphilumorS. thermosulfidooxidans. However, elemental sulfur should not be the main composition of passivation layer of chalcopyrite during bioleaching.展开更多
The effects of moderately thermophilic bacteria on the extraction of metals from zinc smelting slag and electrochemical characteristics of zinc smelting slag carbon paste electrode in bioleaching process were studied....The effects of moderately thermophilic bacteria on the extraction of metals from zinc smelting slag and electrochemical characteristics of zinc smelting slag carbon paste electrode in bioleaching process were studied. The results show that the extraction rates of Fe, Cu and Zn from the slag reach 86.7%, 90.3% and 66.7% after adsorbed bacteria sterilize, while those with adsorbed bacteria are 91.9%, 96.0% and 84.5% in conditions of pulp density 2%, pH 1.0, temperature 65 °C and stirring rate 120 r/min, respectively. Some stretching peaks of functional groups from bacterial secretes on the bioleached residue surface, such as 1007 cm-1 and 1193 cm-1, turn up through FI-IR analysis and indirectly reveal the presence of the adsorbed bacteria on the slag particles surface. Besides, the corrosion of zinc smelting slag is enhanced by bacteria according to the characteristics of cyclic voltametry and Tafel curves in bioleaching system.展开更多
Bioleaching experiments combined with X-ray photoelectron spectroscopy(XPS),X-ray diffraction(XRD)and scanning electron microscopy(SEM)were conducted to investigate three kinds of bornites from different regions leach...Bioleaching experiments combined with X-ray photoelectron spectroscopy(XPS),X-ray diffraction(XRD)and scanning electron microscopy(SEM)were conducted to investigate three kinds of bornites from different regions leached by moderately thermophilic mixed bacteria of Leptospirillum ferriphilum YSK,Acidithiobacillus caldus D1 and Sulfobacillus thermosulfidooxidans ST.The results of bioleaching experiments showed that the leaching efficiency and the redox potential were significantly increased.The copper extraction efficiencies of three kinds of bornite maintained rapid growth until around the 12th day and no longer increased after the 18th,reaching 83.7%,96.5%and 86.6%,respectively.The XRD results of the leaching residue indicated that three kinds of bornites all produced jarosite in the late stage of leaching,and the leaching residues from of Daye Museum and Yunnan Geological Museum contained a mass of elemental sulfur.XPS analysis and scanning electron microscopy experiments showed that the surface of mineral particles was jarosite and the copper in the leaching residue was almost dissolved.展开更多
Ethylthionocarbamates (ETC), which is the most widely used as collectors in the flotation of sulfide, is known to cause serious pollution to soil and groundwater. The potential biodegradation of ETC was evaluated b...Ethylthionocarbamates (ETC), which is the most widely used as collectors in the flotation of sulfide, is known to cause serious pollution to soil and groundwater. The potential biodegradation of ETC was evaluated by applying a mixed culture of iron-reducing bacteria (IRB) enriched from tailings dam sediments. The results showed that ETC can be degraded by IRB coupled to Fe(III) reduction, both of which can be increased in the presence of anthraquinone-2,6-disulfonate (AQDS). Moreover, Fe(III)-EDTA was found to be a more favorable terminal electron acceptor compared to α-Fe2O3, e.g., within 30 d, 72% of ETC was degraded when α-Fe2O3+AQDS was applied, while it is 82.67% when Fe(III)-EDTA+AQDS is added. The dynamic models indicated that the kETC degradation was decreased in the order of Fe(III)-EDTA+AQDS〉α-Fe2O3+AQDS〉Fe(III)-EDTA〉α-Fe2O3, with the corresponding maximum biodegradation rates being 2.6, 2.45, 2.4 and 2.0 mg/(L·d), respectively, and positive parallel correlations could be observed between kFe(III) and kETC. These findings demonstrate that IRB has a good application prospect in flotation wastewater.展开更多
In this study, a thermophilic oil-degrading bacterial consortium KO8-2 growing within the temperature range of 45--65℃ (with 55℃ being the optimum temperature) was isolated from oil-contaminated soil of Karamay in...In this study, a thermophilic oil-degrading bacterial consortium KO8-2 growing within the temperature range of 45--65℃ (with 55℃ being the optimum temperature) was isolated from oil-contaminated soil of Karamay in Xinjiang, China. Denaturing gradient gel electrophoresis (DGGE) showed that there were nine strains included in KO8-2, which originated from the genera of Bacillus, Geobacillus and Clostridium. They all belonged to thermophilic bacteria, and had been previously proved as degraders of at least one petroleum fraction. The crude oil degraded by KO8-2 was