To solve the problem of a low coal-loading rate being exhibited by the drum shearer on Chinese thin coal seams,systematic tests and research were performed to study the pivotal factors’influences on drum coal-loading...To solve the problem of a low coal-loading rate being exhibited by the drum shearer on Chinese thin coal seams,systematic tests and research were performed to study the pivotal factors’influences on drum coal-loading rate using a model test method.The effects of the drum hub diameter,cutting depth,vane helix angle,drum rotation speed and hauling speed on drum coal-loading rate were determined under circumstances of coal-loading with drum ejection and pushing modes,and reasons for these phenomena were analyzed.The results indicate that the influence of the drum cutting depth on the drum coal-loading rate is the most significant.The parameters of hub diameter,drum rotation speed and hauling speed can influence the drum coal-loading rate by cutting the coals’filling rate in the drum.The parameters of vane helix angle and drum rotation speed can influence drum coal-loading rates by influencing the ratio of cutting coals’tangential and axial speed in the drum.The coal-loading rate with drum ejection is clearly higher than that observed with drum pushing.Research in this study can provide support to design the drum structure and select drum operational parameters for a thin coal seam shearer.展开更多
Analyzed the situations and characteristics of thin coal seam mining and its mining technologies,and introduced the mining innovation technology used by Tianchen Coal Mine of Zhaozhuang Coal Company of China.This inno...Analyzed the situations and characteristics of thin coal seam mining and its mining technologies,and introduced the mining innovation technology used by Tianchen Coal Mine of Zhaozhuang Coal Company of China.This innovation technology combined the fully mechanized mining with individual props,and the working face of mining is over length,irregular form and double units.The rotational adjusting mining technology on thin coal seam is also practiced in this new mining technology.The detail technologies,such as outlays of working face and ways,mining methods,equipments of cutting,transporting and sporting,have been introduced.So that,using the synthetic and creative mining tech- nologies,Tianchen Coal Mine solves the mining problems of thin coal seam successfully.展开更多
The paper introduced complete sets of automatic equipment and technology used in thin seam coal face, and proposed the comprehensive mechanization and automation of safe and high efficiency mining models based on the ...The paper introduced complete sets of automatic equipment and technology used in thin seam coal face, and proposed the comprehensive mechanization and automation of safe and high efficiency mining models based on the thin seam drum shearer. The key technology of short length and high power thin seam drum shearer, and new type roof support with big extension ratio and plate canopy were introduced. The new research achievement on automatic control system of complete sets of equipment for the thin seam coal, which composed of electronic-hydraulic system, compact thin seam roof supports, high effective shearer with intelligent control system, and characterized by automatical follow-up and remote control technology, was described in this paper..展开更多
For coal mines,rock,coal,and rock bolt are the critical constituent materials for surrounding rock in the underground engineering.The stability of the“rock-coal-bolt”(RCB)composite system is affected by the structur...For coal mines,rock,coal,and rock bolt are the critical constituent materials for surrounding rock in the underground engineering.The stability of the“rock-coal-bolt”(RCB)composite system is affected by the structure and fracture of the coal-rock mass.More rock bolts installed on the rock,more complex condition of the engineering stress environment will be(tensile-shear composite stress is principal).In this paper,experimental analysis and theoretical verification were performed on the RCB composite system with different angles.The results revealed that the failure of the rock-coal(RC)composite specimen was caused by tensile and shear cracks.After anchoring,the reinforcement body formed inside the composite system limits the area where the crack could occur in the specimen.Specifically,shearing damage occurred only around the bolt,and the stress-strain curve presented a better post-peak mechanical property.The mechanical mechanism of the bolt under the combined action of tension and shear stress was analyzed.Additionally,a rock-coal-bolt tensile-shear mechanical(RCBTSM)model was established.The relationship(similar to the exponential function)between the bolt tensile-shear stress and the angle was obtained.Moreover,the influences of the dilatancy angle and bolt diameter of the RCB composite system were also considered and analyzed.Most of the bolts are subjected to the tensile-shearing action in the post-peak stage.The implications of these results for engineering practice indicated that the bolts of the RCB composite system should be prevented from entering the limit shearing state early.展开更多
Seismic inversion and basic theory are briefly presented and the main idea of this method is introduced. Both non-linear wave equation inversion technique and Complete Utilization of Samples Information (CUSI) neural ...Seismic inversion and basic theory are briefly presented and the main idea of this method is introduced. Both non-linear wave equation inversion technique and Complete Utilization of Samples Information (CUSI) neural network analysis are used in lithological interpretation in Jibei coal field. The prediction results indicate that this method can provide reliable data for thin coal exploitation and promising area evaluation.展开更多
基金Project(2012AA062104)supported by the National High Technology Research and Development Program of ChinaProject(51704178)supported by the National Natural Science Foundation of China+1 种基金Project(ZR2017MEE034)supported by Natural Science Foundation of Shandong Province,ChinaProject(2018T110700)supported by China Postdoctoral Science Foundation
文摘To solve the problem of a low coal-loading rate being exhibited by the drum shearer on Chinese thin coal seams,systematic tests and research were performed to study the pivotal factors’influences on drum coal-loading rate using a model test method.The effects of the drum hub diameter,cutting depth,vane helix angle,drum rotation speed and hauling speed on drum coal-loading rate were determined under circumstances of coal-loading with drum ejection and pushing modes,and reasons for these phenomena were analyzed.The results indicate that the influence of the drum cutting depth on the drum coal-loading rate is the most significant.The parameters of hub diameter,drum rotation speed and hauling speed can influence the drum coal-loading rate by cutting the coals’filling rate in the drum.The parameters of vane helix angle and drum rotation speed can influence drum coal-loading rates by influencing the ratio of cutting coals’tangential and axial speed in the drum.The coal-loading rate with drum ejection is clearly higher than that observed with drum pushing.Research in this study can provide support to design the drum structure and select drum operational parameters for a thin coal seam shearer.
