期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Controlled cooling of an aluminum alloy casting based on 3D printed rib reinforced shell mold 被引量:3
1
作者 Hao-long Shangguan Jin-wu Kang +3 位作者 Ji-hao Yi Cheng-yang Deng Yong-yi Hu Tao Huang 《China Foundry》 SCIE 2018年第3期210-215,共6页
3D printing technology has been used for sand molding and core printing, but they simply substitute the traditional molding and core making method without changing the shape or size of the sand mold(core) and their de... 3D printing technology has been used for sand molding and core printing, but they simply substitute the traditional molding and core making method without changing the shape or size of the sand mold(core) and their dense structure. In this study, a new type of hollow mold based on 3D printing is presented. The new type of mold is a rib reinforced thickness-varying shell mold. This mold design can realize the controlled cooling of castings, i.e., different cooling rates at different areas, and improve the temperature uniformity of a casting after its solidifi cation. Therefore, the performance of castings can be improved and their residual stress and deformation can be reduced. This kind of new mold was applied to a stress frame of A356 aluminum alloy. The 3D printed rib reinforced thickness-varying shell mold was compared with the traditional dense mold, and the castings obtained by these two kinds of molds were also compared. The experimental results showed that the rib reinforced shell mold increased the cooling rate of the casting by 30%, tensile strength by 17%, yield strength by 11%, elongation by 67%, and decreased its deformation by 43%, while sand consumption was greatly reduced by 90%. 展开更多
关键词 RIB REINFORCED thickness-varying shell MOLD 3D PRINTING CASTING SOLIDIFICATION cooling
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部