analyzed by infrared spectrophotometry, hydrocarbon group type analysis and gas chromatography. The results indicated that the bacterial consortium KO8-2 was able to utilize 64.33% of saturates, 27.06% of aromatics, 13.24% of resins and the oil removal efficiency reached up to 58.73% at 55 ~C when the oil concentration was 10 g/L. Detailed analysis showed that KO8-2 was able to utilize the hydrocarbon components before C19, and the n-alkanes ranging from C20--C33 were signifi- cantly degraded. The ratios of nC17/Pr and nC18/Ph were 3.12 and 3.87, respectively, before degradation, whereas after degradation the ratios reduced to 0.21 and 0.38, respectively. Compared with the control sample, the oil removal efficiency in KO8-2 composting reactor reached 50.12% after a degradation duration of 60 days.展开更多
Iron toxicity is one of the main edaphic constraints that hamper rice production in West African savanna and forest lowlands. Although chemical reduction processes of various types of pedogenic iron oxides could not b...Iron toxicity is one of the main edaphic constraints that hamper rice production in West African savanna and forest lowlands. Although chemical reduction processes of various types of pedogenic iron oxides could not be underestimated, the bulk of these processes can be ascribed to the specific activity of Iron-Reducing Bacteria (IRB). The reducing conditions of waterlogged lowland soils boost iron toxicity through the reduction of almost all iron into ferrous form (Fe2+), which can cause disorder in rice plant and crop yield losses. Aiming to contribute at the improvement of rice yield in Africa, an experiment was developed to evaluate the impact of subsurface drainage on IRB dynamics and activity during rice cultivation. Twelve concrete microplots with a clay-loam soil and a rice variety susceptible to iron toxicity (FKR 19) were used for the experiment. Soil in microplots was drained for 7 days (P1), 14 days (P2), and 21 days (P3), respectively. Control (T) microplots without drainage were prepared similarly. The evolution of IRB populations and the content of ferrous iron in the paddy soil and in soil near rice root were monitored throughout the cultural cycle using MPN and colorimetric methods, respectively. Data obtained were analyzed in relation to drainage frequency, rice growth stage, and rice yield using the Student t test and XLSTAT 7.5.2 statistical software. From the results obtained, the subsurface drainage reduced significantly IRB populations (p = 0.024). However, the drainage did not affect significantly ferrous iron concentration in the soil near rice roots (p = 0.708). The concentration of ferrous iron (p < 0.0001) in soil near rice roots and the number of IRB (p < 0.0001) were significantly higher during the rice tillering and maturity stages. Although no significant difference was observed for rice yield among treatments (p = 0.209), the P2 subsurface drainage showed the highest yield and the lowest concentration of ferrous iron in soil near rice roots.展开更多
Recent studies have suggested that there may be a link between the use of in-feed antibiotics and the prevalence of antibiotic-resistant bacteria in human infections. It is believed that anaerobic digestion is a poten...Recent studies have suggested that there may be a link between the use of in-feed antibiotics and the prevalence of antibiotic-resistant bacteria in human infections. It is believed that anaerobic digestion is a potent method to reduce the antibiotic resistant bacteria present in waste from concentrated animal feeding operations. Cefazolin is a β-1actam antibiotic that is frequently used to treat the cows with mastitis in the Obihiro University herd. Disposal of untreated milk containing cefazolin residues promotes the occurrence of cefazolin resistant bacteria in the vicinity of farm, thus the objective of this study was to investigate the survival of antibiotic resistant bacteria in co-digestion of dairy manure and waste milk obtained from cows treated for mastitis with cefazolin under thermophilic conditions (55 ~C). Cow manure, digested slurry and waste milk (cefazolin residue concentration 2.17 mg/L) were used as the materials in order to have three digester contents; 100% slurry, 50% slurry + 50% manure and 50% slurry + 45% manure + 5% waste milk. The experiment was carried out using batch digesters (1 L) with active volume of 800 mL at 55 ℃ for 20 days to determine the survival of cefazolin resistant bacteria and to observe the digester performance by determining the bio gas and methane yield using gas chromatpgrapby. Dilution plate method was used to determine the population densities of total and cefazolin resistant bacteria at 0, 10th and 20th day of digestion. Total and cefazolin resistant bacterial counts were reduced with time by several orders until 10th day of digestion and those were almost similar at day 20th. Highest daily biogas and methane yield were observed in the digester contained slurry, manure and waste milk during early digestion period (until 5th day). The results suggest that thermophilic co-digestion of dairy manure and waste milk would be a suitable technology for reducing antibiotic (cefazolin) resistant bacteria while obtaining better digester performance.展开更多
