Innovatively addressing the challenge of difficult winter starts for vehicles in northern regions,this study has developed a Thermally Controlled Preheating Engine Activation System.This system ingeniously integrates ...Innovatively addressing the challenge of difficult winter starts for vehicles in northern regions,this study has developed a Thermally Controlled Preheating Engine Activation System.This system ingeniously integrates a thermal insulation kettle,an efficient water pump,precision valves,and temperature sensors,all closely linked with the engine’s coolant circulation system.In cold environments,the system automatically initiates a preheating mechanism by circulating and heating the coolant,significantly enhancing engine startup efficiency and reducing wear caused by cold starts.The anticipated outcome of this research is to substantially improve the operational reliability of vehicles in cold climates,extend their lifespan,promote energy conservation and emissions reduction,and drive the automotive industry towards greener,more efficient,and intelligent technologies,thus laying a solid foundation for industry upgrades and transformation.展开更多
Molecular-dynamics(MD)simulations have been performed for the growth of a spherical methane-hydrate nano-crystallite,surrounded by a supersaturated water–methane liquid phase,using both a hybrid and globalsystem ther...Molecular-dynamics(MD)simulations have been performed for the growth of a spherical methane-hydrate nano-crystallite,surrounded by a supersaturated water–methane liquid phase,using both a hybrid and globalsystem thermostatting approach.It was found that hybrid thermostatting led to more sluggish growth and the establishment of a radial temperature profile about the spherical hydrate crystallite,in which the growing crystal phase is at a higher temperature than the surrounding liquid phase in the interfacial region,owing to latent-heat dissipation.In addition,Onsager’s-hypothesis fluctuation–dissipation analysis of fluctuations in the number of crystal-state water molecules at the interface shows slower growth.展开更多
In this paper, single-walled carbon nanotubes (SWCNTs) are studied through molecular dynamics (MD) simulation. The simulations are performed at temperatures of 1 and 300K separately, with atomic interactions chara...In this paper, single-walled carbon nanotubes (SWCNTs) are studied through molecular dynamics (MD) simulation. The simulations are performed at temperatures of 1 and 300K separately, with atomic interactions characterized by the second Reactive Empirical Bond Order (REBO) potential, and temperature controlled by a certain thermostat, i.e. by separately using the velocity scaling, the Berendsen scheme, the Nose-Hoover scheme, and the generalized Langevin scheme. Results for a (5,5) SWCNT with a length of 24.5 nm show apparent distortions in nanotube configuration, which can further enter into periodic vibrations, except in simulations using the generalized Langevin thermostat, which is ascribed to periodic boundary conditions used in simulation. The periodic boundary conditions may implicitly be applied in the form of an inconsistent constraint along the axis of the nanotube. The combination of the inconsistent constraint with the cumulative errors in calculation causes the distortions of nanotubes. When the generalized Langevin thermostat is applied, inconsistently distributed errors are dispersed by the random forces, and so the distortions and vibrations disappear. This speculation is confirmed by simulation in the case without periodic boundary conditions, where no apparent distortion and vibration occur. It is also revealed that numerically induced distortions and vibrations occur only in simulation of nanotubes with a small diameter and a large length-to-diameter ratio. When MD simulation is applied to a system with a particular geometry, attention should be paid to avoiding the numerical distortion and the result infidelity.展开更多
The paper demonstrates deep unity of classic and quantum physics at the space thermostat (ST) presence, which fulfilled all space by the temperature T0 = 2.73 K. The ST presents itself the Cosmic Microwave Background ...The paper demonstrates deep unity of classic and quantum physics at the space thermostat (ST) presence, which fulfilled all space by the temperature T0 = 2.73 K. The ST presents itself the Cosmic Microwave Background (CMB). From the main quantum position we consider the ST/CMB as the wave function carrier (“quantum background”). The paper is devoted to ST/CMB medium the classic conservation laws of mass, momentum and energy. We show the soliton like solutions of our classic model correspond to Schrodinger’s quantum solutions, demonstrate the atom hydrogen specter and other quantum peculiarities. The paper contains typical technical examples classic/ quantum simulation at the ST presence.展开更多
The designed thermostat is based on the microcontroller featuring intelligence, programmable, environmental protection and power saving. The thermostat design is mainly composed of hardware and software design, the ha...The designed thermostat is based on the microcontroller featuring intelligence, programmable, environmental protection and power saving. The thermostat design is mainly composed of hardware and software design, the hardware includes the power supply circuit, temperature measurement circuit, humidity measurement circuit and backlight circuit; while the software design includes temperature measurement and compensation algorithm, moreover software flowchart is given as well. Finally the power supply circuit is simulated by the software of Pspice and the creative power stealing mode is verified by the simulation results. A target board is stuffed by hand with Pb-free electronic components and used to test hardware and debug software. Since the Pb-free components were used, power stealing mode is designed in hardware and temperature compensation algorithm is accomplished in software, and the thermostat is outstanding with its features of "green" and "power saving".展开更多
Accurate and efficient integration of the equations of motion is indispensable for molecular dynamics(MD)simulations.Despite the massive use of the conventional leapfrog(LF)integrator in modern computational tools wit...Accurate and efficient integration of the equations of motion is indispensable for molecular dynamics(MD)simulations.Despite the massive use of the conventional leapfrog(LF)integrator in modern computational tools within the framework of MD propagation,further development for better performance is still possible.The alternative version of LF in the middle thermostat scheme(LFmiddle)achieves a higher order of accuracy and efficiency and maintains stable dynamics even with the integration time stepsize extended by several folds.In this work,we perform a benchmark test of the two integrators(LF and LF-middle)in extensive conventional and enhanced sampling simulations,aiming at quantifying the time-stepsizeinduced variations of global properties(e.g.,detailed potential energy terms)as well as of local observables(e.g.,free energy changes or bondlengths)in practical simulations of complex systems.The test set is composed of six chemically and biologically relevant systems,including the conformational change of dihedral flipping in the N-methylacetamide and an AT(AdenineThymine)tract,the intra-molecular proton transfer inside malonaldehyde,the binding free energy calculations of benzene and phenol targeting T4 lysozyme L99A,the hydroxyl bond variations in ethaline deep eutectic solvent,and the potential energy of the blue-light using flavin photoreceptor.It is observed that the time-step-induced error is smaller for the LFmiddle scheme.The outperformance of LF-middle over the conventional LF integrator is much more significant for global properties than local observables.Overall,the current work demonstrates that the LF-middle scheme should be preferably applied to obtain accurate thermodynamics in the simulation of practical chemical and biological systems.展开更多
