In this paper, the mechanical responses of a thick-walled functionally graded hollow cylinder subject to a uniform magnetic field and inner-pressurized loads are studied. Rather than directly assume the material const...In this paper, the mechanical responses of a thick-walled functionally graded hollow cylinder subject to a uniform magnetic field and inner-pressurized loads are studied. Rather than directly assume the material constants as some specific function forms displayed in pre-studies, we firstly give the volume fractions of different constituents of the functionally graded material(FGM) cylinder and then determine the expressions of the material constants. With the use of the Voigt method, the corresponding analytical solutions of displacements in the radial direction, the strain and stress components, and the perturbation magnetic field vector are derived. In the numerical part, the effects of the volume fraction on the displacement, strain and stress components, and the magnetic perturbation field vector are investigated. Moreover, by some appropriate choices of the material constants, we find that the obtained results in this paper can reduce to some special cases given in the previous studies.展开更多
Tube spinning technology is one of the effective methods of manufacturing large diameter thin-walled shapes. In this research, effects of major parameters of thermo mechanical tube spinning process such as preform'...Tube spinning technology is one of the effective methods of manufacturing large diameter thin-walled shapes. In this research, effects of major parameters of thermo mechanical tube spinning process such as preform's thickness, percentage of thickness reduction, mandrel rotational speed, feed rate, solution treatment time and aging treatment time on the wall thickness changes and process time in thermo-mechanical tube spinning process for fabrication of 2024 aluminum spun tubes using design of experiments (DOE), are studied. The statistical results are verified through some experiments. Results of experimental evaluation are analyzed by variance analysis and mathematic models are obtained. Finally using these models, input parameters for optimum production are achieved.展开更多
Today, improving the weight/load carrying capacity ratio of a part is the matter of studies in most of the scientific and industrial areas.Autofrettage dimensions, the amount of material removed from outer and inner r...Today, improving the weight/load carrying capacity ratio of a part is the matter of studies in most of the scientific and industrial areas.Autofrettage dimensions, the amount of material removed from outer and inner radius while manufacturing and the service pressure applied affect the residual stress distribution throughout the wall thickness and hence the load-bearing capacity of a thick-walled cylinder. Calculation of residual stresses after autofrettage process and optimization of autofrettage outline dimensions by using the amount of service pressures applied are common issues in literature.In this study, mandrel-cylinder tube interference dimensions were renovated by using traditional methods for swage autofrettage process of a gun barrel. Also, the residual stresses in the cylinder after autofrettage process, inside and outside material removal process and the variable service pressure throughout the cylinder applied were taken into consideration and incorporated into the design. By using the constrained optimization method, wall thickness(thus the weight) was optimized(minimized)to achieve the specified safety factor along the length of the cylinder. For the same cylinder, the results of the suggested analytical/with residual stress calculation approach were compared to analytical/without residual stress calculation results and numerical topology optimization method calculation results. Since the experimental measurement results are not yet available, it was not possible to compare them with the calculation results.The suggested approach enabled 22.9% extra weight reduction in proportion to numerical topology optimization and enabled 4.2% extra weight reduction in proportion to analytical/without residual stress optimization.Using this approach, the gain from residual stresses after autofrettage operation, the loss of residual stresses after material removal, and the effects of service pressures can be taken into account for each stage of design.展开更多
A dynamical moving pressure structural numerical calculation model using the internal ballistics calculation pressure-time results was constituted and the vicinity of the internal ballistics and quasiinternal ballisti...A dynamical moving pressure structural numerical calculation model using the internal ballistics calculation pressure-time results was constituted and the vicinity of the internal ballistics and quasiinternal ballistics structural model was checked. The Von Mises stresses obtained by the dynamical structural numerical model calculations and the Von Mises stresses calculated from the shot test strain measurements were compared. The difference for the worse case was 20% and for the best case was 0.1%.Furthermore, the model gave better agreement for the higher charge masses. The numerical structural quasi-internal ballistics computation model created was verified for the top charge mass which represents the highest stress condition and used in a gun barrel design.展开更多
Recent experiments revealed many new phenomena of the macroscopic domain patterns in the stress-induced phase transformation of a superelastic polycrystalline NiTi tube during tensile loading. The new phenomena includ...Recent experiments revealed many new phenomena of the macroscopic domain patterns in the stress-induced phase transformation of a superelastic polycrystalline NiTi tube during tensile loading. The new phenomena include deformation instability with the formation of a helical domain, domain topology transition from helix to cylinder, domain-front branching and loading-path dependence of domain patterns. In this paper, we model the polycrystal as an elastic continuum with nonconvex strain energy and adopt the non-local strain gradient energy to account for the energy of the diffusive domain front. We simulate the equilibrium domain patterns and their evolution in the tubes under tensile loading by a non-local Finite Element Method (FEM). It is revealed that the observed loading-path dependence and topology transition of do- main patterns are due to the thermodynamic metastability of the tube system. The computation also shows that the tube-wall thickness has a significant effect on the domain patterns: with fixed material properties and interfacial energy density, a large tube-wall thickness leads to a long and slim helical domain and a severe branching of the cylindrical-domain front.展开更多
In order to predict the flattening rate of the cross-section accurately during the tube ben- ding, the generation principle, the solution and the influence factor of the cross-section flattening were studied. On the b...In order to predict the flattening rate of the cross-section accurately during the tube ben- ding, the generation principle, the solution and the influence factor of the cross-section flattening were studied. On the basis of the plane-stress and the assumption that the plastic volume is con- stant, three-dimensionai strain formulas were established in consider of the cross-section flattening. Considering the wail-thickness change, the approximate calculation formulas of short axis flattening rate were deduced, with the outer diameter and the inner diameter as parameters. Because different materials have different cross-section flattening rates, a material correction factor was introduced to modify the formula based on experiments. Finally, the validity of the theoretical formulas was proved according to the calculation and the experiment results, which can provide a reference for the forming quality prediction in tube bending.展开更多
基金supported by the National Natural Science Foundation of China(No.11772041)
文摘In this paper, the mechanical responses of a thick-walled functionally graded hollow cylinder subject to a uniform magnetic field and inner-pressurized loads are studied. Rather than directly assume the material constants as some specific function forms displayed in pre-studies, we firstly give the volume fractions of different constituents of the functionally graded material(FGM) cylinder and then determine the expressions of the material constants. With the use of the Voigt method, the corresponding analytical solutions of displacements in the radial direction, the strain and stress components, and the perturbation magnetic field vector are derived. In the numerical part, the effects of the volume fraction on the displacement, strain and stress components, and the magnetic perturbation field vector are investigated. Moreover, by some appropriate choices of the material constants, we find that the obtained results in this paper can reduce to some special cases given in the previous studies.
