The preparation of lead-free thick-film resistors are reported:using RuO 2 and ruthenates as conductive particles,glass powders composed of B 2 O 3,SiO 2,CaO and Al2 O 3 as insulating phase,adding organic matter which...The preparation of lead-free thick-film resistors are reported:using RuO 2 and ruthenates as conductive particles,glass powders composed of B 2 O 3,SiO 2,CaO and Al2 O 3 as insulating phase,adding organic matter which mainly consists of ethyl cellulose and terpineol to form printable pastes.Resistors were fabricated and sintered by conventional screen-printing on 96%Al 2 O 3 substrates,and then sintering in a belt furnace.X-ray diffraction(XRD) and electron scanning microscopy(SEM) have been used to characterize the conductive particles.The resistors exhibit good refiring stability and low temperature coefficient of resistance.Sheet resistance spans from about 80Ω/□ to 600Ω/□.The resistors prepared are qualified for common use.展开更多
Results of investigation of X-ray diffraction, infrared and optical spectra of powders of the ruthenium dioxide, lead-silicate glass as well as their mixture before and after sintering are reported. Sintering conditio...Results of investigation of X-ray diffraction, infrared and optical spectra of powders of the ruthenium dioxide, lead-silicate glass as well as their mixture before and after sintering are reported. Sintering conditions typical for thick film resistors were used. Intensity of main lines of RuO2 in X-ray diffraction patterns of sintered mixtures decreases and they slightly shift towards small angles. No new reflexes appear in these patterns. Absorbance of RuO2 in the range of 2.5-100 μm is proportional to and featureless. Infrared spectrum of lead-silicate glass has absorption bands of [SiO4]4- tetrahedra and Pb-O bonds only. Optical spectrum of RuO2 has wide absorption bands at 950 and 370 nm. Spectra of the mixture of RuO2 and glass powders before and after sintering are different indicating that there is interaction between them during the sintering process. Concentration of free charge carriers estimated from the optical spectra is about 1021 cm-3.展开更多
It is essential to enhance the thickness of the absorber layer for perovskite solar cells(PSCs)to improve device performance and reduce industry refinement.However,thick perovskite films(>1μm)are difficult to be f...It is essential to enhance the thickness of the absorber layer for perovskite solar cells(PSCs)to improve device performance and reduce industry refinement.However,thick perovskite films(>1μm)are difficult to be fabricated by employing traditional solvents,such as N,N-dimethylformamide(DMF),dimethyl sulfoxide(DMSO).Besides,it is a challenge to fabricate thick-film perovskite owing to the deteriorated surface morphology and serious defect density.Herein,a simple method was reported to deposit uniform pinhole-free perovskite films with a thickness of more than 2μm utilizing the methylamine acetate(MAAc)ionic liquid as the solvent.Combined with methylammonium chloride(MACl)as an additive,thick-film perovskite with~2μm in grain size and few grain boundaries(GBs)was prepared,which dramatically improved the perovskite crystal quality and enhanced carrier transport performance.The final PSCs exhibited a power conversion efficiency(PCE)of 20.16%.The device showed improved stability with 95%of its initial efficiency in a nitrogen environment over 5000 h.This work provides an alternative strategy to produce extremely efficient and stable thick-film PSCs.It can be believed that this device has great potential in the application of large areas and laminated PSCs.展开更多
To clearly show how important the impact of side chains on organic solar cells(OSCs)is,we designed three acceptors IDIC-CxPh(x=4,5,or 6)via subtle side-chain regulation.Despite this small change,significant distinctio...To clearly show how important the impact of side chains on organic solar cells(OSCs)is,we designed three acceptors IDIC-CxPh(x=4,5,or 6)via subtle side-chain regulation.Despite this small change,significant distinctions were detected.IDIC-C4Ph devices achieve an optimal efficiency of 13.94%under thermal annealing,but thermal-assistant solvent-vapor annealing hugely suppresses the efficiencies to 10%.However,the C6Ph side chain endows extremely disordered stacking orientations,generating moderate efficiencies of~12.50%.Excitingly,the IDIC-C5Ph affords an unexpected two-channel p-p charge transport(TCCT)property,boosting the fill factor(FF)by up to 80.02%and efficiency to 14.56%,ranking the best among five-ring fused-ladder-type acceptors.Impressively,the special TCCT behavior of IDIC-C5Ph enables 470 nm thick-film OSC with a high FF of up to 70.12%and efficiency of 13.01%,demonstrating the great promise in fabricating largescale OSCs.展开更多
文摘The preparation of lead-free thick-film resistors are reported:using RuO 2 and ruthenates as conductive particles,glass powders composed of B 2 O 3,SiO 2,CaO and Al2 O 3 as insulating phase,adding organic matter which mainly consists of ethyl cellulose and terpineol to form printable pastes.Resistors were fabricated and sintered by conventional screen-printing on 96%Al 2 O 3 substrates,and then sintering in a belt furnace.X-ray diffraction(XRD) and electron scanning microscopy(SEM) have been used to characterize the conductive particles.The resistors exhibit good refiring stability and low temperature coefficient of resistance.Sheet resistance spans from about 80Ω/□ to 600Ω/□.The resistors prepared are qualified for common use.
