The thermosensitive micellization of dextran-g-PNIPAAm in aqueous solutions has been investigated by fluorescence spectroscopy, dynamic light scattering and transmission electron microscope. The formed polymeric micel...The thermosensitive micellization of dextran-g-PNIPAAm in aqueous solutions has been investigated by fluorescence spectroscopy, dynamic light scattering and transmission electron microscope. The formed polymeric micelles showed different diameters of about 20 nm or 100 nm, when the solution temperature was below or above the phase transition temperature.展开更多
The hybrid micelles of polystyrene-b-poly((N-isopropyl acrylamide)-co-(4-vinylbenzyl chloride)) block copolymer(PS-b-P(NIPAM-co-VBC)) with Prussian blue(PB) in the corona were prepared by reaction of penta...The hybrid micelles of polystyrene-b-poly((N-isopropyl acrylamide)-co-(4-vinylbenzyl chloride)) block copolymer(PS-b-P(NIPAM-co-VBC)) with Prussian blue(PB) in the corona were prepared by reaction of pentacyano(4-(dimethylamino)-pyridine)ferrate(Fe-DMAP)-attached PS-b-P(NIPAM-co-VBC) with Fe Cl3. The formation of the PB framework inside the micelles was verified by UV-Vis, FTIR and TGA. The morphology of the hybrid micelles was studied by TEM and compared with that of the neat and Fe-DMAP-attached PS-b-P(NIPAM-co-VBC). It is found that attachment of Fe-DMAP may change the short rod-like micelles of the neat PS-b-P(NIPAM-co-VBC) into spherical ones and lead to a smaller micelle size. The morphology of the hybrid micelles may be altered or remain unchanged after formation of the PB framework, depending on the chain structure of PS-b-P(NIPAM-co-VBC) and starting concentration. The thermoresponsive behavior of different micelles was studied using DLS. It is observed that attachment of Fe-DMAP can improve the hydrophilicity of the P(NIPAM-co-VBC) block, leading to weaker hysteresis of the micelle size during the heating and cooling cycle. However, the crosslinked PB framework in the micellar corona may result in a more evident hysteresis phenomenon and blur the two-stepwise change of the micellar size with temperature.展开更多
基金This project is financially supported by the National Natural Science Foundation of China (No. 20474055).
文摘The thermosensitive micellization of dextran-g-PNIPAAm in aqueous solutions has been investigated by fluorescence spectroscopy, dynamic light scattering and transmission electron microscope. The formed polymeric micelles showed different diameters of about 20 nm or 100 nm, when the solution temperature was below or above the phase transition temperature.
基金financially supported by the National Natural Science Foundation of China(No.21274130)
文摘The hybrid micelles of polystyrene-b-poly((N-isopropyl acrylamide)-co-(4-vinylbenzyl chloride)) block copolymer(PS-b-P(NIPAM-co-VBC)) with Prussian blue(PB) in the corona were prepared by reaction of pentacyano(4-(dimethylamino)-pyridine)ferrate(Fe-DMAP)-attached PS-b-P(NIPAM-co-VBC) with Fe Cl3. The formation of the PB framework inside the micelles was verified by UV-Vis, FTIR and TGA. The morphology of the hybrid micelles was studied by TEM and compared with that of the neat and Fe-DMAP-attached PS-b-P(NIPAM-co-VBC). It is found that attachment of Fe-DMAP may change the short rod-like micelles of the neat PS-b-P(NIPAM-co-VBC) into spherical ones and lead to a smaller micelle size. The morphology of the hybrid micelles may be altered or remain unchanged after formation of the PB framework, depending on the chain structure of PS-b-P(NIPAM-co-VBC) and starting concentration. The thermoresponsive behavior of different micelles was studied using DLS. It is observed that attachment of Fe-DMAP can improve the hydrophilicity of the P(NIPAM-co-VBC) block, leading to weaker hysteresis of the micelle size during the heating and cooling cycle. However, the crosslinked PB framework in the micellar corona may result in a more evident hysteresis phenomenon and blur the two-stepwise change of the micellar size with temperature.