期刊文献+
共找到22,502篇文章
< 1 2 250 >
每页显示 20 50 100
Construction Technology of Pile Foundation for Subway Tunnel Crossing Bridge
1
作者 Ruiquan Liu 《Journal of World Architecture》 2024年第2期37-42,共6页
Urban infrastructure has become more complex with the rapid development of urban transportation networks.In urban environments with limited space,construction of facilities like subways and bridges may mutually influe... Urban infrastructure has become more complex with the rapid development of urban transportation networks.In urban environments with limited space,construction of facilities like subways and bridges may mutually influence each other,especially when subway construction requires passing under bridges.In such cases,pile foundation replacement technology is often necessary.However,this technology is highly specialized,with a lengthy and risky construction period,and high costs.Personnel must be proficient in key technical aspects to ensure construction quality.This article discusses the technical principle,construction process,and core technology of pile foundation replacement,along with the application of this technology in subway tunnel crossing bridge projects,supported by engineering examples for reference. 展开更多
关键词 Subway tunnel Bridge pile foundation Replacement construction
下载PDF
Effects of riverbed scour on seismic performance of high-rise pile cap foundation 被引量:5
2
作者 Han Zhenfeng Ye Aijun Fan Lichu 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第4期533-543,共11页
To explore the seismic performance of a high-rise pile cap foundation with riverbed scour, a finite element model for foundations is introduced in the OpenSees finite element framework. In the model, a fiber element i... To explore the seismic performance of a high-rise pile cap foundation with riverbed scour, a finite element model for foundations is introduced in the OpenSees finite element framework. In the model, a fiber element is used to simulate the pile shaft, a nonlinear p-y element is used to simulate the soil-pile interaction, and the p-factor method is used to reflect the group effects. A global and local scour model is proposed, in which two parameters, the scour depth of the same row of piles and the difference in the scour depth of the upstream pile and the downstream pile, are included to study the influence of scour on the foundation. Several elasto-plastic static pushover analyses are performed on this finite element model. The analysis results indicate that the seismic capacity (or supply) of the foundation is in the worst condition when the predicted deepest global scout depth is reached, and the capacity becomes larger when the local scour depth is below the predicted deepest global scout depth. Therefore, to evaluate the seismic capacity of a foundation, only the predicted deepest global scout depth should be considered. The method used in this paper can be also applied to foundations with other soil types. 展开更多
关键词 riverbed scour high-rise pile cap pile group fiber element seismic capacity PUSHOVER p-y element
下载PDF
Model test on vertical bearing capacity of X-section concrete pile raft foundation in silica sand 被引量:3
3
作者 XU Lai PENG Yu +1 位作者 DING Xuan-ming LIU Jia-yi 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第6期1861-1869,共9页
To reveal the bearing capacity of the X-section concrete piles pile raft foundation in silica sand,a series of vertical load tests are carried out.The X-section concrete piles are compared with circular section pile w... To reveal the bearing capacity of the X-section concrete piles pile raft foundation in silica sand,a series of vertical load tests are carried out.The X-section concrete piles are compared with circular section pile with the same section area.The load−settlement curves,axial force and skin friction,strain on concave and convex edge of the pile,pile-sand stress ratio,distributions of side and tip resistance are presented.The results show that bearing capacity of the X section concrete pile raft foundation is much larger than that of the circular pile raft foundation.Besides,compared with the circular pile,the peak axial force of X-section piles under raft is deeper and smaller while the neutral point of X-section concrete pile is deeper.Moreover,the strain on the concave edge is much larger than that on the convex edge of the pile,and the convex edge has more potential in bearing capacity as the vertical load increases.The X-section pile has higher pile-sand stress ratios and load-sharing between side resistance and tip resistance.Above all,the X-section concrete pile can significantly increase the bearing capacity of pile-raft foundations in silica sand. 展开更多
关键词 X-section pile pile raft foundation model test neutral point pile-soil stress ratio
下载PDF
Bearing capacity and mechanical behavior of CFG pile composite foundation
4
作者 陈秋南 赵明华 +1 位作者 周国华 张主华 《Journal of Central South University》 SCIE EI CAS 2008年第S2期45-49,共5页
