Aluminum hypophosphite microspheres(AHP) were synthesized by hydrothermal method using NaH2PO2·H2O and AlCl3·6H2O as raw materials, and then the AHP microspheres were polymerized by surface polymerization of...Aluminum hypophosphite microspheres(AHP) were synthesized by hydrothermal method using NaH2PO2·H2O and AlCl3·6H2O as raw materials, and then the AHP microspheres were polymerized by surface polymerization of micro-nanospheres with cyclic cross-linked poly(cyclotriphosphazene-co-4,4'-sulfonyldiphenol)(PZS). A new organic-inorganic poly(phosphonitrile)-modified aluminum hypophosphite microspheres(PZS-AHP) were synthesized by encapsulation and applied to flame retardant thermoplastic polyurethane(TPU). The microstructure and chemical composition of the PZS-AHP microsphere were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and X-ray spectroscopy. The thermal stability of PZS-AHP microsphere was explored with thermogravimetric analysis. Thermogravimetric data indicate that the PZS-AHP microspheres have excellent thermal stability. The thermal and flame-retarding properties of the TPU composites were evaluated by thermogravimetric(TG), limited oxygen index tests(LOI), and cone calorimeter test(CCT). The TPU composite achieved vertical burning(UL-94) V-0 grade and LOI value reached 29.2% when 10 wt% PZS-AHP was incorporated. Compared with those of pure TPU, the peak heat release rate(pHRR) and total heat release(THR) of TPU/10%PZS-AHP decreased by 82.2% and 42.5%, respectively. The results of CCT indicated that PZS-AHP microsphere could improve the flame retardancy of TPU composites.展开更多
Poly <span style="font-family:Verdana;">(</span><span style="font-family:Verdana;">Lactic Acid</span><span style="font-family:Verdana;">)</span><spa...Poly <span style="font-family:Verdana;">(</span><span style="font-family:Verdana;">Lactic Acid</span><span style="font-family:Verdana;">)</span><span style="font-family:Verdana;"> (PLA) is a biodegradable polymer which originates from natural resources such as corn</span><span style="font-family:Verdana;"> and</span><span style="font-family:Verdana;"> starch</span><span style="font-family:Verdana;">,</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> offering excellent strength, biode</span><span style="font-family:Verdana;">gradability</span></span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> nevertheless its inherent brittleness and low impact resistance</span><span style="font-family:Verdana;"> properties ha</span><span style="font-family:Verdana;">ve</span><span style="font-family:Verdana;"> limited its application. On the other hand</span><span style="font-family:Verdana;">,</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> Thermoplastic Polyu</span><span style="font-family:Verdana;">rethane (TPU) has high toughness, durability and flexibility</span></span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> which </span><span style="font-family:Verdana;">is</span><span style="font-family:Verdana;"> one of</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> the </span><span style="font-family:Verdana;">most potential alternatives for enhancing the flexibility and mechanical</span><span style="font-family:Verdana;"> strength of Poly </span></span><span style="font-family:Verdana;">(</span><span style="font-family:Verdana;">Lactic Acid</span><span style="font-family:Verdana;">)</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> (PLA) by blending it with a compati</span><span style="font-family:Verdana;">bilizer. With the aim to improve the mechanical and thermal properties of</span><span style="font-family:Verdana;"> Poly </span></span><span style="font-family:Verdana;">(</span><span style="font-family:Verdana;">Lactic Acid</span><span style="font-family:Verdana;">)</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> (PLA) </span><span style="font-family:Verdana;">meltblown nonwovens, The Thermoplastic Polyurethane (TPU) was melt</span><span style="font-family:Verdana;"> blend</span></span><span style="font-family:Verdana;">ed with Poly </span><span style="font-family:Verdana;">(</span><span style="font-family:Verdana;">Lactic Acid</span><span style="font-family:Verdana;">)</span><span style="font-family:Verdana;"> (PLA) at the different corresponding proportions for toughening the Poly </span><span style="font-family:Verdana;">(</span><span style="font-family:Verdana;">Lactic Acid</span><span style="font-family:Verdana;">)</span><span style="font-family:Verdana;"> and the corresponding PLA/TPU MBs (meltblown nonwovens) were also manufactured. Joncryl ADR 4400 </span><span style="font-family:Verdana;">is</span><span style="font-family:Verdana;"> mixed </span><span style="font-family:Verdana;">in</span><span style="font-family:Verdana;">to the PLA matrix during processing. It was found that Joncryl had </span><span style="font-family:Verdana;">a </span><span style="font-family:;" "=""><span style="font-family:Verdana;">much higher chain extension that substantially in</span><span style="font-family:Verdana;">creased the molecular weight of the PLA matrix. SEM study revealed that Joncryl ADR 4400 is a good compatibi</span><span style="font-family:Verdana;">lizer</span></span><span style="font-family:Verdana;">.