Iron toxicity is a major stress to rice caused by a high concentration of reduced iron, in the soil in many lowlands worldwide. To reduce iron toxicity in the West African lowlands, an investigation was performed at t...Iron toxicity is a major stress to rice caused by a high concentration of reduced iron, in the soil in many lowlands worldwide. To reduce iron toxicity in the West African lowlands, an investigation was performed at the site of the University of Ouagadougou, in pots containing an iron toxic soil from the Kou Valley (West of Burkina Faso). The experiment objective was to study the effect of mineral fertilizer on Iron Reducing Bacteria (IRB) dynamics and activity during rice cultivation, iron accumulation in rice plant and rice biomass yield under iron toxicity conditions. BOUAKE-189 and ROK-5 rice varieties, sensitive and tolerant to iron toxicity, respectively, were used for the experiment. The pots were amended with chemical fertilizers (NPK + Urea and NPK + Urea + Ca + Mg + Zn complex). Control pots without fertilization were prepared similarly. The kinetics of IRB and ferrous iron content in soil near rice roots were monitored throughout the cultural cycle using MPN and colorimetric methods, respectively. The total iron content was evaluated in rice plant using spectrometric method. Data obtained were analyzed in relation to fertilization mode, rice growth stage and rice yield using the student’s t-test and XLSTAT 2014 statistical software. The experiment revealed that NPK + Urea and NPK + Urea + Ca + Mg + Zn fertilization, decreased significantly (p < 0.0001) the number of IRB in the soil for BOUAKE-189 rice varieties. In most pots, highest IRB densities and ferrous iron content in soil were recorded from rice tillering and flowering to maturity stages, indicating that rice plants promoted microbial processes and iron reduction in soil. From the study, the NPK + Urea amendment decreased significantly ferrous iron content (p < 0.0001) in soil near BOUAKE-189 and ROK-5 rice varieties roots relatively to control pots. However, NPK + Urea + Ca + Zn + Mg amendment increased significantly ferrous iron content (p < 0.0001) in the soil near roots, Fe accumulation in plant biomass and rice yield for the two rice varieties.展开更多
The study on arsenopyrite and realgar of bacterial oxidation shows that the chemical behaviors of different arsenic-bearing sulphides oxidated by thermophilic bacteria are quite distinct. Arsenopyrite is active and qu...The study on arsenopyrite and realgar of bacterial oxidation shows that the chemical behaviors of different arsenic-bearing sulphides oxidated by thermophilic bacteria are quite distinct. Arsenopyrite is active and quickly eroded in bacteria-bearing solution. With a high leaching rate over 95%, the arsenopyrite phase cannot be detected by X-ray diffraction(XRD). Arsenopyrite is highly toxic to bacteria that at the initial stage of bio-oxidation, bacterial growth is inhibited and the number of bacterium cell drops from 2.26 × 108/mL to the lowest 2.01 × 105/mL. At the later stages of bio-oxidation, bacteria grow fast and reach 2.23 × 108/mL. Comparably, realgar is inertial and resistive to bacterial corrosion and oxidation. Arsenic in realgar crystal is hard to be leached and the residue is still realgar phase, as indicated by XRD. The cell number of bacteria varies a little, decreasing from 2.26 × 108/mL to 2.01 × 107/mL, during the bacterial oxidation. The results show that the crystal structure and arsenic valency of arsenic-bearing sulphides play a vital role during the leaching process of bacterial oxidation.展开更多
A refractory gold concentrate with 19% arsenic was treated by a mixed moderately thermophiles in an airlift bioreactor through an adaptation protocol. The moderately thermophiles could respond well to 20%(w/v) pulp de...A refractory gold concentrate with 19% arsenic was treated by a mixed moderately thermophiles in an airlift bioreactor through an adaptation protocol. The moderately thermophiles could respond well to 20%(w/v) pulp density with less than 10% loss of productivity, and resist arsenic up to 15 g/L. There were a lot of jarosite, arsenolite and sulfur, but not scorodite and ferric arsenate in the bioleached residue. Jarosite passivation and lower sulfur-oxidizing activity of the cells due to the toxicity of the high concentrations of soluble arsenic and iron ions at low p H value should mainly response for the incomplete extraction at high pulp density. The initial bacterial community did not change in nature except for new found P aeruginosa ANSC, but sulfur-oxidizing microorganisms have been dominant microorganisms after a long time of adaptation. Pseudomonas aeruginosa originating from the gold concentrate should be closely relative to the metabolism of the organic matters contained in the refractory gold concentrate.展开更多