CFG pile (i.e., pile constructed by granular materials of cement, fly-ash and gravel) composite foundation is applied in subsoil treatment widely and successfully. In order to have a further study of this kind of subs... CFG pile (i.e., pile constructed by granular materials of cement, fly-ash and gravel) composite foundation is applied in subsoil treatment widely and successfully. In order to have a further study of this kind of subsoil treatment technology, the influencing factors and calculation methods of the vertical bearing capacity of single CFG pile and the CFG pile composite foundation were discussed respectively. And based on the obtained solutions, effects by the cushion and measurements to reduce negative friction area were analyzed. Moreover, the developing law of settlement and bearing capacity eigenvalue controlled by the material strength with the increase of load were given for the CFG composite foundation. The in-situ static load test was tested for CFG pile. The results of test show that the maximum test load or half of the ultimate load is used from all the points of test, the average bearing capacity eigenvalue of single pile is 390 kN, and slightly greater than the design value of bearing capacity. The bearing capacity eigenvalues of composite foundation for 3 piles are greater than 300 kPa, and the mechanical properties of CFG pile composite foundation are almost identical in the case of the same load and cushion thickness. The pile-soil stress ratio and the load-sharing ratio can be adjusted through setting up cushion thickness. 展开更多
关键词 CFG pile composite foundation properties of BEARING capacity in-situ static load pile-SOIL stress ratio
下载PDF
Pile foundation in alternate layered liquefiable and non-liquefiable soil deposits subjected to earthquake loading
5
作者 Praveen Huded M Suresh R Dash 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第2期359-376,共18页
Pile foundations are still the preferred foundation system for high-rise structures in earthquake-prone regions.Pile foundations have experienced failures in past earthquakes due to liquefaction.Research on pile found... Pile foundations are still the preferred foundation system for high-rise structures in earthquake-prone regions.Pile foundations have experienced failures in past earthquakes due to liquefaction.Research on pile foundations in liquefiable soils has primarily focused on the pile foundation behavior in two or three-layered soil profiles.However,in natural occurrence,it may occur in alternative layers of liquefiable and non-liquefiable soil.However,the experimental and/or numerical studies on the layered effect on pile foundations have not been widely addressed in the literature.Most of the design codes across the world do not explicitly mention the effect of sandwiched non-liquefiable soil layers on the pile response.In the present study,the behavior of an end-bearing pile in layered liquefiable and non-liquefiable soil deposit is studied numerically.This study found that the kinematic bending moment is higher and governs the design when the effect of the sandwiched non-liquefied layer is considered in the analysis as opposed to when its effect is ignored.Therefore,ignoring the effect of the sandwiched non-liquefied layer in a liquefiable soil deposit might be a nonconservative design approach. 展开更多
关键词 pile foundation LIQUEFACTION alternately layered soil fixity effect layered effect
下载PDF
Influence of vertical loads on lateral response of pile foundations in sands and clays 被引量:9
6
作者 Lassaad Hazzar Mahmoud N.Hussien Mourad Karray 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第2期291-304,共14页
Although the load applied to pile foundations is usually a combination of vertical and lateral components,there have been few investigations on the behavior of piles subjected to combined loadings.Those few studies le... Although the load applied to pile foundations is usually a combination of vertical and lateral components,there have been few investigations on the behavior of piles subjected to combined loadings.Those few studies led to inconsistent results with regard to the effects of vertical loads on the lateral response of piles.A series of three-dimensional(3D) finite differences analyses is conducted to evaluate the influence of vertical loads on the lateral performance of pile foundations.Three idealized sandy and clayey soil profiles are considered:a homogeneous soil layer,a layer with modulus proportional to depth,and two-layered strata.The pile material is modeled as linearly elastic,while the soil is idealized using the Mohr-Coulomb constitutive model with a non-associated flow rule.In order to confirm the findings of this study,soils in some cases are further modeled using more sophisticated models(i.e.CYsoil model for sandy soils and modified Cam-Clay(MCC) model for clayey soils).Numerical results showed that the lateral resistance of the piles does not appear to vary considerably with the vertical load in sandy soil especially at the loosest state.However,the presence of a vertical load on a pile embedded in homogeneous or inhomogeneous clay is detrimental to its lateral capacity,and it is unconservative to design piles in clays assuming that there is no interaction between vertical and lateral loads.Moreover,the current results indicate that the effect of vertical loads on the lateral response of piles embedded in twolayered strata depends on the characteristics of soil not only surrounding the piles but also located beneath their tips. 展开更多