</span><span style="font-family:Verdana;"> Moreover, in this study</span><span style="font-family:Verdana;">,</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> the crystallization, thermal and rheological behaviors </span><span style="font-family:Verdana;">of the corresponding PLA and TPU blends were also investigated. PLA/TPU</span><span style="font-family:Verdana;"> MBs were also characterized by</span> <span style="font-family:Verdana;">morphology and mechanical properties. The rheological property of the</span><span style="font-family:Verdana;"> PLA/TPU meltblown nonwoven revealed that the viscosity </span><span style="font-family:Verdana;">is increasing as the amount of TPU is increasing in the blend, PLA/TPU</span><span style="font-family:Verdana;"> melt</span></span><span style="font-family:Verdana;">blown nonwovens exhibited excellent mechanical properties;they are soft, </span><span style="font-family:;" "=""><span style="font-family:Verdana;">elas</span><span style="font-family:Verdana;">tic, and have certain tensile strength. New materials have potential applica</span><span style="font-family:Verdana;">tions in the medical and agri</span><span style="font-family:Verdana;">cultural field</span></span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;">. Joncryl ADR 4400 compatibilized blends showed higher</span><span style="font-family:Verdana;"> strength than simple PLA/TPU blends at the same PLA/TPU ratio.</span>展开更多
The effect of microwave treatment on the tensile properties of treated sugar palm fibre with 6% NaOH reinforced thermoplastic polyurethane composites was investigated. Firstly, the sugar palm fibres were treated by 6%...The effect of microwave treatment on the tensile properties of treated sugar palm fibre with 6% NaOH reinforced thermoplastic polyurethane composites was investigated. Firstly, the sugar palm fibres were treated by 6% alkali solution. Then, microwave treatment was used to treat the alkali treated sugar palm fibres. Three types of temperatures(i.e. 70, 80 and 90℃) were applied in microwave treatment. The extruder and hot press machines were used to mixing the sugar palm fibres and polyurethane resin, and fabricate the composites. Tensile properties(i.e. tensile strength, tensile modulus and elongation at break) were studied by following the ASTM D-638 standard. The highest tensile strength was recorded 18.42 MPa with microwave temperature at 70℃ and 6% alkali pre-treatment. Therefore, the temperature 70℃ of microwave treatment may consider the best degree cent grate.展开更多
The paper presents the investigation of the effect of alkaline treatment of sodium hydroxide(NaOH) on physical and dynamic mechanical analysis(DMA) viscoelastic properties of kenaf fibre filled natural rubber(NR)/ther...The paper presents the investigation of the effect of alkaline treatment of sodium hydroxide(NaOH) on physical and dynamic mechanical analysis(DMA) viscoelastic properties of kenaf fibre filled natural rubber(NR)/thermoplastic polyurethane(TPU) composites.The treated kenaf fiber,NR and TPU were weighed and proportioned according to the required compositions and were blended using hot mixed Brabender machine.The polymer composites were then fabricated using the hot press to form a sample board.The sample was cut and prepared and water absorption,density,thickness swelling and DMA tests were performed.As far as physical properties are concerned,composites with the highest NR amount of shows the best results,which indicates good fiber bonding adhesion.The polymer composites with the highest amount of TPU shows the highest damping properties at high temperature.展开更多
This study aimed to investigate the effect of artificial weathering test on the photoaging behavior of TPU films. Changes in mechanical properties, morphology and chemical structures are studied by tensile test, scann...This study aimed to investigate the effect of artificial weathering test on the photoaging behavior of TPU films. Changes in mechanical properties, morphology and chemical structures are studied by tensile test, scanning electron microscopy, atomic force microscopy, Fourier-transformed infrared, and X-ray photoelectron spectroscopy. The results show that the photoaging negatively affects the initial modulus and stress at break values of TPU films. The surface of the specimen that is exposed to irradiation becomes rough, and some visible micro-defects such as blisters and voids can be detected. The morphology of the fracture surfaces illustrates that irradiation reduces the plasticity but increases the brittleness of the TPU films. The chemical structure analyses of the accelerated aged films prove that chemical structural changes in TPU films occur. The irradiation may break the long molecular chains on the surface of the specimens and form the lowmolecular weight oxygen-containing groups. The number of chain scissions increases with the increase in exposure time.展开更多