In this paper, the impact of limiting thermostat on the rupture event occuring in Fuel-Oil burner fuel pre-heaters' resistant (heat generating) wires is inspected numerically. Gaseous fuel content in the pipeline h...In this paper, the impact of limiting thermostat on the rupture event occuring in Fuel-Oil burner fuel pre-heaters' resistant (heat generating) wires is inspected numerically. Gaseous fuel content in the pipeline has also been issued as a possibility. Heater's inner temperature distributions have been simulated by an in-house MATrix LABoratory (MATLAB) script in order to understand the resistant wire exposure to high temperatures by numerous scenarios. It is concluded that the effect of fuel flowrate is not a major effect on the wires' fate because of the limiting thermostat co-working. The main difference between the calculations is the effect of thermostat cut off function. The numerical simulations enlightened the dominant effect of thermostat sensing delay, so the overheating event. Intolerable delay results with a quick drop in the thermal efficiency and an increased possibility on wire rupture due to overheating which means a burner malfunction. Referring to the first numerical simulation results, a distributed and reduced heat flux was implemented with the same fluid and thermodynamic properties on a revised pre-heater model with an increased heater plate. The increment, thus the reduction on the heat flux of the ribbon wires has been noted as the key for safe operation.展开更多
BACKGROUND Pain in the back or pelvis or fear of back pain may affect the timing or cocontraction of the core muscles.In both static and dynamic movements,the Sahrmann core stability test provides an assessment of cor...BACKGROUND Pain in the back or pelvis or fear of back pain may affect the timing or cocontraction of the core muscles.In both static and dynamic movements,the Sahrmann core stability test provides an assessment of core muscle activation and a person's ability to stabilize the lumbopelvic complex.Preparatory cues and images can be used to increase the activation of these muscles.To attain optimal movement patterns,it will be necessary to determine what cueing will give the most effective results for core stability.AIM To investigate the effects of external and internal cues on core muscle activation during the Sahrmann five-level core stability test.METHODS Total 68 participants(21.83±3.47 years)were randomly allocated to an external(n=35)or internal cue group(n=33).Participants performed the Sahrmann fivelevel core stability test without a cue as baseline and the five-level stability exercises with an internal or external cue.External cue group received a pressure biofeedback unit(PBU),and the internal cue group received an audio cue.A Delsys Trigno^(TM)surface electromyography unit was used for muscle activation from the rectus abdominis,external oblique,and transverse abdominis/internal oblique muscles.RESULTS Linear mixed effects model analysis showed that cueing had a significant effect on core muscle activation(P=0.001);however,there was no significant difference between cue types(internal or external)(P=0.130).CONCLUSION Both external and internal cueing have significant effects on core muscle activation during the Sahrmann five-level core stability test and the PBU does not create higher muscle activation than internal cueing.展开更多
There is an increasing interest in exploiting theflexibility of loads to provide ancillary services to the grid.In this paper we study how response delays and lockout constraints affect the controllability of an aggre...There is an increasing interest in exploiting theflexibility of loads to provide ancillary services to the grid.In this paper we study how response delays and lockout constraints affect the controllability of an aggregation of refrigerators offering primary frequency control(PFC).First we examine the effect of delays in PFC provision from an aggregation of refrigerators, using a two-area power system. We propose a framework to systematically address frequency measurement and response delays and we determine safe values for the total delays via simulations. We introduce a controllability index to evaluate PFC provision under lockout constraints of refrigerators compressors. We conduct extensive simulations to study the effects of measurement delay, ramping times, lockout durations and rotational inertia on the controllability of the aggregation and system stability. Finally, we discuss solutions for offering reliable PFC provision from thermostatically controlled loads under lockout constraints and we propose a supervisory control to enhance the robustness of their controllers.展开更多
Occupant-centric controls(OcC)is an indoor climate control approach whereby occupant feedback is used in the sequence of operation of building energy systems.While OcC has been used in a wide range of building applica...Occupant-centric controls(OcC)is an indoor climate control approach whereby occupant feedback is used in the sequence of operation of building energy systems.While OcC has been used in a wide range of building applications,an OcC category that has received considerable research interest is learning occupants'thermal preferences through their thermostat interactions and adapting temperature setpoints accordingly.Many recent studies used reinforcement learning(RL)as an agent for OcC to optimize energy use and occupant comfort.These studies depended on predicted mean vote(PMV)models or constant comfort ranges to represent comfort,while only few of them used thermostat interactions.This paper addresses this gap by introducing a new off-policy reinforcement learning(RL)algorithm that imitates the occupant behaviour by utilizing unsolicited occupant thermostat overrides.The algorithm is tested with a number of synthetically generated occupant behaviour models implemented via the Python APl of EnergyPlus.The simulation results indicate that the RL algorithm could rapidly learn preferences for all tested occupant behaviour scenarios with minimal exploration events.While substantial energy savings were observed with most occupant scenarios,the impact on the energy savings varied depending on occupants'preferences and thermostat use behaviour stochasticity.展开更多