关键词 pile foundations Vertical loads Lateral loads Finite differences Mohr circle
下载PDF
Numerical simulation on behavior of pile foundations under cyclic axial loads 被引量:4
7
作者 ZHAO Ming-hua HENG Shuai ZHENG Yue 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第12期2906-2913,共8页
On the basis of the two dimensional finite element analysis model, the pile foundations' mechanical effect of the rigid pile composite foundation under the dynamic load was researched. Through the research, the de... On the basis of the two dimensional finite element analysis model, the pile foundations' mechanical effect of the rigid pile composite foundation under the dynamic load was researched. Through the research, the development law and deformation property of axial force of pile body, shaft resistance of pile, and cumulative settlement of pile head under vertical cyclic dynamic loads were concluded. Through the comparison and analysis of the test results of dynamic models, the test results of Poulos(1989) and cumulative settlement model of the single pile under cyclic loads were confirmed. Based on the above research, Fortran language was adopted to introduce the soil attenuation factor, the secondary development of relevant modules of ABAQUS was carried out, and the effect of soil attenuation factor on dynamic property of pile-soil was discussed further. 展开更多
关键词 pile foundation ABAQUS CYCLIC dynamic load numerical simulation pile-SOIL interaction SECONDARY development
下载PDF
State-of-the-art review of some artificial intelligence applications in pile foundations 被引量:6
8
作者 Mohamed A.Shahin 《Geoscience Frontiers》 SCIE CAS CSCD 2016年第1期33-44,共12页
Geotechnical engineering deals with materials(e.g. soil and rock) that, by their very nature, exhibit varied and uncertain behavior due to the imprecise physical processes associated with the formation of these mate... Geotechnical engineering deals with materials(e.g. soil and rock) that, by their very nature, exhibit varied and uncertain behavior due to the imprecise physical processes associated with the formation of these materials. Modeling the behavior of such materials in geotechnical engineering applications is complex and sometimes beyond the ability of most traditional forms of physically-based engineering methods. Artificial intelligence(AI) is becoming more popular and particularly amenable to modeling the complex behavior of most geotechnical engineering applications because it has demonstrated superior predictive ability compared to traditional methods. This paper provides state-of-the-art review of some selected AI techniques and their applications in pile foundations, and presents the salient features associated with the modeling development of these AI techniques. The paper also discusses the strength and limitations of the selected AI techniques compared to other available modeling approaches. 展开更多
关键词 Artificial intelligence pile foundations Artificial neural networks Genetic programming Evolutionary polynomial regression
下载PDF
A computational method for post-construction settlement of high-speed railway bridge pile foundation considering soil creep effect 被引量:12
9
作者 冯胜洋 魏丽敏 +1 位作者 何重阳 何群 《Journal of Central South University》 SCIE EI CAS 2014年第7期2921-2927,共7页
Based on reasonable assumptions that simplified the calculational model,a simple and practical method was proposed to calculate the post-construction settlement of high-speed railway bridge pile foundation by using th... Based on reasonable assumptions that simplified the calculational model,a simple and practical method was proposed to calculate the post-construction settlement of high-speed railway bridge pile foundation by using the Mesri creep model to describe the soil characteristics and the Mindlin-Geddes method considering pile diameter to calculate the vertical additional stress of pile bottom.A program named CPPS was designed for this method to calculate the post-construction settlement of a high-speed railway bridge pile foundation.The result indicates that the post-construction settlement in 100 years meets the requirements of the engineering specifications,and in the first two decades,the post-construction settlement is about 80% of its total settlement,while the settlement in the rest eighty years tends to be stable.Compared with the measured settlement after laying railway tracks,the calculational result is closed to that of the measured,and the results are conservative with a high computational accuracy.It is noted that the method can be used to calculate the post-construction settlement for the preliminary design of high-speed railway bridge pile foundation. 展开更多
关键词 high-speed railway bridge pile foundation post-construction settlement Mesri creep model simplified computational method
下载PDF
Force analysis of pile foundation in rock slope based on upper-bound theorem of limit 被引量:13
10
