The article deals with potential use of waste materials in construction industry, specifically use of high density polyethylene (HDPE). The article is focused in particular on recycled polyethylene application in pr...The article deals with potential use of waste materials in construction industry, specifically use of high density polyethylene (HDPE). The article is focused in particular on recycled polyethylene application in products designed for construction industry, especially for passive houses. Currently certain building details of passive houses are not perfect or their solution results in higher economic demands related to house purchase and its further use. For the purpose of this thesis details of windows installation in external walls and elimination of thermal bridges in wall footing have been chosen. Products were subject to mathematic modelling of thermal technique and statics. The executed mathematic models documented that products are fully functional and that the suggested product successfully eliminate insufficiencies of some currently applied solutions.展开更多
The environmentally sustainable disposal and recycling of ever increasing volumes of electronic waste has become a global waste management issue. The addition of up to 25% polymeric waste PCBs (printed circuit boards...The environmentally sustainable disposal and recycling of ever increasing volumes of electronic waste has become a global waste management issue. The addition of up to 25% polymeric waste PCBs (printed circuit boards) as fillers in polypropylene (PP) composites was partially successful: while the tensile modulus, flexural strength and tlexural modulus of composites were enhanced, the tenstle and impact strengths were found to decrease. As a lowering of impact strength can significantly limit the application of PP based composites, it is necessary to incorporate impact modifying polymers such as rubbery particles in the mix. We report on a novel investigation on the simultaneous utilization of electronic and automotive rubber waste as fillers in PP composites. These composites were prepared by using 25 wt.% polymeric PCB powder, up to 9% of ethylene propylene rubber (EPR), and PP: balance. The influence of EPR on the structural, thermal, mechanical and rheological properties of PP/PCB/ EPR composites was investigated. While the addition of EPR caused the nucleation of the I~ crystalline phase of PP, the onset temperature for thermal degradation was found to decrease by 8%. The tensile modulus and strength decreased by 1 b% and 19%, respectively; and the elongataon at break increased by -71%. The impact strength showed a maximum increase of-18% at 7 wt.%-9 wt.% EPR content. Various rheological properties were found to be well within the range of processing limits. This novel eco-friendly approach could help utilize significant amounts of polymeric electronic and automotive waste for fabricating valuable polymer composites.展开更多
Thermoset based composites are used increasingly in industry for light weight applications, mainly for aircraft, windmills and for automobiles. Fiber reinforced thermoset polymers show a number of advantages over conv...Thermoset based composites are used increasingly in industry for light weight applications, mainly for aircraft, windmills and for automobiles. Fiber reinforced thermoset polymers show a number of advantages over conventional materials, like metals, especially their better performance regarding their strength-to-weight ratio. However, composite recycling is a big issue, as there are almost no established recycling methods. The authors investigate the recyclability of polycyanurate homo- and copolymers with different recycling agents under different conditions. Also the influence of the recycling process on the most important reinforcement fibers, i.e. carbon-, glass-, aramid-, and natural-fiber is investigated. The authors find that: the recycling speed is not only dependent on the temperature, but also is significantly influenced by the particular recycling agents and the polycyanurate formulation. Hence, the stability against the recycling media can be adjusted over a broad range by adjusting the polymer composition. Furthermore, the authors find that the inorganic reinforcement fibers (carbon and glass) are almost unaffected by neither recycling agent at either temperature. Aramid-fibers degrade, depending on the particular recycling agent, from slightly up to extremely strong. This leaves one with the possibility to find a combination of matrix resin and recycling agent, which does not affect the aramid-fiber significantly. In the case of natural fibers, the dependence on the particular recycling media is very strong: some media do not affect the fiber significantly;others reduce the mechanical properties (tensile strength and elongation at break) significantly, and still others even improve both mechanical properties strongly. From the Recyclate, the authors synthesize and subsequently characterize a number of new polyurethane thermosets (foamed and solid samples) with different contents of recyclate, exhibiting Tg in the range of 60°C to 128°C.展开更多
Recyclability of thermosetting polymers and their composites is a challenge for alleviating environmental pollution and resource waste.In this study,solvent-recyclable thermosetting polyimide(PI)and its composite were...Recyclability of thermosetting polymers and their composites is a challenge for alleviating environmental pollution and resource waste.In this study,solvent-recyclable thermosetting polyimide(PI)and its composite were successfully synthesized.The tensile strength,elongation at break,and Young’s modulus of PI are 108.70±7.29 MPa,19.35%±3.89%,and 2336.42±128.00 MPa,respectively.The addition of reduced graphene oxide(RGO)not only enhances the mechanical properties of PI but also endows it with excellent tribological properties.The PI illustrates a high recycling efficiency of 94.15%,but the recycled composite exhibits inferior mechanical properties.The recycling and utilization of PI and its composite are realized through imine bonds(-C=N),which provides new guidance for solving the problem of environmental pollution and resource waste and is potential application in the field of sustainable tribology.展开更多
文摘The article deals with potential use of waste materials in construction industry, specifically use of high density polyethylene (HDPE). The article is focused in particular on recycled polyethylene application in products designed for construction industry, especially for passive houses. Currently certain building details of passive houses are not perfect or their solution results in higher economic demands related to house purchase and its further use. For the purpose of this thesis details of windows installation in external walls and elimination of thermal bridges in wall footing have been chosen. Products were subject to mathematic modelling of thermal technique and statics. The executed mathematic models documented that products are fully functional and that the suggested product successfully eliminate insufficiencies of some currently applied solutions.