A simple non-isocyanate route synthesizing thermoplastic polyurethanes(TPUs) with good thermal and mechanical properties is described. Melt transurethane polycondensation of dimethyl 1,6-hexamethylene dicarbamate wi...A simple non-isocyanate route synthesizing thermoplastic polyurethanes(TPUs) with good thermal and mechanical properties is described. Melt transurethane polycondensation of dimethyl 1,6-hexamethylene dicarbamate with 1,4-butanediol and 1,6-hexanediol was conducted at different molar ratios under the catalysis of tetrabutyl titanate. A series of crystallizable non-isocyanate TPUs with high molecular weight were prepared. The TPUs were characterized by gel permeation chromatography, FT-IR, 1 H-NMR, differential scanning calorimetry, thermogravimetric analysis, wide angle X-ray diffraction, AFM, and tensile tests. The TPUs exhibited Mn ranging from 12 500 to 26 400 g/mol, Mw from 16 700 to 56 400 g/mol, Tm up to 151.4 °C, and initial decomposition temperature over 241.8 °C. Their tensile strength reached 42.99 MPa with a strain at break of 30.00%. TPUs constructed simply with butylene, hexylene, and urethane linkages were successfully synthesized through a non-isocyanate route.展开更多
The aim of the present study was to develop sugar palm fiber(SPF)reinforced thermoplastic polyurethane(TPU)composites and to investigate the effects of fiber surface modification by 2%silane treatment and fiber loadin...The aim of the present study was to develop sugar palm fiber(SPF)reinforced thermoplastic polyurethane(TPU)composites and to investigate the effects of fiber surface modification by 2%silane treatment and fiber loading(0,10,20,30,40 and 50 wt%)on the mechanical and thermal properties of the obtained composites.Surface treatment was employed to improve the fiber-matrix interface,which was expected to boost the mechanical strength of the composites,in terms of tensile,flexural and impact properties.Thermal properties were also investigated by thermal gravimetric analysis(TGA)and dynamic mechanical analysis(DMA)to assess the thermal stability of the developed composites.Furthermore,scanning electron microscopy(SEM)was used to study the tensile fracture samples of composites with a view towards evaluating the effects of fiber surface treatments on the fiber/matrix interfacial bonding.The findings of this study reveal that the silane treatment has determined good bonding and linkage of the cellulose fiber to the TPU matrix,hence contributing to enhanced mechanical and thermal properties of the composites.The composite formulation with 40 wt%sugar palm fiber loading showed optimum values such as 17.22 MPa for tensile,13.96 MPa for flexural,and 15.47 kJ/m^2 for impact strength.Moreover,the formulations with higher fiber content exhibited satisfactory values of storage modulus and thermal degradation,while their good interfacial adhesion was evidenced by SEM images.展开更多
Polyether and polyether/ester based TPU (thermoplastic polyurethanes) were investigated with wide-angle XRD (X-ray diffraction) and SAXS (small angle X-ray scattering). Furthermore, SAXS measurements were perfor...Polyether and polyether/ester based TPU (thermoplastic polyurethanes) were investigated with wide-angle XRD (X-ray diffraction) and SAXS (small angle X-ray scattering). Furthermore, SAXS measurements were performed in the temperature range of 30 ℃ to 130 ℃. Polyether based polymers exhibit only one broad diffraction signal in a region of 2 θ 15° to 25°. In case of polyurethanes with ether/ester modification, the broad diffraction signal arises with small sharp diffraction signals. SAXS measurements of polymers reveal the size and shape of the crystalline zones of the polymer. Between 30 ℃ and 130 ℃ the size of the crystalline zone changes significantly. The size decreases in most of investigated TPU. In the case of Desmopan 9365D an increase of the particle size was observed.展开更多
Hydrogen bond effects in thermoplastic polyurethane elastomers (TPU) with different chain extender structures and hard segment contents have been studied quantitatively by dynamic mechanical analysis. It has been foun...Hydrogen bond effects in thermoplastic polyurethane elastomers (TPU) with different chain extender structures and hard segment contents have been studied quantitatively by dynamic mechanical analysis. It has been found that the hydrogen bond effects in TPU decrease with the increase of temperature. The temperature dependence of hydrogen bonding in TPU’s can be described by the Arrhenius equation, and the activation energy of hydrogen bonding as well as the physical cross-link density have been calculated.展开更多
The hydrogen bond percentage and its temperature dependence of the three TPU samples synthesized from polytetrahydrofuran, 4,4'-diphenylmethane diisocyanate, N -methyl diethanol amine or 1,4-butane diol were stud...The hydrogen bond percentage and its temperature dependence of the three TPU samples synthesized from polytetrahydrofuran, 4,4'-diphenylmethane diisocyanate, N -methyl diethanol amine or 1,4-butane diol were studied by means of IR thermal analysis. The enthalpy and the entropy of the hydrogen bond dissociation were determined by the Van't Hoff plot.展开更多