作者 赵明华 刘建华 +1 位作者 刘代全 汪优 《Journal of Central South University of Technology》 EI 2008年第3期404-410,共7页
Based on the characteristic that the potential sliding surfaces of rock slope are commonly in the shape of either line or fold line,analysis thought of conventional pile foundation in the flat ground under complex loa... Based on the characteristic that the potential sliding surfaces of rock slope are commonly in the shape of either line or fold line,analysis thought of conventional pile foundation in the flat ground under complex load condition was applied and the upper-bound theorem of limit analysis was used to compute thrust of rock layers with all possible distribution shapes. The interaction of slope and pile was considered design load in terms of slope thrust,and the finite difference method was derived to calculate inner-force and displacement of bridge pile foundation in rock slope under complex load condition. The result of example shows that the distribution model of slope thrust has certain impact on displacement and inner-force of bridge pile foundation. The maximum displacement growth rate reaches 54% and the maximum moment and shear growth rates reach only 15% and 20%,respectively,but the trends of inner-force and displacement of bridge pile foundation are basically the same as those of the conventional pile foundation in the flat ground. When the piles bear the same level lateral thrust,the distribution shapes of slope thrust have different influence on inner-force of pile foundation,especially the rectangle distribution,and the triangle thrust has the smallest displacement and inner-force of pile foundation. 展开更多
关键词 pile foundation rock slope inner-force calculation finite difference method upper-bound theorem of limit analysis
下载PDF
Response of carrying capacity of piles induced by adjacent Metro tunneling 被引量:6
11
作者 YANG Xiao-jie DENG Fei-huang +2 位作者 WU Jia-jia LIU Jian WANG Fu-qiang 《Mining Science and Technology》 EI CAS 2009年第2期176-181,共6页
Construction of tunnels in urban areas requires assessment of the impact of tunneling on the stability and integrity of existing pile foundations. We have focused our attention to the analysis of the carrying capacity... Construction of tunnels in urban areas requires assessment of the impact of tunneling on the stability and integrity of existing pile foundations. We have focused our attention to the analysis of the carrying capacity of pile foundations provided by the impact of construction of urban tunnels on adjacent pile foundations, under the engineering background of the construction of the # 2 Line of the Guangzhou subway. It is carried out using a fast Lagrangian analysis of a continuum in a 3D numerical code, which is an elastoplastic three-dimensional finite difference model, to simulate the response of piles under the entire process of metro tunneling (deactivation of soil element and activation of the lining). The adjacent stratum around the tunnel is classified into three regions: Zone Ⅰ (upper adjacent stratum of tunnel), Zone Ⅱ (45°-upper-lateral adjacent stratum of tunnel) and Zone Ⅲ (lateral adjacent stratum of tunnel). In each region one typical pile is chosen to be calculated and analyzed in detail. Numerical simulations are mainly conducted at three points of each pile shaft: the side-friction force of the pile, the tip resistance of the pile and the axial loading of the pile. A contrasting analysis has been conducted both in the response of typical piles in different regions and from computer calculated values with site monitoring values. The results of numerical simulations show that the impact on carrying capacity of the piles lies mainly in the impact of construction of urban tunnels on the side-friction forces and the tip resistance of piles. The impact differs considerably among the different strata zones where the pile tips are located. The complicated rules of side-friction force and tip resistance of piles has resulted in complicated rules of pile axial loading thus, in the end, it impacts the carrying capacity of pile-foundations. It is necessary to take positive measures, such as stratum grouting stabilization or foundation underpinning, etc, to deal with the carrying capacity and the settlement of pile-foundations. The results are of value to similar engineering projects. 展开更多
关键词 TUNNEL numerical simulation pile foundation carrying capacity of pile axial force of pile side-friction force of pile tipresistance of pile
下载PDF
Seismic response comparison and sensitivity analysis of pile foundation in liquefiable and non-liquefiable soils 被引量:6
12
作者 Jia Kemin Xu Chengshun +3 位作者 Du Xiuli Cui Chunyi Dou Pengfei Song Jia 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第1期87-104,共18页
