期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Investigation on the stress field characteristic of top coal at FMTC faces under the influence of caving thickness 被引量:5
1
作者 谢广祥 常聚才 杨科 《Journal of Coal Science & Engineering(China)》 2007年第2期123-125,共3页
In the background of the technology condition and the geological condition of the 1151(3) fully mechanized top-coal caving face (FMTC face), and by means of taking nonlinear 3D numerical simulation, the stress red... In the background of the technology condition and the geological condition of the 1151(3) fully mechanized top-coal caving face (FMTC face), and by means of taking nonlinear 3D numerical simulation, the stress redistribution rules of top coal with different thick coal seam were obtained by investigation on the numerical simulation of the redistributions of the stress with different coal seam's thickness. The research showes that there exists a certain difference on the stress distributions of the top coal at face, the maximum principal stress is located near to the tailentry's corner. The vertical stress's peak of the top coal decreases and the distance ahead of face position increases as the once mining thickness of the coal seam increases. At the same coal seam, the vertical stresses' peak of top coal gradually decreases from the top to the bottom, the peak's position is basically the same and its changes are gradually obvious with the thickness of coal seam increas- ing. The vertical stress of top coal places in a low stress state at a certain range ahead of face and over the face, which reveals the essence that the support loads are generally low under the condition of FMTC. The study supplies the theoretical foundation for the support design and selection, the theory of top coal's fragmentation, the movement rules of top coal and improving the recovery of top coal. 展开更多
关键词 fully mechanized top-coal caving face thickness of coal seam top coal stress field
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部