This investigation presents thermoplastic elastomers (TPEs) based on poly (styrene-butadiene-styrene) (SBS) and thermoplastic polyurethane (TPU) materials were prepared with varying compositions. A series of works wer...This investigation presents thermoplastic elastomers (TPEs) based on poly (styrene-butadiene-styrene) (SBS) and thermoplastic polyurethane (TPU) materials were prepared with varying compositions. A series of works were conducted on the relationships between rheological, optical properties, morphology, mechanical properties, abrasion resistance and thermostability given. The results showed that the shear viscosity of SBS not obvious effect with TPU content. The optical properties of the SBS/TPU blend that its uniform transparency. The morphology characteristics indicating the phase diversion and the variation in the size of the SBS domains from large to small as the TPU contents increased, with heterogeneous domain dispersions. Additionally, the mechanical properties, abrasion resistance and thermal resistance are improved as the amount of added TPU is increased, suggesting that the blending of SBS with TPU is consistent with the compound rule.展开更多
This paper presents the implementation of two multicriteria optimization methods based on different approaches, namely, Rough Set Method (RSM) and Net Flow Method (NFM), to the manufacture by reactive extrusion of lin...This paper presents the implementation of two multicriteria optimization methods based on different approaches, namely, Rough Set Method (RSM) and Net Flow Method (NFM), to the manufacture by reactive extrusion of linear thermoplastic polyurethanes (TPUs), appropriate for medical applications. A preliminary study allowed determining the process operating conditions for which the polymerization time and the average residence time of the reactants in the extruder are of the same order of magnitude. Prior to the optimization, a neural network model able to predict with acceptable accuracy the effect of the operating conditions on the output process variables, was constructed and validated. This model was then used to determine, using Pareto’s concept, a set of non-dominated solutions constituting Pareto’s domain. These solutions were then ranked according to the preferences of a decision maker using NFM and RSM. This allowed providing the 10% highest ranked solutions of Pareto’s domain and proposing a set of optimal operating conditions for the production, with the lowest energy consumption, of TPUs with targeted properties and high purity. Experimental validation runs carried out under similar operating conditions gave rise to criteria values confirming the su- perior performance of NFM, without rejecting, at the same time, the values obtained using RSM.展开更多
Novel segmented thermoplastic polyurethane (TPU) copolymers were synthesized using two-step solventless bulk polymerization. 4,4’-methylenediphenyl diisocyanate (MDI) and 1,4-Butanediol (BDO) were used to form hard s...Novel segmented thermoplastic polyurethane (TPU) copolymers were synthesized using two-step solventless bulk polymerization. 4,4’-methylenediphenyl diisocyanate (MDI) and 1,4-Butanediol (BDO) were used to form hard segment of TPU and α,ω-dihydroxy-[poly(propyleneoxide)-poly (dimethylsiloxane)-poly(propyleneoxide)] (α,ω-dihydroxy-(PPO-PDMS-PPO)) was used to form soft segment of TPU, where the molar ratio of the –N=C=O/OH was 1.02 and the hard segment weight percentage was 30%. A series of TPUs were characterized by fourier transform infrared spectroscopy (FT-IR). The investigation of triblock oligomer’s PPO molecular weight impact on the derived TPU’s mechanical properties, thermal performance, surface water repellency and morphology performance was carried by Instron material tester, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), water contact angles (WCA), scanning electron microscope and energy dispersive X-ray spectroscopy (SEM-EDX) and wide angle X-ray diffraction (WAXD), respectively. FT-IR confirmed α,ω-dihydroxy-(PPO-PDMS-PPO) well cooperating into urethane structure and analyzed hydrogen bonding between N-H group with hard segment C=O group and N-H group with soft segment C-O-C group. DSC and WAXD results showed α,ω-dihydroxy-(PPO-PDMS-PPO) segments crystallization. SEM-EDX results showed that the presence of a spherulitic morphology, which arose from the crystallization of the PPO segments. The thermal properties measured by TGA and DSC were slightly affected by molecular weight of PPO and microphase separation. The weight loss of TPUs started between 294°C and 300°C, and Tg was in the range of -70°C to -107°C. TPU copolymers’ surface hydrophobicity property was excellent with WCA range of 95°?to 112°. TPU-3 with 1000 molecular weight PPO has the optimized mechanical properties with tensile strength 16.4 MPa and the modulus at 100% elongation 6.2 MPa and elongation 398%.展开更多