Case history investigations have shown that pile foundations are more critically damaged in liquefiable soils than non-liquefiable soils.This study examines the differences in seismic response of pile foundations in l... Case history investigations have shown that pile foundations are more critically damaged in liquefiable soils than non-liquefiable soils.This study examines the differences in seismic response of pile foundations in liquefiable and non-liquefiable soils and their sensitivity to numerical model parameters.A two-dimensional finite element(FE)model is developed to simulate the experiment of a single pile foundation centrifuge in liquefiable soil subjected to earthquake motions and is validated against real-world test results.The differences in soil-pile seismic response of liquefiable and non-liquefiable soils are explored.Specifically,the first-order second-moment method(FOSM)is used for sensitivity analysis of the seismic response.The results show significant differences in seismic response for a soil-pile system between liquefiable and non-liquefiable soil.The seismic responses are found to be significantly larger in liquefiable soil than in non-liquefiable soil.Moreover,the pile bending moment was mainly affected by the kinematic effect in liquefiable soil,while the inertial effect was more significant in non-liquefiable soil.The controlling parameters of seismic response were PGA,soil density,and friction angle in liquefiable soil,while the pile bending moment was mainly controlled by PGA,the friction angle of soil,and shear modulus of loose sand in non-liquefiable soil. 展开更多
关键词 liquefiable non-liquefiable finite element analysis pile foundation seismic response sensitivity analysis
下载PDF
Influence of water-rich tunnel by shield tunneling on existing bridge pile foundation in layered soils 被引量:7
13
作者 HUANG Kan SUN Yi-wei +3 位作者 ZHOU De-quan LI Yu-jian JIANG Meng HUANG Xian-qiang 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第8期2574-2588,共15页
At present,shield tunneling often needs to pass through a large number of bridge pile foundations.However,there are few studies on the influence of shield tunneling on adjacent pile foundations by combining with groun... At present,shield tunneling often needs to pass through a large number of bridge pile foundations.However,there are few studies on the influence of shield tunneling on adjacent pile foundations by combining with groundwater seepage.Based on Winkler model,the calculation equations of shield tunneling on vertical and horizontal displacement of adjacent bridge pile are derived.Meanwhile,full and part three-dimensional finite element models are established to analyze the trend of bridge pier settlement,ground surface settlement trough,vertical and horizontal displacement of the pile and pile stress under three calculation conditions,i.e.,not considering groundwater effect,considering stable groundwater effect and fluid-soil interaction.The results show that the calculated value is small when the effect of groundwater is not considered;the seepage velocity of the soil above the excavation face is faster than that of the surrounding soil under fluid-soil interaction,and after the shield passing,the groundwater on both sides shows a flow trend of“U”shape on the ground surface supplying to the upper part of the tunnel;the vertical displacement of the pile body is bounded by the horizontal position of the top of the tunnel,the upper pile body settles,and the lower pile body deforms upward.The horizontal displacement of pile body presents a continuous“S”shape distribution,causing stress concentration near the tunnel.The calculated results of fluid-soil interaction are in good agreement with the field measured data and accord with the actual situation. 展开更多
关键词 shield tunnel bridge pile foundation Winkler model fluid-soil interaction numerical analysis
下载PDF
Three-dimensional finite element analysis on effects of tunnel construction on nearby pile foundation 被引量:6
14
作者 杨敏 孙庆 +1 位作者 李卫超 马亢 《Journal of Central South University》 SCIE EI CAS 2011年第3期909-916,共8页
A three-dimensional finite element simulation was carried out to investigate the effects of tunnel construction on nearby pile foundation.The displacement controlled model (DCM) was used to simulate the tunneling-indu... A three-dimensional finite element simulation was carried out to investigate the effects of tunnel construction on nearby pile foundation.The displacement controlled model (DCM) was used to simulate the tunneling-induced volume loss effects.The numerical model was verified based on the results of a centrifuge test and a set of parametric studies was implemented based on this model.There is good agreement between the trend of the results of the centrifuge test and the present model.The results of parametric studies show that the tunnelling-induced pile internal force and deformation depend mainly on the pile?tunnel distance,the pile length to tunnel depth ratio and the volume loss.Two different zones are separated by a 45° line projected from the tunnel springline.Within the zone of influence,the pile is subjected to tensile force and large settlement;whereas outside the zone of influence,dragload and small settlement are induced.It is also established that the impact of tunnelling on a pile group is substantially smaller as compared with a single pile in the same location with the rear pile in a group,demonstrating a positive pile group effect. 展开更多
关键词 finite element analysis TUNNELLING pile foundation three-dimensional simulation displacement controlled model