As the core components of fifth-generation(5G)communication technology,optical modules should be consistently miniaturized in size while improving their level of integration.This inevitably leads to a dramatic spike i...As the core components of fifth-generation(5G)communication technology,optical modules should be consistently miniaturized in size while improving their level of integration.This inevitably leads to a dramatic spike in power consumption and a consequent increase in heat flow density when operating in a confined space.To ensure a successful start-up and operation of 5G optical modules,active cooling and precise temperature control via the Peltier effect in confined space is essential yet challenging.In this work,p-type Bi_(0.5)Sb_(1.5)Te_(3)and n-type Bi_(2)Te_(2.7)Se_(0.3)bulk thermoelectric(TE)materials are used,and a micro thermoelectric thermostat(micro-TET)(device size,2×9.3×1.1mm^(3);leg size,0.4×0.4×0.5mm^(3);number of legs,44)is successfully integrated into a 5G optical module with Quad Small Form Pluggable 28 interface.As a result,the internal temperature of this kind of optical module is always maintained at 45.7℃ and the optical power is up to 7.4 dBm.Furthermore,a multifactor design roadmap is created based on a 3D numerical model using the ANSYS finite element method,taking into account the number of legs(N),leg width(W),leg length(L),filling atmosphere,electric contact resistance(Rec),thermal contact resistance(Rtc),ambient temperature(Ta),and the heat generated by the laser source(QL).It facilitates the integrated fabrication of micro-TET,and shows the way to enhance packaging and performance under different operating conditions.According to the roadmap,the micro-TET(2×9.3×1mm^(3),W=0.3 mm,L=0.4 mm,N=68 legs)is fabricated and consumes only 0.89W in cooling mode(Q_(L)=0.7W,T_(a)=80℃)and 0.36Win heating mode(T_(a)=0℃)to maintain the laser temperature of 50℃.This research will hopefully be applied to other microprocessors for precise temperature control and integrated manufacturing.展开更多
The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabil...The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabilities along the networks has been increasing over last few decades.Assessment of stability of natural and artificial slopes due to construction of these connecting road networks is significant in safely executing these roads throughout the year.Several rock mass classification methods are generally used to assess the strength and deformability of rock mass.This study assesses slope stability along the NH-1A of Ramban district of North Western Himalayas.Various structurally and non-structurally controlled rock mass classification systems have been applied to assess the stability conditions of 14 slopes.For evaluating the stability of these slopes,kinematic analysis was performed along with geological strength index(GSI),rock mass rating(RMR),continuous slope mass rating(CoSMR),slope mass rating(SMR),and Q-slope in the present study.The SMR gives three slopes as completely unstable while CoSMR suggests four slopes as completely unstable.The stability of all slopes was also analyzed using a design chart under dynamic and static conditions by slope stability rating(SSR)for the factor of safety(FoS)of 1.2 and 1 respectively.Q-slope with probability of failure(PoF)1%gives two slopes as stable slopes.Stable slope angle has been determined based on the Q-slope safe angle equation and SSR design chart based on the FoS.The value ranges given by different empirical classifications were RMR(37-74),GSI(27.3-58.5),SMR(11-59),and CoSMR(3.39-74.56).Good relationship was found among RMR&SSR and RMR&GSI with correlation coefficient(R 2)value of 0.815 and 0.6866,respectively.Lastly,a comparative stability of all these slopes based on the above classification has been performed to identify the most critical slope along this road.展开更多
Basalt is a major component of the earth and moon crust.Mineral composition and temperature influence frictional instability and thus the potential for seismicity on basaltic faults.We performed velocitystepping shear...Basalt is a major component of the earth and moon crust.Mineral composition and temperature influence frictional instability and thus the potential for seismicity on basaltic faults.We performed velocitystepping shear experiments on basalt gouges at a confining pressure of 100 MPa,temperatures in the range of 100-400℃ and with varied obsidian mass fractions of 0-100%under wet/dry conditions to investigate the frictional strength and stability of basaltic faults.We observe a transition from velocity-neutral to velocity-weakening behaviors with increasing obsidian content.The frictional stability response of the mixed obsidian/basalt gouges is characterized by a transition from velocitystrengthening to velocity-weakening at 200℃ and another transition to velocity-strengthening at temperatures>300℃.Conversely,frictional strengths of the obsidian-bearing gouges are insensitive to temperature and wet/dry conditions.These results suggest that obsidian content dominates the potential seismic response of basaltic faults with the effect of temperature controlling the range of seismogenic depths.Thus,shallow moonquakes tend to occur in the lower lunar crust due to the corresponding anticipated higher glass content and a projected temperature range conducive to velocity-weakening behavior.These observations contribute to a better understanding of the nucleation mechanism of shallow seismicity in basaltic faults.展开更多
Different from oil and gas production,hydrate reservoirs are shallow and unconsolidated,whose mechanical properties deteriorate with hydrate decomposition.Therefore,the formations will undergo significant subsidence d...Different from oil and gas production,hydrate reservoirs are shallow and unconsolidated,whose mechanical properties deteriorate with hydrate decomposition.Therefore,the formations will undergo significant subsidence during depressurization,which will destroy the original force state of the production well.However,existing research on the stability of oil and gas production wells assumes the formation to be stable,and lacks consideration of the force exerted on the hydrate production well by formation subsidence caused by hydrate decomposition during production.To fill this gap,this paper proposes an analytical method for the dynamic evolution of the stability of hydrate production well considering the effects of hydrate decomposition.Based on the mechanical model of the production well,the basis for stability analysis has been proposed.A multi-field coupling model of the force state of the production well considering the effect of hydrate decomposition and formation subsidence is established,and a solver is developed.The analytical approach is verified by its good agreement with the results from the numerical method.A case study found that the decomposition of hydrate will increase the pulling-down force and reduce the supporting force,which is the main reason for the stability deterioration.The higher the initial hydrate saturation,the larger the reservoir thickness,and the lower the production pressure,the worse the stability or even instability.This work can provide a theoretical reference for the stability maintaining of the production well.展开更多