Cellulose is the main structural component of lignocellulosic wastes that can be converted to sugars and biofuels by cellulase.Due to wide applications of this enzyme in various industries around the world,cellulase i...Cellulose is the main structural component of lignocellulosic wastes that can be converted to sugars and biofuels by cellulase.Due to wide applications of this enzyme in various industries around the world,cellulase is considered as the third industrial enzyme.The ability of thermophilic bacteria in the production of heat-stable cellulases has made them valuable tools in biotechnology.The aim of this study was isolation and molecular identification of cellulolytic thermophile bacteria from Dig Rostam hot spring and investigating their cellulase activity.Samples were taken from water and sediments of this hot spring,and cellulolytic bacteria were enriched in media containing cellulose as the only carbon source.The bacteria were incubated at 60℃,and single colonies were then isolated on solid media.Congo red assay was used as a quick test for the qualitative screening of cellulase activity.According to these qualitative results,four colonies named CDB1,CDB2,CDB3,and CDB4 were isolated,and their growth curve and some other characteristics were determined by biochemical assays.Moreover,endoglucanase,exoglucanase,and FPase activities of the isolates were investigated quantitatively.Results indicated that CDB1 exhibited the highest endoglucanase(0.096 U/mL)and exoglucanase(0.156 U/mL)activities among other isolates.16S rDNA partial sequencing indicated that CDB1 had 99%similarity to the genus Anoxybacillus,and the other isolates showed the highest similarity to the genus Geobacillus.The cellulase gene of CDB1 isolate with the highest cellulase activity was also cloned,and its sequence is reported for the first time.Further studies on this thermophilic enzyme might be useful for industrial applications.展开更多
基金Projects(51374248,51320105006)supported by the National Natural Science Foundation of ChinaProject(NCET-13-0595)supported by the Program for New Century Excellent Talents in University,ChinaProject(2014T70692)supported by China Postdoctoral Science Foundation
文摘X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses were carried out to investigate the surface species and interfacial reactions during bioleaching of chalcopyrite by different strains of moderately thermophilic bacteria (45 °C). Results show that monosulfide (CuS), disulfide (S22?), polysulfide (Sn2?), elemental sulfur (S0) and sulfate (SO42?) are the main intermediate species on the surface of chalcopyrite during bioleaching byA. caldus,S. thermosulfidooxidans andL. ferriphilum. The low kinetics of dissolution of chalcopyrite inA. caldus can be mainly attributed to the incomplete dissolution of chalcopyrite and the passivation layer of polysulfide. Polysulfide and jarosite should be mainly responsible for the passivation of chalcopyrite in bioleaching byL. ferriphilumorS. thermosulfidooxidans. However, elemental sulfur should not be the main composition of passivation layer of chalcopyrite during bioleaching.
基金Project (41271330) supported by the National Natural Science Foundation of China
文摘The effects of moderately thermophilic bacteria on the extraction of metals from zinc smelting slag and electrochemical characteristics of zinc smelting slag carbon paste electrode in bioleaching process were studied. The results show that the extraction rates of Fe, Cu and Zn from the slag reach 86.7%, 90.3% and 66.7% after adsorbed bacteria sterilize, while those with adsorbed bacteria are 91.9%, 96.0% and 84.5% in conditions of pulp density 2%, pH 1.0, temperature 65 °C and stirring rate 120 r/min, respectively. Some stretching peaks of functional groups from bacterial secretes on the bioleached residue surface, such as 1007 cm-1 and 1193 cm-1, turn up through FI-IR analysis and indirectly reveal the presence of the adsorbed bacteria on the slag particles surface. Besides, the corrosion of zinc smelting slag is enhanced by bacteria according to the characteristics of cyclic voltametry and Tafel curves in bioleaching system.