Thermoplastic polycarbonate polyurethanes(PCUs) are multiblock copolymers that have been applied for medical devices for long time. Aliphatic diols are common chain extenders(CE) involved in the composition of the har...Thermoplastic polycarbonate polyurethanes(PCUs) are multiblock copolymers that have been applied for medical devices for long time. Aliphatic diols are common chain extenders(CE) involved in the composition of the hard segments of PCU. However, limited knowledge was discovered about how the chemical structure of CE affects the hydrogen bonding organization within PCUs and their mechanical properties.To investigate this problem, a group of PCUs were synthesized respectively by extending the polymer chain with 1,4-butanediol(BDO),aminoethanol(MEA), ethanediol(EO) as three kinds of chain extenders. Tiny differences in the CE chemical structure results in remarkable variations in phase separation, condensed morphologies, thermal and mechanical properties, which are characterized by Fourier transform infrared spectrometer, atomic force microscopy, small-angle X-ray scattering, differential scanning calorimetry, and tensile tests. The microstructural evolution during unilateral deformation and the different mechanism induced by the different CEs was probed and unveil by in situ wide-and small-angle X-ray diffraction. Symmetry of CE can improve the organization of the hydrogen bonding. The coherence strength of the urethane/urea group also plays a key role by comparing the two PCUs with ethanediol and aminoethanol.展开更多
基金Supported by the Opening Project of Hubei Three Gorges Laboratory (No.SK213008)the Innovation Fund of Key Laboratory of Green Chemical Process of Ministry of Education (No.GCXP202109)。
文摘Aluminum hypophosphite microspheres(AHP) were synthesized by hydrothermal method using NaH2PO2·H2O and AlCl3·6H2O as raw materials, and then the AHP microspheres were polymerized by surface polymerization of micro-nanospheres with cyclic cross-linked poly(cyclotriphosphazene-co-4,4'-sulfonyldiphenol)(PZS). A new organic-inorganic poly(phosphonitrile)-modified aluminum hypophosphite microspheres(PZS-AHP) were synthesized by encapsulation and applied to flame retardant thermoplastic polyurethane(TPU). The microstructure and chemical composition of the PZS-AHP microsphere were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and X-ray spectroscopy. The thermal stability of PZS-AHP microsphere was explored with thermogravimetric analysis. Thermogravimetric data indicate that the PZS-AHP microspheres have excellent thermal stability. The thermal and flame-retarding properties of the TPU composites were evaluated by thermogravimetric(TG), limited oxygen index tests(LOI), and cone calorimeter test(CCT). The TPU composite achieved vertical burning(UL-94) V-0 grade and LOI value reached 29.2% when 10 wt% PZS-AHP was incorporated. Compared with those of pure TPU, the peak heat release rate(pHRR) and total heat release(THR) of TPU/10%PZS-AHP decreased by 82.2% and 42.5%, respectively. The results of CCT indicated that PZS-AHP microsphere could improve the flame retardancy of TPU composites.
文摘Poly <span style="font-family:Verdana;">(</span><span style="font-family:Verdana;">Lactic Acid</span><span style="font-family:Verdana;">)</span><span style="font-family:Verdana;"> (PLA) is a biodegradable polymer which originates from natural resources such as corn</span><span style="font-family:Verdana;"> and</span><span style="font-family:Verdana;"> starch</span><span style="font-family:Verdana;">,</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> offering excellent strength, biode</span><span style="font-family:Verdana;">gradability</span></span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> nevertheless its inherent brittleness and low impact resistance</span><span style="font-family:Verdana;"> properties ha</span><span style="font-family:Verdana;">ve</span><span style="font-family:Verdana;"> limited its application. On the other hand</span><span style="font-family:Verdana;">,</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> Thermoplastic Polyu</span><span style="font-family:Verdana;">rethane (TPU) has high toughness, durability and flexibility</span></span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> which </span><span style="font-family:Verdana;">is</span><span style="font-family:Verdana;"> one of</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> the </span><span style="font-family:Verdana;">most potential alternatives for enhancing the flexibility and mechanical</span><span style="font-family:Verdana;"> strength of Poly </span></span><span style="font-family:Verdana;">(</span><span style="font-family:Verdana;">Lactic Acid</span><span style="font-family:Verdana;">)</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> (PLA) by blending it with a compati</span><span style="font-family:Verdana;">bilizer. With the aim to improve the mechanical and thermal properties of</span><span style="font-family:Verdana;"> Poly </span></span><span style="font-family:Verdana;">(</span><span style="font-family:Verdana;">Lactic Acid</span><span style="font-family:Verdana;">)</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> (PLA) </span><span style="font-family:Verdana;">meltblown nonwovens, The Thermoplastic Polyurethane (TPU) was melt</span><span style="font-family:Verdana;"> blend</span></span><span style="font-family:Verdana;">ed with Poly </span><span style="font-family:Verdana;">(</span><span style="font-family:Verdana;">Lactic Acid</span><span style="font-family:Verdana;">)</span><span style="font-family:Verdana;"> (PLA) at the different corresponding proportions for toughening the Poly </span><span style="font-family:Verdana;">(</span><span style="font-family:Verdana;">Lactic Acid</span><span style="font-family:Verdana;">)</span><span style="font-family:Verdana;"> and the corresponding PLA/TPU MBs (meltblown nonwovens) were also manufactured. Joncryl ADR 4400 </span><span style="font-family:Verdana;">is</span><span style="font-family:Verdana;"> mixed </span><span style="font-family:Verdana;">in</span><span style="font-family:Verdana;">to the PLA matrix during processing. It was found that Joncryl had </span><span style="font-family:Verdana;">a </span><span style="font-family:;" "=""><span style="font-family:Verdana;">much higher chain extension that substantially in</span><span style="font-family:Verdana;">creased the molecular weight of the PLA matrix. SEM study revealed that Joncryl ADR 4400 is a good compatibi</span><span style="font-family:Verdana;">lizer</span></span><span style="font-family:Verdana;">.