Degradation of rock mass produced by rock blasting,stress relief,and other causes is an important factor in the assessment of rock strength.Quantified as a disturbance factor,such degradation varies depending on blast...Degradation of rock mass produced by rock blasting,stress relief,and other causes is an important factor in the assessment of rock strength.Quantified as a disturbance factor,such degradation varies depending on blasting control,stress state and stress relief,and rock mass quality.This study focuses on the impact of disturbance on the safety of slopes.The disturbance in the rock mass is characterized by the geometry of the disturbed zone,its size,the magnitude,and the decaying rate with the distance away from the slope surface.A method accounting for decay of rock disturbance is presented.A study of the impact of rock disturbance characteristics on the quantitative stability measures of slopes was carried out.These characteristics included disturbed zone geometry,its thickness,the maximum magnitude of the disturbance factor,and the rate of disturbance decaying.The thickness of the disturbed zone and the maximum factor of disturbance were found to have the greatest impact.For example,the factor of safety for a 45slope in low-quality rock mass can decrease from 1.96 to 1.09 as the thickness of the disturbed zone increases from 1/4 of slope height H to the double of H and the maximum disturbance factor increases from 0.5 to 1.Uniform thickness of a disturbed zone was found to yield more conservative outcomes than the triangular zones did.The critical failure surfaces were found to be shallow for high rates of disturbance decay,and they were the deepest for spatially uniform disturbance factors.展开更多
The influence of variable viscosity and double diffusion on the convective stability of a nanofluid flow in an inclined porous channel is investigated.The DarcyBrinkman model is used to characterize the fluid flow dyn...The influence of variable viscosity and double diffusion on the convective stability of a nanofluid flow in an inclined porous channel is investigated.The DarcyBrinkman model is used to characterize the fluid flow dynamics in porous materials.The analytical solutions are obtained for the unidirectional and completely developed flow.Based on a normal mode analysis,the generalized eigenvalue problem under a perturbed state is solved.The eigenvalue problem is then solved by the spectral method.Finally,the critical Rayleigh number with the corresponding wavenumber is evaluated at the assigned values of the other flow-governing parameters.The results show that increasing the Darcy number,the Lewis number,the Dufour parameter,or the Soret parameter increases the stability of the system,whereas increasing the inclination angle of the channel destabilizes the flow.Besides,the flow is the most unstable when the channel is vertically oriented.展开更多
Face stability is an essential issue in tunnel design and construction.Layered rock masses are typical and ubiquitous;uncertainties in rock properties always exist.In view of this,a comprehensive method,which combines...Face stability is an essential issue in tunnel design and construction.Layered rock masses are typical and ubiquitous;uncertainties in rock properties always exist.In view of this,a comprehensive method,which combines the Upper bound Limit analysis of Tunnel face stability,the Polynomial Chaos Kriging,the Monte-Carlo Simulation and Analysis of Covariance method(ULT-PCK-MA),is proposed to investigate the seismic stability of tunnel faces.A two-dimensional analytical model of ULT is developed to evaluate the virtual support force based on the upper bound limit analysis.An efficient probabilistic analysis method PCK-MA based on the adaptive Polynomial Chaos Kriging metamodel is then implemented to investigate the parameter uncertainty effects.Ten input parameters,including geological strength indices,uniaxial compressive strengths and constants for three rock formations,and the horizontal seismic coefficients,are treated as random variables.The effects of these parameter uncertainties on the failure probability and sensitivity indices are discussed.In addition,the effects of weak layer position,the middle layer thickness and quality,the tunnel diameter,the parameters correlation,and the seismic loadings are investigated,respectively.The results show that the layer distributions significantly influence the tunnel face probabilistic stability,particularly when the weak rock is present in the bottom layer.The efficiency of the proposed ULT-PCK-MA is validated,which is expected to facilitate the engineering design and construction.展开更多
There have been reports about Fe ions boosting oxygen evolution reaction(OER)activity of Ni-based catalysts in alkaline conditions,while the origin and reason for the enhancement remains elusive.Herein,we attempt to i...There have been reports about Fe ions boosting oxygen evolution reaction(OER)activity of Ni-based catalysts in alkaline conditions,while the origin and reason for the enhancement remains elusive.Herein,we attempt to identify the activity improvement and discover that Ni sites act as a host to attract Fe(Ⅲ)to form Fe(Ni)(Ⅲ)binary centres,which serve as the dynamic sites to promote OER activity and stability by cyclical formation of intermediates(Fe(Ⅲ)→Fe(Ni)(Ⅲ)→Fe(Ni)-OH→Fe(Ni)-O→Fe(Ni)OOH→Fe(Ⅲ))at the electrode/electrolyte interface to emit O_(2).Additionally,some ions(Co(Ⅱ),Ni(Ⅱ),and Cr(Ⅲ))can also be the active sites to catalyze the OER process on a variety of electrodes.The Fe(Ⅲ)-catalyzed overall water-splitting electrolyzer comprising bare Ni foam as the anode and Pt/Ni-Mo as the cathode demonstrates robust stability for 1600 h at 1000 mA cm^(-2)@~1.75 V.The results provide insights into the ioncatalyzed effects boosting OER performance.展开更多
The search for new green and efficient stabilizers is of great importance for the stabilization of nitrocellulose(NC). This is due to the shortcomings of traditional stabilizers, such as high toxicity. In this study, ...The search for new green and efficient stabilizers is of great importance for the stabilization of nitrocellulose(NC). This is due to the shortcomings of traditional stabilizers, such as high toxicity. In this study, reduced polyaniline(r-PANI), which has a similar functional structure to diphenylamine(DPA) but is non-toxic, was prepared from PANI based on the action with N_(2)H_(4) and NH_(3)-H_(2)O, and used for the first time as a potential stabilizer for NC. XPS, FTIR, Raman, and SEM were used to characterize the reduced chemical structure and surface morphology of r-PANI. In addition, the effect of r-PANI on the stabilization of NC was characterized using DSC, VST, isothermal TG, and MMC. Thermal weight loss was reduced by 83% and 68% and gas pressure release by 75% and 49% compared to pure NC and NC&3%DPA, respectively.FTIR and XPS were used to characterize the structural changes of r-PANI before and after reaction with NO_(2). The 1535 cm^(-1) and 1341 cm^(-1) of the FTIR and the 404.98 eV and 406.05 eV of the XPS showed that the -NO_(2) was generated by the absorption of NO_(2). Furthermore, the quantum chemical calculation showed that NO_(2) was directly immobilized on r-PANI by forming -NO_(2) in the neighboring position of the benzene ring.展开更多
文摘Innovatively addressing the challenge of difficult winter starts for vehicles in northern regions,this study has developed a Thermally Controlled Preheating Engine Activation System.This system ingeniously integrates a thermal insulation kettle,an efficient water pump,precision valves,and temperature sensors,all closely linked with the engine’s coolant circulation system.In cold environments,the system automatically initiates a preheating mechanism by circulating and heating the coolant,significantly enhancing engine startup efficiency and reducing wear caused by cold starts.The anticipated outcome of this research is to substantially improve the operational reliability of vehicles in cold climates,extend their lifespan,promote energy conservation and emissions reduction,and drive the automotive industry towards greener,more efficient,and intelligent technologies,thus laying a solid foundation for industry upgrades and transformation.