基金the Natural Science Fund of China(70771060)the Production Safety and Supervision of Management Bureau of China(04-116)+3 种基金the National Soft Science Planed Program(2004DGQ3D090)and(2006GXQ3D154)the Natural Science Fund of Shandong Province(Y2006H10)the Social Science Planning Program of Shandong Province(06BJJ005)the Soft-science Planed Program of Shandong Province(2007RKA134)
文摘Analyzed the situations and characteristics of thin coal seam mining and its mining technologies,and introduced the mining innovation technology used by Tianchen Coal Mine of Zhaozhuang Coal Company of China.This innovation technology combined the fully mechanized mining with individual props,and the working face of mining is over length,irregular form and double units.The rotational adjusting mining technology on thin coal seam is also practiced in this new mining technology.The detail technologies,such as outlays of working face and ways,mining methods,equipments of cutting,transporting and sporting,have been introduced.So that,using the synthetic and creative mining tech- nologies,Tianchen Coal Mine solves the mining problems of thin coal seam successfully.
基金Supported by the National Natural Science Foundation of China (50375026, 50375028) the National High-tech R&D Program of China (863 Program) (2012AA06A407)
文摘The paper introduced complete sets of automatic equipment and technology used in thin seam coal face, and proposed the comprehensive mechanization and automation of safe and high efficiency mining models based on the thin seam drum shearer. The key technology of short length and high power thin seam drum shearer, and new type roof support with big extension ratio and plate canopy were introduced. The new research achievement on automatic control system of complete sets of equipment for the thin seam coal, which composed of electronic-hydraulic system, compact thin seam roof supports, high effective shearer with intelligent control system, and characterized by automatical follow-up and remote control technology, was described in this paper..
基金Beijing Outstanding Young Scientist Program(BJJWZYJH01201911413037)the projects supported by National Natural Science Foundation of China(Grants Nos.41877257,51622404,and 51974117)Shaanxi Coal Group Key Project(2018SMHKJ-A-J-03)。
文摘For coal mines,rock,coal,and rock bolt are the critical constituent materials for surrounding rock in the underground engineering.The stability of the“rock-coal-bolt”(RCB)composite system is affected by the structure and fracture of the coal-rock mass.More rock bolts installed on the rock,more complex condition of the engineering stress environment will be(tensile-shear composite stress is principal).In this paper,experimental analysis and theoretical verification were performed on the RCB composite system with different angles.The results revealed that the failure of the rock-coal(RC)composite specimen was caused by tensile and shear cracks.After anchoring,the reinforcement body formed inside the composite system limits the area where the crack could occur in the specimen.Specifically,shearing damage occurred only around the bolt,and the stress-strain curve presented a better post-peak mechanical property.The mechanical mechanism of the bolt under the combined action of tension and shear stress was analyzed.Additionally,a rock-coal-bolt tensile-shear mechanical(RCBTSM)model was established.The relationship(similar to the exponential function)between the bolt tensile-shear stress and the angle was obtained.Moreover,the influences of the dilatancy angle and bolt diameter of the RCB composite system were also considered and analyzed.Most of the bolts are subjected to the tensile-shearing action in the post-peak stage.The implications of these results for engineering practice indicated that the bolts of the RCB composite system should be prevented from entering the limit shearing state early.
文摘Seismic inversion and basic theory are briefly presented and the main idea of this method is introduced. Both non-linear wave equation inversion technique and Complete Utilization of Samples Information (CUSI) neural network analysis are used in lithological interpretation in Jibei coal field. The prediction results indicate that this method can provide reliable data for thin coal exploitation and promising area evaluation.