下载PDF
Static load test and load transfer mechanism study of squeezed branch and plate pile in collapsible loess foundation 被引量:8
15
作者 GAO Xiao-juan WANG Jin-chang ZHU Xiang-rong 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第7期1110-1117,共8页
As a special geological phenomenon, the character of collapsible loess foundation is collapsible when penetrated by water. This character leads to the soil losing load bearing capacity largely and may lead to foundati... As a special geological phenomenon, the character of collapsible loess foundation is collapsible when penetrated by water. This character leads to the soil losing load bearing capacity largely and may lead to foundation failure. Pile is a popular foundation used in collapsible loess. The squeezed branch and plate pile is a new type of pile developed in recent years and has not be used in a project before. In this paper three squeezed branch and plate piles are tested in collapsible loess after immersion processing. The results may be used for reference in similar construction project, and to provide theoretical references for de- signing of the squeezed branch and plate piles in engineering practice. 展开更多
关键词 Collapsible loess foundation Squeezed branch and plate pile Immersion processing Full-scale static load test
下载PDF
Vertical bearing capacity of pile based on load transfer model 被引量:7
16
作者 赵明华 杨明辉 邹新军 《Journal of Central South University of Technology》 EI 2005年第4期488-493,共6页
The load transfer analytical method is applied to study the bearing mechanism of piles with vertical load in this paper. According to the different hardening rules of soil or rock around the pile shaft, such as work-s... The load transfer analytical method is applied to study the bearing mechanism of piles with vertical load in this paper. According to the different hardening rules of soil or rock around the pile shaft, such as work-softening, ideal elasto-plastic and work-hardening, a universal tri-linear load transfer model is suggested for the development of side and tip resistance by various types of soil (rock) with the consideration of sediment at the bottom of the pile. Based on the model, a formula is derived for the relationship between the settlement and load on the pile top to determine the vertical bearing capacity, taking into account such factors as the characteristics of the stratum, the side resistance along the shaft, and tip resistance under the pile tip. A close agreement of the calculated results with the measured data from a field test pile lends confidence to the future application of the present approach in engineering practice. 展开更多
关键词 pile foundation load transfer model top settlement vertical bearing capacity
下载PDF
Lateral response of pile foundations in liquefiable soils 被引量:3
17
作者 Asskar Janalizadeh Ali Zahmatkesh 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2015年第5期532-539,共8页
Liquefaction has b e e n a m ain cause o f dam ag e to civil en g in eerin g stru ctu res in seism ically active areas.The effects o f dam ag e o f liquefaction o n d eep foundations are v ery d estructive. Seism ic b... Liquefaction has b e e n a m ain cause o f dam ag e to civil en g in eerin g stru ctu res in seism ically active areas.The effects o f dam ag e o f liquefaction o n d eep foundations are v ery d estructive. Seism ic beh av io r o f pilefoundations is w idely discussed by m any researchers for safer an d m ore econom ic design purposes. Thisp a p e r p resen ts a p se u d o -static m eth o d for analysis o f piles in liquefiable soil u n d e r seism ic loads. A freefieldsite resp o n se analysis using th ree-d im en sio n al (3D) num erical m odeling w as p erfo rm ed to d e te rmine kin em atic loads from lateral g ro u n d disp lacem en ts an d inertial loads from vib ratio n o f th e supe rstru ctu re . The effects o f various p aram eters, such as soil layering, k in em atic and inertial forces,b o u n d ary con d itio n o f pile h ead an d gro u n d slope, o n pile resp o n se w e re studied. By com paring th enum erical results w ith th e centrifuge te s t results, it can be concluded th a t th e use o f th e p-y curves w ithvarious d eg rad atio n factors in liquefiable sand gives reasonable results. 展开更多
关键词 pile foundations Lateral spreading LIQUEFACTION Pseudo-static method
下载PDF
Effects of liquefaction-induced large lateral ground deformation on pile foundations 被引量:5
18
作者 王艳丽 程展林 王勇 《Journal of Central South University》 SCIE EI CAS 2013年第9期2510-2518,共9页