基金the Irish Research Council for Government-of-Ireland postdoctoral fellowship, under grant no. GOIPD/2016/365
文摘Molecular-dynamics(MD)simulations have been performed for the growth of a spherical methane-hydrate nano-crystallite,surrounded by a supersaturated water–methane liquid phase,using both a hybrid and globalsystem thermostatting approach.It was found that hybrid thermostatting led to more sluggish growth and the establishment of a radial temperature profile about the spherical hydrate crystallite,in which the growing crystal phase is at a higher temperature than the surrounding liquid phase in the interfacial region,owing to latent-heat dissipation.In addition,Onsager’s-hypothesis fluctuation–dissipation analysis of fluctuations in the number of crystal-state water molecules at the interface shows slower growth.
基金Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No 20060003025)the State Key Program for Basic Research of China (Grant No 2003CB716201)
文摘In this paper, single-walled carbon nanotubes (SWCNTs) are studied through molecular dynamics (MD) simulation. The simulations are performed at temperatures of 1 and 300K separately, with atomic interactions characterized by the second Reactive Empirical Bond Order (REBO) potential, and temperature controlled by a certain thermostat, i.e. by separately using the velocity scaling, the Berendsen scheme, the Nose-Hoover scheme, and the generalized Langevin scheme. Results for a (5,5) SWCNT with a length of 24.5 nm show apparent distortions in nanotube configuration, which can further enter into periodic vibrations, except in simulations using the generalized Langevin thermostat, which is ascribed to periodic boundary conditions used in simulation. The periodic boundary conditions may implicitly be applied in the form of an inconsistent constraint along the axis of the nanotube. The combination of the inconsistent constraint with the cumulative errors in calculation causes the distortions of nanotubes. When the generalized Langevin thermostat is applied, inconsistently distributed errors are dispersed by the random forces, and so the distortions and vibrations disappear. This speculation is confirmed by simulation in the case without periodic boundary conditions, where no apparent distortion and vibration occur. It is also revealed that numerically induced distortions and vibrations occur only in simulation of nanotubes with a small diameter and a large length-to-diameter ratio. When MD simulation is applied to a system with a particular geometry, attention should be paid to avoiding the numerical distortion and the result infidelity.
文摘The paper demonstrates deep unity of classic and quantum physics at the space thermostat (ST) presence, which fulfilled all space by the temperature T0 = 2.73 K. The ST presents itself the Cosmic Microwave Background (CMB). From the main quantum position we consider the ST/CMB as the wave function carrier (“quantum background”). The paper is devoted to ST/CMB medium the classic conservation laws of mass, momentum and energy. We show the soliton like solutions of our classic model correspond to Schrodinger’s quantum solutions, demonstrate the atom hydrogen specter and other quantum peculiarities. The paper contains typical technical examples classic/ quantum simulation at the ST presence.
基金Youth Research Start-up Fund of XinJiang University(QN070136)National Natural Science Foundation of China(50667002)
文摘The designed thermostat is based on the microcontroller featuring intelligence, programmable, environmental protection and power saving. The thermostat design is mainly composed of hardware and software design, the hardware includes the power supply circuit, temperature measurement circuit, humidity measurement circuit and backlight circuit; while the software design includes temperature measurement and compensation algorithm, moreover software flowchart is given as well. Finally the power supply circuit is simulated by the software of Pspice and the creative power stealing mode is verified by the simulation results. A target board is stuffed by hand with Pb-free electronic components and used to test hardware and debug software. Since the Pb-free components were used, power stealing mode is designed in hardware and temperature compensation algorithm is accomplished in software, and the thermostat is outstanding with its features of "green" and "power saving".
基金supported by the National Natural Science Foundation of China(No.21961142017)the Ministry of Science and Technology of China(No.2017YFA0204901)。
文摘Accurate and efficient integration of the equations of motion is indispensable for molecular dynamics(MD)simulations.Despite the massive use of the conventional leapfrog(LF)integrator in modern computational tools within the framework of MD propagation,further development for better performance is still possible.The alternative version of LF in the middle thermostat scheme(LFmiddle)achieves a higher order of accuracy and efficiency and maintains stable dynamics even with the integration time stepsize extended by several folds.In this work,we perform a benchmark test of the two integrators(LF and LF-middle)in extensive conventional and enhanced sampling simulations,aiming at quantifying the time-stepsizeinduced variations of global properties(e.g.,detailed potential energy terms)as well as of local observables(e.g.,free energy changes or bondlengths)in practical simulations of complex systems.The test set is composed of six chemically and biologically relevant systems,including the conformational change of dihedral flipping in the N-methylacetamide and an AT(AdenineThymine)tract,the intra-molecular proton transfer inside malonaldehyde,the binding free energy calculations of benzene and phenol targeting T4 lysozyme L99A,the hydroxyl bond variations in ethaline deep eutectic solvent,and the potential energy of the blue-light using flavin photoreceptor.It is observed that the time-step-induced error is smaller for the LFmiddle scheme.The outperformance of LF-middle over the conventional LF integrator is much more significant for global properties than local observables.Overall,the current work demonstrates that the LF-middle scheme should be preferably applied to obtain accurate thermodynamics in the simulation of practical chemical and biological systems.