</span><span style="font-family:Verdana;"> Moreover, in this study</span><span style="font-family:Verdana;">,</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> the crystallization, thermal and rheological behaviors </span><span style="font-family:Verdana;">of the corresponding PLA and TPU blends were also investigated. PLA/TPU</span><span style="font-family:Verdana;"> MBs were also characterized by</span> <span style="font-family:Verdana;">morphology and mechanical properties. The rheological property of the</span><span style="font-family:Verdana;"> PLA/TPU meltblown nonwoven revealed that the viscosity </span><span style="font-family:Verdana;">is increasing as the amount of TPU is increasing in the blend, PLA/TPU</span><span style="font-family:Verdana;"> melt</span></span><span style="font-family:Verdana;">blown nonwovens exhibited excellent mechanical properties;they are soft, </span><span style="font-family:;" "=""><span style="font-family:Verdana;">elas</span><span style="font-family:Verdana;">tic, and have certain tensile strength. New materials have potential applica</span><span style="font-family:Verdana;">tions in the medical and agri</span><span style="font-family:Verdana;">cultural field</span></span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;">. Joncryl ADR 4400 compatibilized blends showed higher</span><span style="font-family:Verdana;"> strength than simple PLA/TPU blends at the same PLA/TPU ratio.</span>
文摘The effect of microwave treatment on the tensile properties of treated sugar palm fibre with 6% NaOH reinforced thermoplastic polyurethane composites was investigated. Firstly, the sugar palm fibres were treated by 6% alkali solution. Then, microwave treatment was used to treat the alkali treated sugar palm fibres. Three types of temperatures(i.e. 70, 80 and 90℃) were applied in microwave treatment. The extruder and hot press machines were used to mixing the sugar palm fibres and polyurethane resin, and fabricate the composites. Tensile properties(i.e. tensile strength, tensile modulus and elongation at break) were studied by following the ASTM D-638 standard. The highest tensile strength was recorded 18.42 MPa with microwave temperature at 70℃ and 6% alkali pre-treatment. Therefore, the temperature 70℃ of microwave treatment may consider the best degree cent grate.
基金Universiti Kuala Lumpur(UniKL)the Ministry of Education Malaysia for providing the scholarship award+1 种基金financially support through UniKL Grant Scheme(STRG 15144)to the principal author in this projectHiCOE grant(6369107)from the Ministry of Education,Malaysia。
文摘The paper presents the investigation of the effect of alkaline treatment of sodium hydroxide(NaOH) on physical and dynamic mechanical analysis(DMA) viscoelastic properties of kenaf fibre filled natural rubber(NR)/thermoplastic polyurethane(TPU) composites.The treated kenaf fiber,NR and TPU were weighed and proportioned according to the required compositions and were blended using hot mixed Brabender machine.The polymer composites were then fabricated using the hot press to form a sample board.The sample was cut and prepared and water absorption,density,thickness swelling and DMA tests were performed.As far as physical properties are concerned,composites with the highest NR amount of shows the best results,which indicates good fiber bonding adhesion.The polymer composites with the highest amount of TPU shows the highest damping properties at high temperature.
基金Funded by the Fundamental Research Funds for the Central Universities(No.HIT.KISTP.201408)
文摘This study aimed to investigate the effect of artificial weathering test on the photoaging behavior of TPU films. Changes in mechanical properties, morphology and chemical structures are studied by tensile test, scanning electron microscopy, atomic force microscopy, Fourier-transformed infrared, and X-ray photoelectron spectroscopy. The results show that the photoaging negatively affects the initial modulus and stress at break values of TPU films. The surface of the specimen that is exposed to irradiation becomes rough, and some visible micro-defects such as blisters and voids can be detected. The morphology of the fracture surfaces illustrates that irradiation reduces the plasticity but increases the brittleness of the TPU films. The chemical structure analyses of the accelerated aged films prove that chemical structural changes in TPU films occur. The irradiation may break the long molecular chains on the surface of the specimens and form the lowmolecular weight oxygen-containing groups. The number of chain scissions increases with the increase in exposure time.