The pile-soil system interaction computational model in liquefaction-induced lateral spreading ground was established by the finite difference numerical method.Considering an elastic-plastic subgrade reaction method,n... The pile-soil system interaction computational model in liquefaction-induced lateral spreading ground was established by the finite difference numerical method.Considering an elastic-plastic subgrade reaction method,numerical methods involving finite difference approach of pile in liquefaction-induced lateral spreading ground were derived and implemented into a finite difference program.Based on the monotonic loading tests on saturated sand after liquefaction,the liquefaction lateral deformation of the site where group piles are located was predicted.The effects of lateral ground deformation after liquefaction on a group of pile foundations were studied using the fmite difference program mentioned above,and the failure mechanism of group piles in liquefaction-induced lateral spreading ground was obtained.The applicability of the program was preliminarily verified.The results show that the bending moments at the interfaces between liquefied and non-liquefied soil layers are larger than those at the pile's top when the pile's top is embedded.The value of the additional static bending moment is larger than the peak dynamic bending moment during the earthquake,so in the pile foundation design,more than the superstructure's dynamics should be considered and the effect of lateral ground deformation on pile foundations cannot be neglected. 展开更多
关键词 liquefaction-induced lateral spreading ground pile foundation large post-liquefaction deformation finite difference method
下载PDF
Long-term settlement prediction of high-speed railway bridge pile foundation 被引量:4
19
作者 杨奇 冷伍明 +4 位作者 张升 聂如松 魏丽敏 赵春彦 刘维正 《Journal of Central South University》 SCIE EI CAS 2014年第6期2415-2424,共10页
The process and characteristics of loading on high-speed railway bridge pile foundation were firstly obtained by means of field research and analysis,and the corresponding loading function was presented.One-dimensiona... The process and characteristics of loading on high-speed railway bridge pile foundation were firstly obtained by means of field research and analysis,and the corresponding loading function was presented.One-dimensional consolidation equation of elastic multilayered soils was then established with single drainage or double drainages under multilevel loading.Moreover,the formulas for calculating effective stress and settlement were derived from the Laplace numerical inversion transform.The three-dimensional composite analysis method of bridge pile group was improved,where the actual load conditions of pile foundation could be simulated,and the consolidation characteristics of soil layers beneath pile were also taken into account.Eventually,a corresponding program named LTPGS was developed to improve the calculation efficiency.The comparison between long-term settlement obtained from the proposed method and the in-situ measurements of pile foundation was illustrated,and a close agreement is obtained.The error between computed and measured results is less than 1 mm,and it gradually reduces with time.It is shown that the proposed method can effectively simulate the long-term settlement of pile foundation and program LTPGS can provide a reliable estimation. 展开更多
关键词 bridge pile foundation long-term settlement CONSOLIDATION Laplace numerical inversion transform multilevel loading multilayered soils
下载PDF
Consolidation analysis of composite foundation with partially penetrated cement fly-ash gravel(CFG) piles under changing permeable boundary conditions 被引量:3
20
作者 邹新军 赵增明 徐洞斌 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第10期4019-4026,共8页
Based on the double-layered foundation theory, the composite ground with partially penetrated cement fly-ash gravel(CFG) piles was regarded as a double-layered foundation including the surface reinforced area and the ... Based on the double-layered foundation theory, the composite ground with partially penetrated cement fly-ash gravel(CFG) piles was regarded as a double-layered foundation including the surface reinforced area and the underlying untreated stratum. Due to the changing permeability property of CFG piles, the whole consolidation process of the composite ground with CFG piles was divided into two stages, i.e., the early stage(permeable CFG pile bodies) and the later stage(impermeable pile bodies). Then, the consolidation equation of the composite foundation with CFG piles was established by using the Terzaghi one-dimensional consolidation theory. Consequently, the unified formula to calculate the excess pore water pressure was derived with the specific solutions for the consolidation degree of composite ground, reinforced area and underlying stratum under instant load obtained respectively. Finally, combined with a numerical example, influencing rules by main factors(including the replacement rate m, the treatment depth h1, the permeability coefficient Ks1, Kv2 and compression modulus Es1, Es2 of reinforced area and underlying stratum) on the consolidation property of composite ground with CFG piles were discussed in detail. The result shows that the consolidation velocity of underlying stratum is slower than that of the reinforced area. However, the consolidation velocity of underlying stratum is slow at first then fast as a result of the transferring of effective stress to the underlying stratum during the dissipating process of excess pore water pressure. 展开更多
关键词 composite ground CFG piles permeability double-layered foundation consolidation degree
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部