文摘In this paper, the impact of limiting thermostat on the rupture event occuring in Fuel-Oil burner fuel pre-heaters' resistant (heat generating) wires is inspected numerically. Gaseous fuel content in the pipeline has also been issued as a possibility. Heater's inner temperature distributions have been simulated by an in-house MATrix LABoratory (MATLAB) script in order to understand the resistant wire exposure to high temperatures by numerous scenarios. It is concluded that the effect of fuel flowrate is not a major effect on the wires' fate because of the limiting thermostat co-working. The main difference between the calculations is the effect of thermostat cut off function. The numerical simulations enlightened the dominant effect of thermostat sensing delay, so the overheating event. Intolerable delay results with a quick drop in the thermal efficiency and an increased possibility on wire rupture due to overheating which means a burner malfunction. Referring to the first numerical simulation results, a distributed and reduced heat flux was implemented with the same fluid and thermodynamic properties on a revised pre-heater model with an increased heater plate. The increment, thus the reduction on the heat flux of the ribbon wires has been noted as the key for safe operation.
文摘BACKGROUND Pain in the back or pelvis or fear of back pain may affect the timing or cocontraction of the core muscles.In both static and dynamic movements,the Sahrmann core stability test provides an assessment of core muscle activation and a person's ability to stabilize the lumbopelvic complex.Preparatory cues and images can be used to increase the activation of these muscles.To attain optimal movement patterns,it will be necessary to determine what cueing will give the most effective results for core stability.AIM To investigate the effects of external and internal cues on core muscle activation during the Sahrmann five-level core stability test.METHODS Total 68 participants(21.83±3.47 years)were randomly allocated to an external(n=35)or internal cue group(n=33).Participants performed the Sahrmann fivelevel core stability test without a cue as baseline and the five-level stability exercises with an internal or external cue.External cue group received a pressure biofeedback unit(PBU),and the internal cue group received an audio cue.A Delsys Trigno^(TM)surface electromyography unit was used for muscle activation from the rectus abdominis,external oblique,and transverse abdominis/internal oblique muscles.RESULTS Linear mixed effects model analysis showed that cueing had a significant effect on core muscle activation(P=0.001);however,there was no significant difference between cue types(internal or external)(P=0.130).CONCLUSION Both external and internal cueing have significant effects on core muscle activation during the Sahrmann five-level core stability test and the PBU does not create higher muscle activation than internal cueing.
基金financial support of the EUDP funded project Ecogrid 2.0.financial support of Nano-Tera.ch for the HeatReserves projectthe Swiss Federal Office of Energy and Swisselectric Research for the SmartGrid-Polysun:Design Tool for Local Load Management project
文摘There is an increasing interest in exploiting theflexibility of loads to provide ancillary services to the grid.In this paper we study how response delays and lockout constraints affect the controllability of an aggregation of refrigerators offering primary frequency control(PFC).First we examine the effect of delays in PFC provision from an aggregation of refrigerators, using a two-area power system. We propose a framework to systematically address frequency measurement and response delays and we determine safe values for the total delays via simulations. We introduce a controllability index to evaluate PFC provision under lockout constraints of refrigerators compressors. We conduct extensive simulations to study the effects of measurement delay, ramping times, lockout durations and rotational inertia on the controllability of the aggregation and system stability. Finally, we discuss solutions for offering reliable PFC provision from thermostatically controlled loads under lockout constraints and we propose a supervisory control to enhance the robustness of their controllers.
文摘Occupant-centric controls(OcC)is an indoor climate control approach whereby occupant feedback is used in the sequence of operation of building energy systems.While OcC has been used in a wide range of building applications,an OcC category that has received considerable research interest is learning occupants'thermal preferences through their thermostat interactions and adapting temperature setpoints accordingly.Many recent studies used reinforcement learning(RL)as an agent for OcC to optimize energy use and occupant comfort.These studies depended on predicted mean vote(PMV)models or constant comfort ranges to represent comfort,while only few of them used thermostat interactions.This paper addresses this gap by introducing a new off-policy reinforcement learning(RL)algorithm that imitates the occupant behaviour by utilizing unsolicited occupant thermostat overrides.The algorithm is tested with a number of synthetically generated occupant behaviour models implemented via the Python APl of EnergyPlus.The simulation results indicate that the RL algorithm could rapidly learn preferences for all tested occupant behaviour scenarios with minimal exploration events.While substantial energy savings were observed with most occupant scenarios,the impact on the energy savings varied depending on occupants'preferences and thermostat use behaviour stochasticity.