基金Project(51974363)supported by the National Natural Science Foundation of China。
文摘Bioleaching experiments combined with X-ray photoelectron spectroscopy(XPS),X-ray diffraction(XRD)and scanning electron microscopy(SEM)were conducted to investigate three kinds of bornites from different regions leached by moderately thermophilic mixed bacteria of Leptospirillum ferriphilum YSK,Acidithiobacillus caldus D1 and Sulfobacillus thermosulfidooxidans ST.The results of bioleaching experiments showed that the leaching efficiency and the redox potential were significantly increased.The copper extraction efficiencies of three kinds of bornite maintained rapid growth until around the 12th day and no longer increased after the 18th,reaching 83.7%,96.5%and 86.6%,respectively.The XRD results of the leaching residue indicated that three kinds of bornites all produced jarosite in the late stage of leaching,and the leaching residues from of Daye Museum and Yunnan Geological Museum contained a mass of elemental sulfur.XPS analysis and scanning electron microscopy experiments showed that the surface of mineral particles was jarosite and the copper in the leaching residue was almost dissolved.
基金Project(51708561)supported by the National Natural Science Foundation of ChinaProjects(CZP17097,CZW15037)supported by the Fundamental Research Funds for the Central Universities,China
文摘Ethylthionocarbamates (ETC), which is the most widely used as collectors in the flotation of sulfide, is known to cause serious pollution to soil and groundwater. The potential biodegradation of ETC was evaluated by applying a mixed culture of iron-reducing bacteria (IRB) enriched from tailings dam sediments. The results showed that ETC can be degraded by IRB coupled to Fe(III) reduction, both of which can be increased in the presence of anthraquinone-2,6-disulfonate (AQDS). Moreover, Fe(III)-EDTA was found to be a more favorable terminal electron acceptor compared to α-Fe2O3, e.g., within 30 d, 72% of ETC was degraded when α-Fe2O3+AQDS was applied, while it is 82.67% when Fe(III)-EDTA+AQDS is added. The dynamic models indicated that the kETC degradation was decreased in the order of Fe(III)-EDTA+AQDS〉α-Fe2O3+AQDS〉Fe(III)-EDTA〉α-Fe2O3, with the corresponding maximum biodegradation rates being 2.6, 2.45, 2.4 and 2.0 mg/(L·d), respectively, and positive parallel correlations could be observed between kFe(III) and kETC. These findings demonstrate that IRB has a good application prospect in flotation wastewater.
基金the support provided by the Research&Technology Development Project of China National Petroleum Corporation(No.2008D-4704-2)
文摘In this study, a thermophilic oil-degrading bacterial consortium KO8-2 growing within the temperature range of 45--65℃ (with 55℃ being the optimum temperature) was isolated from oil-contaminated soil of Karamay in Xinjiang, China. Denaturing gradient gel electrophoresis (DGGE) showed that there were nine strains included in KO8-2, which originated from the genera of Bacillus, Geobacillus and Clostridium. They all belonged to thermophilic bacteria, and had been previously proved as degraders of at least one petroleum fraction. The crude oil degraded by KO8-2 was analyzed by infrared spectrophotometry, hydrocarbon group type analysis and gas chromatography. The results indicated that the bacterial consortium KO8-2 was able to utilize 64.33% of saturates, 27.06% of aromatics, 13.24% of resins and the oil removal efficiency reached up to 58.73% at 55 ~C when the oil concentration was 10 g/L. Detailed analysis showed that KO8-2 was able to utilize the hydrocarbon components before C19, and the n-alkanes ranging from C20--C33 were signifi- cantly degraded. The ratios of nC17/Pr and nC18/Ph were 3.12 and 3.87, respectively, before degradation, whereas after degradation the ratios reduced to 0.21 and 0.38, respectively. Compared with the control sample, the oil removal efficiency in KO8-2 composting reactor reached 50.12% after a degradation duration of 60 days.