文摘The environmentally sustainable disposal and recycling of ever increasing volumes of electronic waste has become a global waste management issue. The addition of up to 25% polymeric waste PCBs (printed circuit boards) as fillers in polypropylene (PP) composites was partially successful: while the tensile modulus, flexural strength and tlexural modulus of composites were enhanced, the tenstle and impact strengths were found to decrease. As a lowering of impact strength can significantly limit the application of PP based composites, it is necessary to incorporate impact modifying polymers such as rubbery particles in the mix. We report on a novel investigation on the simultaneous utilization of electronic and automotive rubber waste as fillers in PP composites. These composites were prepared by using 25 wt.% polymeric PCB powder, up to 9% of ethylene propylene rubber (EPR), and PP: balance. The influence of EPR on the structural, thermal, mechanical and rheological properties of PP/PCB/ EPR composites was investigated. While the addition of EPR caused the nucleation of the I~ crystalline phase of PP, the onset temperature for thermal degradation was found to decrease by 8%. The tensile modulus and strength decreased by 1 b% and 19%, respectively; and the elongataon at break increased by -71%. The impact strength showed a maximum increase of-18% at 7 wt.%-9 wt.% EPR content. Various rheological properties were found to be well within the range of processing limits. This novel eco-friendly approach could help utilize significant amounts of polymeric electronic and automotive waste for fabricating valuable polymer composites.
文摘Thermoset based composites are used increasingly in industry for light weight applications, mainly for aircraft, windmills and for automobiles. Fiber reinforced thermoset polymers show a number of advantages over conventional materials, like metals, especially their better performance regarding their strength-to-weight ratio. However, composite recycling is a big issue, as there are almost no established recycling methods. The authors investigate the recyclability of polycyanurate homo- and copolymers with different recycling agents under different conditions. Also the influence of the recycling process on the most important reinforcement fibers, i.e. carbon-, glass-, aramid-, and natural-fiber is investigated. The authors find that: the recycling speed is not only dependent on the temperature, but also is significantly influenced by the particular recycling agents and the polycyanurate formulation. Hence, the stability against the recycling media can be adjusted over a broad range by adjusting the polymer composition. Furthermore, the authors find that the inorganic reinforcement fibers (carbon and glass) are almost unaffected by neither recycling agent at either temperature. Aramid-fibers degrade, depending on the particular recycling agent, from slightly up to extremely strong. This leaves one with the possibility to find a combination of matrix resin and recycling agent, which does not affect the aramid-fiber significantly. In the case of natural fibers, the dependence on the particular recycling media is very strong: some media do not affect the fiber significantly;others reduce the mechanical properties (tensile strength and elongation at break) significantly, and still others even improve both mechanical properties strongly. From the Recyclate, the authors synthesize and subsequently characterize a number of new polyurethane thermosets (foamed and solid samples) with different contents of recyclate, exhibiting Tg in the range of 60°C to 128°C.
基金financially supported by the Natural Science Foundation of Gansu Province(Grant No.22JR5RA108)the National Natural Science Foundation of China(Grant No.52205234)+1 种基金the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.Y2018457)the Key Program of the Lanzhou Institute of Chemical Physics,CAS(Grant No.KJZLZD-3).
文摘Recyclability of thermosetting polymers and their composites is a challenge for alleviating environmental pollution and resource waste.In this study,solvent-recyclable thermosetting polyimide(PI)and its composite were successfully synthesized.The tensile strength,elongation at break,and Young’s modulus of PI are 108.70±7.29 MPa,19.35%±3.89%,and 2336.42±128.00 MPa,respectively.The addition of reduced graphene oxide(RGO)not only enhances the mechanical properties of PI but also endows it with excellent tribological properties.The PI illustrates a high recycling efficiency of 94.15%,but the recycled composite exhibits inferior mechanical properties.The recycling and utilization of PI and its composite are realized through imine bonds(-C=N),which provides new guidance for solving the problem of environmental pollution and resource waste and is potential application in the field of sustainable tribology.