基金Funded by the National Natural Science Foundation of China(Nos.21244006 and 50873013)the Beijing Natural Science Foundation(No.2182056)
文摘A simple non-isocyanate route synthesizing thermoplastic polyurethanes(TPUs) with good thermal and mechanical properties is described. Melt transurethane polycondensation of dimethyl 1,6-hexamethylene dicarbamate with 1,4-butanediol and 1,6-hexanediol was conducted at different molar ratios under the catalysis of tetrabutyl titanate. A series of crystallizable non-isocyanate TPUs with high molecular weight were prepared. The TPUs were characterized by gel permeation chromatography, FT-IR, 1 H-NMR, differential scanning calorimetry, thermogravimetric analysis, wide angle X-ray diffraction, AFM, and tensile tests. The TPUs exhibited Mn ranging from 12 500 to 26 400 g/mol, Mw from 16 700 to 56 400 g/mol, Tm up to 151.4 °C, and initial decomposition temperature over 241.8 °C. Their tensile strength reached 42.99 MPa with a strain at break of 30.00%. TPUs constructed simply with butylene, hexylene, and urethane linkages were successfully synthesized through a non-isocyanate route.
文摘The aim of the present study was to develop sugar palm fiber(SPF)reinforced thermoplastic polyurethane(TPU)composites and to investigate the effects of fiber surface modification by 2%silane treatment and fiber loading(0,10,20,30,40 and 50 wt%)on the mechanical and thermal properties of the obtained composites.Surface treatment was employed to improve the fiber-matrix interface,which was expected to boost the mechanical strength of the composites,in terms of tensile,flexural and impact properties.Thermal properties were also investigated by thermal gravimetric analysis(TGA)and dynamic mechanical analysis(DMA)to assess the thermal stability of the developed composites.Furthermore,scanning electron microscopy(SEM)was used to study the tensile fracture samples of composites with a view towards evaluating the effects of fiber surface treatments on the fiber/matrix interfacial bonding.The findings of this study reveal that the silane treatment has determined good bonding and linkage of the cellulose fiber to the TPU matrix,hence contributing to enhanced mechanical and thermal properties of the composites.The composite formulation with 40 wt%sugar palm fiber loading showed optimum values such as 17.22 MPa for tensile,13.96 MPa for flexural,and 15.47 kJ/m^2 for impact strength.Moreover,the formulations with higher fiber content exhibited satisfactory values of storage modulus and thermal degradation,while their good interfacial adhesion was evidenced by SEM images.
文摘Polyether and polyether/ester based TPU (thermoplastic polyurethanes) were investigated with wide-angle XRD (X-ray diffraction) and SAXS (small angle X-ray scattering). Furthermore, SAXS measurements were performed in the temperature range of 30 ℃ to 130 ℃. Polyether based polymers exhibit only one broad diffraction signal in a region of 2 θ 15° to 25°. In case of polyurethanes with ether/ester modification, the broad diffraction signal arises with small sharp diffraction signals. SAXS measurements of polymers reveal the size and shape of the crystalline zones of the polymer. Between 30 ℃ and 130 ℃ the size of the crystalline zone changes significantly. The size decreases in most of investigated TPU. In the case of Desmopan 9365D an increase of the particle size was observed.
文摘Hydrogen bond effects in thermoplastic polyurethane elastomers (TPU) with different chain extender structures and hard segment contents have been studied quantitatively by dynamic mechanical analysis. It has been found that the hydrogen bond effects in TPU decrease with the increase of temperature. The temperature dependence of hydrogen bonding in TPU’s can be described by the Arrhenius equation, and the activation energy of hydrogen bonding as well as the physical cross-link density have been calculated.
基金Supported by the Key Subject Construction Project of Shanghai Educational Com mittee(No. 13980 70 2 )
文摘The hydrogen bond percentage and its temperature dependence of the three TPU samples synthesized from polytetrahydrofuran, 4,4'-diphenylmethane diisocyanate, N -methyl diethanol amine or 1,4-butane diol were studied by means of IR thermal analysis. The enthalpy and the entropy of the hydrogen bond dissociation were determined by the Van't Hoff plot.