文摘Iron toxicity is one of the main edaphic constraints that hamper rice production in West African savanna and forest lowlands. Although chemical reduction processes of various types of pedogenic iron oxides could not be underestimated, the bulk of these processes can be ascribed to the specific activity of Iron-Reducing Bacteria (IRB). The reducing conditions of waterlogged lowland soils boost iron toxicity through the reduction of almost all iron into ferrous form (Fe2+), which can cause disorder in rice plant and crop yield losses. Aiming to contribute at the improvement of rice yield in Africa, an experiment was developed to evaluate the impact of subsurface drainage on IRB dynamics and activity during rice cultivation. Twelve concrete microplots with a clay-loam soil and a rice variety susceptible to iron toxicity (FKR 19) were used for the experiment. Soil in microplots was drained for 7 days (P1), 14 days (P2), and 21 days (P3), respectively. Control (T) microplots without drainage were prepared similarly. The evolution of IRB populations and the content of ferrous iron in the paddy soil and in soil near rice root were monitored throughout the cultural cycle using MPN and colorimetric methods, respectively. Data obtained were analyzed in relation to drainage frequency, rice growth stage, and rice yield using the Student t test and XLSTAT 7.5.2 statistical software. From the results obtained, the subsurface drainage reduced significantly IRB populations (p = 0.024). However, the drainage did not affect significantly ferrous iron concentration in the soil near rice roots (p = 0.708). The concentration of ferrous iron (p < 0.0001) in soil near rice roots and the number of IRB (p < 0.0001) were significantly higher during the rice tillering and maturity stages. Although no significant difference was observed for rice yield among treatments (p = 0.209), the P2 subsurface drainage showed the highest yield and the lowest concentration of ferrous iron in soil near rice roots.
文摘Recent studies have suggested that there may be a link between the use of in-feed antibiotics and the prevalence of antibiotic-resistant bacteria in human infections. It is believed that anaerobic digestion is a potent method to reduce the antibiotic resistant bacteria present in waste from concentrated animal feeding operations. Cefazolin is a β-1actam antibiotic that is frequently used to treat the cows with mastitis in the Obihiro University herd. Disposal of untreated milk containing cefazolin residues promotes the occurrence of cefazolin resistant bacteria in the vicinity of farm, thus the objective of this study was to investigate the survival of antibiotic resistant bacteria in co-digestion of dairy manure and waste milk obtained from cows treated for mastitis with cefazolin under thermophilic conditions (55 ~C). Cow manure, digested slurry and waste milk (cefazolin residue concentration 2.17 mg/L) were used as the materials in order to have three digester contents; 100% slurry, 50% slurry + 50% manure and 50% slurry + 45% manure + 5% waste milk. The experiment was carried out using batch digesters (1 L) with active volume of 800 mL at 55 ℃ for 20 days to determine the survival of cefazolin resistant bacteria and to observe the digester performance by determining the bio gas and methane yield using gas chromatpgrapby. Dilution plate method was used to determine the population densities of total and cefazolin resistant bacteria at 0, 10th and 20th day of digestion. Total and cefazolin resistant bacterial counts were reduced with time by several orders until 10th day of digestion and those were almost similar at day 20th. Highest daily biogas and methane yield were observed in the digester contained slurry, manure and waste milk during early digestion period (until 5th day). The results suggest that thermophilic co-digestion of dairy manure and waste milk would be a suitable technology for reducing antibiotic (cefazolin) resistant bacteria while obtaining better digester performance.
文摘Iron toxicity is a major stress to rice caused by a high concentration of reduced iron, in the soil in many lowlands worldwide. To reduce iron toxicity in the West African lowlands, an investigation was performed at the site of the University of Ouagadougou, in pots containing an iron toxic soil from the Kou Valley (West of Burkina Faso). The experiment objective was to study the effect of mineral fertilizer on Iron Reducing Bacteria (IRB) dynamics and activity during rice cultivation, iron accumulation in rice plant and rice biomass yield under iron toxicity conditions. BOUAKE-189 and ROK-5 rice varieties, sensitive and tolerant to iron toxicity, respectively, were used for the experiment. The pots were amended with chemical fertilizers (NPK + Urea and NPK + Urea + Ca + Mg + Zn complex). Control pots without fertilization were prepared similarly. The kinetics of IRB and ferrous iron content in soil near rice roots were monitored throughout the cultural cycle using MPN and colorimetric methods, respectively. The total iron content was evaluated in rice plant using spectrometric method. Data obtained were analyzed in relation to fertilization mode, rice growth stage and rice yield using the student’s t-test and XLSTAT 2014 statistical software. The experiment revealed that NPK + Urea and NPK + Urea + Ca + Mg + Zn fertilization, decreased significantly (p < 0.0001) the number of IRB in the soil for BOUAKE-189 rice varieties. In most pots, highest IRB densities and ferrous iron content in soil were recorded from rice tillering and flowering to maturity stages, indicating that rice plants promoted microbial processes and iron reduction in soil. From the study, the NPK + Urea amendment decreased significantly ferrous iron content (p < 0.0001) in soil near BOUAKE-189 and ROK-5 rice varieties roots relatively to control pots. However, NPK + Urea + Ca + Zn + Mg amendment increased significantly ferrous iron content (p < 0.0001) in the soil near roots, Fe accumulation in plant biomass and rice yield for the two rice varieties.