文摘Results of investigation of X-ray diffraction, infrared and optical spectra of powders of the ruthenium dioxide, lead-silicate glass as well as their mixture before and after sintering are reported. Sintering conditions typical for thick film resistors were used. Intensity of main lines of RuO2 in X-ray diffraction patterns of sintered mixtures decreases and they slightly shift towards small angles. No new reflexes appear in these patterns. Absorbance of RuO2 in the range of 2.5-100 μm is proportional to and featureless. Infrared spectrum of lead-silicate glass has absorption bands of [SiO4]4- tetrahedra and Pb-O bonds only. Optical spectrum of RuO2 has wide absorption bands at 950 and 370 nm. Spectra of the mixture of RuO2 and glass powders before and after sintering are different indicating that there is interaction between them during the sintering process. Concentration of free charge carriers estimated from the optical spectra is about 1021 cm-3.
基金financially supported by the Natural Science Foundation of China(No.51972172)Jiangsu Provincial Departments of Science and Technology(Nos.BE2022023 and BK20220010)+5 种基金the Innovation Project of Optics Valley Laboratory(No.OVL2021BG006)the Open Project Program of Wuhan National Laboratory for Optoelectronics(No.2021WNLOKF003)the Young 1000 Talents Global Recruitment Program of Chinathe Natural Science Basic Research Plan in Shaanxi Province of China(No.2021JLM-43)the Joint Research Funds of Department of Science and Technology of Shaanxi Province and Northwestern Polytechnical University(Nos.2020GXLH-Z-007 and 2020GXLH-Z-014)Jiangsu Excellent Postdoctoral Program。
文摘It is essential to enhance the thickness of the absorber layer for perovskite solar cells(PSCs)to improve device performance and reduce industry refinement.However,thick perovskite films(>1μm)are difficult to be fabricated by employing traditional solvents,such as N,N-dimethylformamide(DMF),dimethyl sulfoxide(DMSO).Besides,it is a challenge to fabricate thick-film perovskite owing to the deteriorated surface morphology and serious defect density.Herein,a simple method was reported to deposit uniform pinhole-free perovskite films with a thickness of more than 2μm utilizing the methylamine acetate(MAAc)ionic liquid as the solvent.Combined with methylammonium chloride(MACl)as an additive,thick-film perovskite with~2μm in grain size and few grain boundaries(GBs)was prepared,which dramatically improved the perovskite crystal quality and enhanced carrier transport performance.The final PSCs exhibited a power conversion efficiency(PCE)of 20.16%.The device showed improved stability with 95%of its initial efficiency in a nitrogen environment over 5000 h.This work provides an alternative strategy to produce extremely efficient and stable thick-film PSCs.It can be believed that this device has great potential in the application of large areas and laminated PSCs.
基金The authors are deeply grateful to the National Natural Science Foundation of China(21502205,51773220,51703104,and 51873227)DICP&QIBEBT(UN201805)for financial support.X.C.B.deeply thanks the Youth Innovation Promotion Association CAS(2016194).R.Q.Y.gives thanks to the“Chutian Scholar Program”of Hubei province.The work is also supported by the Dalian National Laboratory for Clean Energy for Clean Energy(DNL),CAS.The authors thanks Prof.Chunming Yang from the Shanghai Synchrotron Radiation Facility for useful discussions.
文摘To clearly show how important the impact of side chains on organic solar cells(OSCs)is,we designed three acceptors IDIC-CxPh(x=4,5,or 6)via subtle side-chain regulation.Despite this small change,significant distinctions were detected.IDIC-C4Ph devices achieve an optimal efficiency of 13.94%under thermal annealing,but thermal-assistant solvent-vapor annealing hugely suppresses the efficiencies to 10%.However,the C6Ph side chain endows extremely disordered stacking orientations,generating moderate efficiencies of~12.50%.Excitingly,the IDIC-C5Ph affords an unexpected two-channel p-p charge transport(TCCT)property,boosting the fill factor(FF)by up to 80.02%and efficiency to 14.56%,ranking the best among five-ring fused-ladder-type acceptors.Impressively,the special TCCT behavior of IDIC-C5Ph enables 470 nm thick-film OSC with a high FF of up to 70.12%and efficiency of 13.01%,demonstrating the great promise in fabricating largescale OSCs.