文摘Tube spinning technology is one of the effective methods of manufacturing large diameter thin-walled shapes. In this research, effects of major parameters of thermo mechanical tube spinning process such as preform's thickness, percentage of thickness reduction, mandrel rotational speed, feed rate, solution treatment time and aging treatment time on the wall thickness changes and process time in thermo-mechanical tube spinning process for fabrication of 2024 aluminum spun tubes using design of experiments (DOE), are studied. The statistical results are verified through some experiments. Results of experimental evaluation are analyzed by variance analysis and mathematic models are obtained. Finally using these models, input parameters for optimum production are achieved.
基金Ministry of Science, Industry, and Technology which supported the project under the Industrial Thesis Support Program
文摘Today, improving the weight/load carrying capacity ratio of a part is the matter of studies in most of the scientific and industrial areas.Autofrettage dimensions, the amount of material removed from outer and inner radius while manufacturing and the service pressure applied affect the residual stress distribution throughout the wall thickness and hence the load-bearing capacity of a thick-walled cylinder. Calculation of residual stresses after autofrettage process and optimization of autofrettage outline dimensions by using the amount of service pressures applied are common issues in literature.In this study, mandrel-cylinder tube interference dimensions were renovated by using traditional methods for swage autofrettage process of a gun barrel. Also, the residual stresses in the cylinder after autofrettage process, inside and outside material removal process and the variable service pressure throughout the cylinder applied were taken into consideration and incorporated into the design. By using the constrained optimization method, wall thickness(thus the weight) was optimized(minimized)to achieve the specified safety factor along the length of the cylinder. For the same cylinder, the results of the suggested analytical/with residual stress calculation approach were compared to analytical/without residual stress calculation results and numerical topology optimization method calculation results. Since the experimental measurement results are not yet available, it was not possible to compare them with the calculation results.The suggested approach enabled 22.9% extra weight reduction in proportion to numerical topology optimization and enabled 4.2% extra weight reduction in proportion to analytical/without residual stress optimization.Using this approach, the gain from residual stresses after autofrettage operation, the loss of residual stresses after material removal, and the effects of service pressures can be taken into account for each stage of design.
基金Ministry of Science, Industry, and Technology which supported this project under the Industrial Thesis Support Program
文摘A dynamical moving pressure structural numerical calculation model using the internal ballistics calculation pressure-time results was constituted and the vicinity of the internal ballistics and quasiinternal ballistics structural model was checked. The Von Mises stresses obtained by the dynamical structural numerical model calculations and the Von Mises stresses calculated from the shot test strain measurements were compared. The difference for the worse case was 20% and for the best case was 0.1%.Furthermore, the model gave better agreement for the higher charge masses. The numerical structural quasi-internal ballistics computation model created was verified for the top charge mass which represents the highest stress condition and used in a gun barrel design.
文摘Recent experiments revealed many new phenomena of the macroscopic domain patterns in the stress-induced phase transformation of a superelastic polycrystalline NiTi tube during tensile loading. The new phenomena include deformation instability with the formation of a helical domain, domain topology transition from helix to cylinder, domain-front branching and loading-path dependence of domain patterns. In this paper, we model the polycrystal as an elastic continuum with nonconvex strain energy and adopt the non-local strain gradient energy to account for the energy of the diffusive domain front. We simulate the equilibrium domain patterns and their evolution in the tubes under tensile loading by a non-local Finite Element Method (FEM). It is revealed that the observed loading-path dependence and topology transition of do- main patterns are due to the thermodynamic metastability of the tube system. The computation also shows that the tube-wall thickness has a significant effect on the domain patterns: with fixed material properties and interfacial energy density, a large tube-wall thickness leads to a long and slim helical domain and a severe branching of the cylindrical-domain front.
基金Supported by the National Natural Science Foundation of China(50805009)Twelve Five-Year Plan Basic Research Item of National Defense of China(A2220110008)
文摘In order to predict the flattening rate of the cross-section accurately during the tube ben- ding, the generation principle, the solution and the influence factor of the cross-section flattening were studied. On the basis of the plane-stress and the assumption that the plastic volume is con- stant, three-dimensionai strain formulas were established in consider of the cross-section flattening. Considering the wail-thickness change, the approximate calculation formulas of short axis flattening rate were deduced, with the outer diameter and the inner diameter as parameters. Because different materials have different cross-section flattening rates, a material correction factor was introduced to modify the formula based on experiments. Finally, the validity of the theoretical formulas was proved according to the calculation and the experiment results, which can provide a reference for the forming quality prediction in tube bending.