基金National Key Research and Development Program of China,Grant/Award Number:2019YFA0704900National Natural Science Foundation of China,Grant/Award Number:52202289。
文摘As the core components of fifth-generation(5G)communication technology,optical modules should be consistently miniaturized in size while improving their level of integration.This inevitably leads to a dramatic spike in power consumption and a consequent increase in heat flow density when operating in a confined space.To ensure a successful start-up and operation of 5G optical modules,active cooling and precise temperature control via the Peltier effect in confined space is essential yet challenging.In this work,p-type Bi_(0.5)Sb_(1.5)Te_(3)and n-type Bi_(2)Te_(2.7)Se_(0.3)bulk thermoelectric(TE)materials are used,and a micro thermoelectric thermostat(micro-TET)(device size,2×9.3×1.1mm^(3);leg size,0.4×0.4×0.5mm^(3);number of legs,44)is successfully integrated into a 5G optical module with Quad Small Form Pluggable 28 interface.As a result,the internal temperature of this kind of optical module is always maintained at 45.7℃ and the optical power is up to 7.4 dBm.Furthermore,a multifactor design roadmap is created based on a 3D numerical model using the ANSYS finite element method,taking into account the number of legs(N),leg width(W),leg length(L),filling atmosphere,electric contact resistance(Rec),thermal contact resistance(Rtc),ambient temperature(Ta),and the heat generated by the laser source(QL).It facilitates the integrated fabrication of micro-TET,and shows the way to enhance packaging and performance under different operating conditions.According to the roadmap,the micro-TET(2×9.3×1mm^(3),W=0.3 mm,L=0.4 mm,N=68 legs)is fabricated and consumes only 0.89W in cooling mode(Q_(L)=0.7W,T_(a)=80℃)and 0.36Win heating mode(T_(a)=0℃)to maintain the laser temperature of 50℃.This research will hopefully be applied to other microprocessors for precise temperature control and integrated manufacturing.
文摘The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabilities along the networks has been increasing over last few decades.Assessment of stability of natural and artificial slopes due to construction of these connecting road networks is significant in safely executing these roads throughout the year.Several rock mass classification methods are generally used to assess the strength and deformability of rock mass.This study assesses slope stability along the NH-1A of Ramban district of North Western Himalayas.Various structurally and non-structurally controlled rock mass classification systems have been applied to assess the stability conditions of 14 slopes.For evaluating the stability of these slopes,kinematic analysis was performed along with geological strength index(GSI),rock mass rating(RMR),continuous slope mass rating(CoSMR),slope mass rating(SMR),and Q-slope in the present study.The SMR gives three slopes as completely unstable while CoSMR suggests four slopes as completely unstable.The stability of all slopes was also analyzed using a design chart under dynamic and static conditions by slope stability rating(SSR)for the factor of safety(FoS)of 1.2 and 1 respectively.Q-slope with probability of failure(PoF)1%gives two slopes as stable slopes.Stable slope angle has been determined based on the Q-slope safe angle equation and SSR design chart based on the FoS.The value ranges given by different empirical classifications were RMR(37-74),GSI(27.3-58.5),SMR(11-59),and CoSMR(3.39-74.56).Good relationship was found among RMR&SSR and RMR&GSI with correlation coefficient(R 2)value of 0.815 and 0.6866,respectively.Lastly,a comparative stability of all these slopes based on the above classification has been performed to identify the most critical slope along this road.
基金funded by the National Natural Science Foundation of China(Nos.42320104003 and 42107163)the Funda mental Research Funds for the Central Universities.Derek Elsworth acknowledges support from the G.Albert Shoemaker endowment.
文摘Basalt is a major component of the earth and moon crust.Mineral composition and temperature influence frictional instability and thus the potential for seismicity on basaltic faults.We performed velocitystepping shear experiments on basalt gouges at a confining pressure of 100 MPa,temperatures in the range of 100-400℃ and with varied obsidian mass fractions of 0-100%under wet/dry conditions to investigate the frictional strength and stability of basaltic faults.We observe a transition from velocity-neutral to velocity-weakening behaviors with increasing obsidian content.The frictional stability response of the mixed obsidian/basalt gouges is characterized by a transition from velocitystrengthening to velocity-weakening at 200℃ and another transition to velocity-strengthening at temperatures>300℃.Conversely,frictional strengths of the obsidian-bearing gouges are insensitive to temperature and wet/dry conditions.These results suggest that obsidian content dominates the potential seismic response of basaltic faults with the effect of temperature controlling the range of seismogenic depths.Thus,shallow moonquakes tend to occur in the lower lunar crust due to the corresponding anticipated higher glass content and a projected temperature range conducive to velocity-weakening behavior.These observations contribute to a better understanding of the nucleation mechanism of shallow seismicity in basaltic faults.
基金financially supported by the National Natural Science Foundation of China(Grant No.51890914)。
文摘Different from oil and gas production,hydrate reservoirs are shallow and unconsolidated,whose mechanical properties deteriorate with hydrate decomposition.Therefore,the formations will undergo significant subsidence during depressurization,which will destroy the original force state of the production well.However,existing research on the stability of oil and gas production wells assumes the formation to be stable,and lacks consideration of the force exerted on the hydrate production well by formation subsidence caused by hydrate decomposition during production.To fill this gap,this paper proposes an analytical method for the dynamic evolution of the stability of hydrate production well considering the effects of hydrate decomposition.Based on the mechanical model of the production well,the basis for stability analysis has been proposed.A multi-field coupling model of the force state of the production well considering the effect of hydrate decomposition and formation subsidence is established,and a solver is developed.The analytical approach is verified by its good agreement with the results from the numerical method.A case study found that the decomposition of hydrate will increase the pulling-down force and reduce the supporting force,which is the main reason for the stability deterioration.The higher the initial hydrate saturation,the larger the reservoir thickness,and the lower the production pressure,the worse the stability or even instability.This work can provide a theoretical reference for the stability maintaining of the production well.
基金supported by the National Science Foundation(Grant No.CMMI-1901582)supported by the Nuclear Research and Development Program of the National Research Foundation of Korea(Grant No.2024-M2E3A2007963)the Korea Electric Power Corporation(Grant No.R22XO05-05).