文摘The study on arsenopyrite and realgar of bacterial oxidation shows that the chemical behaviors of different arsenic-bearing sulphides oxidated by thermophilic bacteria are quite distinct. Arsenopyrite is active and quickly eroded in bacteria-bearing solution. With a high leaching rate over 95%, the arsenopyrite phase cannot be detected by X-ray diffraction(XRD). Arsenopyrite is highly toxic to bacteria that at the initial stage of bio-oxidation, bacterial growth is inhibited and the number of bacterium cell drops from 2.26 × 108/mL to the lowest 2.01 × 105/mL. At the later stages of bio-oxidation, bacteria grow fast and reach 2.23 × 108/mL. Comparably, realgar is inertial and resistive to bacterial corrosion and oxidation. Arsenic in realgar crystal is hard to be leached and the residue is still realgar phase, as indicated by XRD. The cell number of bacteria varies a little, decreasing from 2.26 × 108/mL to 2.01 × 107/mL, during the bacterial oxidation. The results show that the crystal structure and arsenic valency of arsenic-bearing sulphides play a vital role during the leaching process of bacterial oxidation.
基金Project(2010CB630903)supported by the National Basic Research Program of ChinaProject(31200382)supported by the Chinese Science Foundation for Distinguished Group,China
文摘A refractory gold concentrate with 19% arsenic was treated by a mixed moderately thermophiles in an airlift bioreactor through an adaptation protocol. The moderately thermophiles could respond well to 20%(w/v) pulp density with less than 10% loss of productivity, and resist arsenic up to 15 g/L. There were a lot of jarosite, arsenolite and sulfur, but not scorodite and ferric arsenate in the bioleached residue. Jarosite passivation and lower sulfur-oxidizing activity of the cells due to the toxicity of the high concentrations of soluble arsenic and iron ions at low p H value should mainly response for the incomplete extraction at high pulp density. The initial bacterial community did not change in nature except for new found P aeruginosa ANSC, but sulfur-oxidizing microorganisms have been dominant microorganisms after a long time of adaptation. Pseudomonas aeruginosa originating from the gold concentrate should be closely relative to the metabolism of the organic matters contained in the refractory gold concentrate.
基金a grant(3/22775)from Ferdowsi University of Mashhad.
文摘Cellulose is the main structural component of lignocellulosic wastes that can be converted to sugars and biofuels by cellulase.Due to wide applications of this enzyme in various industries around the world,cellulase is considered as the third industrial enzyme.The ability of thermophilic bacteria in the production of heat-stable cellulases has made them valuable tools in biotechnology.The aim of this study was isolation and molecular identification of cellulolytic thermophile bacteria from Dig Rostam hot spring and investigating their cellulase activity.Samples were taken from water and sediments of this hot spring,and cellulolytic bacteria were enriched in media containing cellulose as the only carbon source.The bacteria were incubated at 60℃,and single colonies were then isolated on solid media.Congo red assay was used as a quick test for the qualitative screening of cellulase activity.According to these qualitative results,four colonies named CDB1,CDB2,CDB3,and CDB4 were isolated,and their growth curve and some other characteristics were determined by biochemical assays.Moreover,endoglucanase,exoglucanase,and FPase activities of the isolates were investigated quantitatively.Results indicated that CDB1 exhibited the highest endoglucanase(0.096 U/mL)and exoglucanase(0.156 U/mL)activities among other isolates.16S rDNA partial sequencing indicated that CDB1 had 99%similarity to the genus Anoxybacillus,and the other isolates showed the highest similarity to the genus Geobacillus.The cellulase gene of CDB1 isolate with the highest cellulase activity was also cloned,and its sequence is reported for the first time.Further studies on this thermophilic enzyme might be useful for industrial applications.