文摘This investigation presents thermoplastic elastomers (TPEs) based on poly (styrene-butadiene-styrene) (SBS) and thermoplastic polyurethane (TPU) materials were prepared with varying compositions. A series of works were conducted on the relationships between rheological, optical properties, morphology, mechanical properties, abrasion resistance and thermostability given. The results showed that the shear viscosity of SBS not obvious effect with TPU content. The optical properties of the SBS/TPU blend that its uniform transparency. The morphology characteristics indicating the phase diversion and the variation in the size of the SBS domains from large to small as the TPU contents increased, with heterogeneous domain dispersions. Additionally, the mechanical properties, abrasion resistance and thermal resistance are improved as the amount of added TPU is increased, suggesting that the blending of SBS with TPU is consistent with the compound rule.
文摘This paper presents the implementation of two multicriteria optimization methods based on different approaches, namely, Rough Set Method (RSM) and Net Flow Method (NFM), to the manufacture by reactive extrusion of linear thermoplastic polyurethanes (TPUs), appropriate for medical applications. A preliminary study allowed determining the process operating conditions for which the polymerization time and the average residence time of the reactants in the extruder are of the same order of magnitude. Prior to the optimization, a neural network model able to predict with acceptable accuracy the effect of the operating conditions on the output process variables, was constructed and validated. This model was then used to determine, using Pareto’s concept, a set of non-dominated solutions constituting Pareto’s domain. These solutions were then ranked according to the preferences of a decision maker using NFM and RSM. This allowed providing the 10% highest ranked solutions of Pareto’s domain and proposing a set of optimal operating conditions for the production, with the lowest energy consumption, of TPUs with targeted properties and high purity. Experimental validation runs carried out under similar operating conditions gave rise to criteria values confirming the su- perior performance of NFM, without rejecting, at the same time, the values obtained using RSM.
文摘Novel segmented thermoplastic polyurethane (TPU) copolymers were synthesized using two-step solventless bulk polymerization. 4,4’-methylenediphenyl diisocyanate (MDI) and 1,4-Butanediol (BDO) were used to form hard segment of TPU and α,ω-dihydroxy-[poly(propyleneoxide)-poly (dimethylsiloxane)-poly(propyleneoxide)] (α,ω-dihydroxy-(PPO-PDMS-PPO)) was used to form soft segment of TPU, where the molar ratio of the –N=C=O/OH was 1.02 and the hard segment weight percentage was 30%. A series of TPUs were characterized by fourier transform infrared spectroscopy (FT-IR). The investigation of triblock oligomer’s PPO molecular weight impact on the derived TPU’s mechanical properties, thermal performance, surface water repellency and morphology performance was carried by Instron material tester, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), water contact angles (WCA), scanning electron microscope and energy dispersive X-ray spectroscopy (SEM-EDX) and wide angle X-ray diffraction (WAXD), respectively. FT-IR confirmed α,ω-dihydroxy-(PPO-PDMS-PPO) well cooperating into urethane structure and analyzed hydrogen bonding between N-H group with hard segment C=O group and N-H group with soft segment C-O-C group. DSC and WAXD results showed α,ω-dihydroxy-(PPO-PDMS-PPO) segments crystallization. SEM-EDX results showed that the presence of a spherulitic morphology, which arose from the crystallization of the PPO segments. The thermal properties measured by TGA and DSC were slightly affected by molecular weight of PPO and microphase separation. The weight loss of TPUs started between 294°C and 300°C, and Tg was in the range of -70°C to -107°C. TPU copolymers’ surface hydrophobicity property was excellent with WCA range of 95°?to 112°. TPU-3 with 1000 molecular weight PPO has the optimized mechanical properties with tensile strength 16.4 MPa and the modulus at 100% elongation 6.2 MPa and elongation 398%.
基金financially supported by the National Natural Science Foundation of China (No.21774135)。
文摘Thermoplastic polycarbonate polyurethanes(PCUs) are multiblock copolymers that have been applied for medical devices for long time. Aliphatic diols are common chain extenders(CE) involved in the composition of the hard segments of PCU. However, limited knowledge was discovered about how the chemical structure of CE affects the hydrogen bonding organization within PCUs and their mechanical properties.To investigate this problem, a group of PCUs were synthesized respectively by extending the polymer chain with 1,4-butanediol(BDO),aminoethanol(MEA), ethanediol(EO) as three kinds of chain extenders. Tiny differences in the CE chemical structure results in remarkable variations in phase separation, condensed morphologies, thermal and mechanical properties, which are characterized by Fourier transform infrared spectrometer, atomic force microscopy, small-angle X-ray scattering, differential scanning calorimetry, and tensile tests. The microstructural evolution during unilateral deformation and the different mechanism induced by the different CEs was probed and unveil by in situ wide-and small-angle X-ray diffraction. Symmetry of CE can improve the organization of the hydrogen bonding. The coherence strength of the urethane/urea group also plays a key role by comparing the two PCUs with ethanediol and aminoethanol.