文摘Degradation of rock mass produced by rock blasting,stress relief,and other causes is an important factor in the assessment of rock strength.Quantified as a disturbance factor,such degradation varies depending on blasting control,stress state and stress relief,and rock mass quality.This study focuses on the impact of disturbance on the safety of slopes.The disturbance in the rock mass is characterized by the geometry of the disturbed zone,its size,the magnitude,and the decaying rate with the distance away from the slope surface.A method accounting for decay of rock disturbance is presented.A study of the impact of rock disturbance characteristics on the quantitative stability measures of slopes was carried out.These characteristics included disturbed zone geometry,its thickness,the maximum magnitude of the disturbance factor,and the rate of disturbance decaying.The thickness of the disturbed zone and the maximum factor of disturbance were found to have the greatest impact.For example,the factor of safety for a 45slope in low-quality rock mass can decrease from 1.96 to 1.09 as the thickness of the disturbed zone increases from 1/4 of slope height H to the double of H and the maximum disturbance factor increases from 0.5 to 1.Uniform thickness of a disturbed zone was found to yield more conservative outcomes than the triangular zones did.The critical failure surfaces were found to be shallow for high rates of disturbance decay,and they were the deepest for spatially uniform disturbance factors.
文摘The influence of variable viscosity and double diffusion on the convective stability of a nanofluid flow in an inclined porous channel is investigated.The DarcyBrinkman model is used to characterize the fluid flow dynamics in porous materials.The analytical solutions are obtained for the unidirectional and completely developed flow.Based on a normal mode analysis,the generalized eigenvalue problem under a perturbed state is solved.The eigenvalue problem is then solved by the spectral method.Finally,the critical Rayleigh number with the corresponding wavenumber is evaluated at the assigned values of the other flow-governing parameters.The results show that increasing the Darcy number,the Lewis number,the Dufour parameter,or the Soret parameter increases the stability of the system,whereas increasing the inclination angle of the channel destabilizes the flow.Besides,the flow is the most unstable when the channel is vertically oriented.
基金supported by Science and Technology Project of Yunnan Provincial Transportation Department(Grant No.25 of 2018)the National Natural Science Foundation of China(Grant No.52279107)The authors are grateful for the support by the China Scholarship Council(CSC No.202206260203 and No.201906690049).
文摘Face stability is an essential issue in tunnel design and construction.Layered rock masses are typical and ubiquitous;uncertainties in rock properties always exist.In view of this,a comprehensive method,which combines the Upper bound Limit analysis of Tunnel face stability,the Polynomial Chaos Kriging,the Monte-Carlo Simulation and Analysis of Covariance method(ULT-PCK-MA),is proposed to investigate the seismic stability of tunnel faces.A two-dimensional analytical model of ULT is developed to evaluate the virtual support force based on the upper bound limit analysis.An efficient probabilistic analysis method PCK-MA based on the adaptive Polynomial Chaos Kriging metamodel is then implemented to investigate the parameter uncertainty effects.Ten input parameters,including geological strength indices,uniaxial compressive strengths and constants for three rock formations,and the horizontal seismic coefficients,are treated as random variables.The effects of these parameter uncertainties on the failure probability and sensitivity indices are discussed.In addition,the effects of weak layer position,the middle layer thickness and quality,the tunnel diameter,the parameters correlation,and the seismic loadings are investigated,respectively.The results show that the layer distributions significantly influence the tunnel face probabilistic stability,particularly when the weak rock is present in the bottom layer.The efficiency of the proposed ULT-PCK-MA is validated,which is expected to facilitate the engineering design and construction.
基金financially supported by the 2022 Special Fund Project for Science and Technology Innovation Strategy of Guangdong Province(STKJ202209077 and STKJ202209083)the Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme 2019(GDUPS2019)the City University of Hong Kong Strategic Research Grant(SRG)(7005505)。
文摘There have been reports about Fe ions boosting oxygen evolution reaction(OER)activity of Ni-based catalysts in alkaline conditions,while the origin and reason for the enhancement remains elusive.Herein,we attempt to identify the activity improvement and discover that Ni sites act as a host to attract Fe(Ⅲ)to form Fe(Ni)(Ⅲ)binary centres,which serve as the dynamic sites to promote OER activity and stability by cyclical formation of intermediates(Fe(Ⅲ)→Fe(Ni)(Ⅲ)→Fe(Ni)-OH→Fe(Ni)-O→Fe(Ni)OOH→Fe(Ⅲ))at the electrode/electrolyte interface to emit O_(2).Additionally,some ions(Co(Ⅱ),Ni(Ⅱ),and Cr(Ⅲ))can also be the active sites to catalyze the OER process on a variety of electrodes.The Fe(Ⅲ)-catalyzed overall water-splitting electrolyzer comprising bare Ni foam as the anode and Pt/Ni-Mo as the cathode demonstrates robust stability for 1600 h at 1000 mA cm^(-2)@~1.75 V.The results provide insights into the ioncatalyzed effects boosting OER performance.
基金supported by the National Natural Science Foundation of China(Grant No.22305123)。
文摘The search for new green and efficient stabilizers is of great importance for the stabilization of nitrocellulose(NC). This is due to the shortcomings of traditional stabilizers, such as high toxicity. In this study, reduced polyaniline(r-PANI), which has a similar functional structure to diphenylamine(DPA) but is non-toxic, was prepared from PANI based on the action with N_(2)H_(4) and NH_(3)-H_(2)O, and used for the first time as a potential stabilizer for NC. XPS, FTIR, Raman, and SEM were used to characterize the reduced chemical structure and surface morphology of r-PANI. In addition, the effect of r-PANI on the stabilization of NC was characterized using DSC, VST, isothermal TG, and MMC. Thermal weight loss was reduced by 83% and 68% and gas pressure release by 75% and 49% compared to pure NC and NC&3%DPA, respectively.FTIR and XPS were used to characterize the structural changes of r-PANI before and after reaction with NO_(2). The 1535 cm^(-1) and 1341 cm^(-1) of the FTIR and the 404.98 eV and 406.05 eV of the XPS showed that the -NO_(2) was generated by the absorption of NO_(2). Furthermore, the quantum chemical calculation showed that NO_(2) was directly immobilized on r-PANI by forming -NO_(2) in the neighboring position of the benzene ring.