By employing the two-dimensional analysis, i.e.,plane strain and plane stress, a semi-analytical method is developed to investigate the interfacial delamination in electrodes. The key parameters are obtained from the ...By employing the two-dimensional analysis, i.e.,plane strain and plane stress, a semi-analytical method is developed to investigate the interfacial delamination in electrodes. The key parameters are obtained from the governing equations, and their effects on the evolution of the delamination are evaluated. The impact of constraint perpendicular to the plane is also investigated by comparing the plane strain and plane stress. It is found that the delamination in the plane strain condition occurs easier, indicating that the constraint is harmful to maintain the structure stability. According to the obtained governing equations, a formula of the dimensionless critical size for delamination is provided, which is a function of the maximum volumetric strain and the Poisson’s ratio of the active layer.展开更多
Progressive delamination driven by Li-ion diffusion in elastic disk-like thin film electrodes of Li-ion batteries is modeled based on the cohesive model. Axisymmetric diffusion model is considered under both galvanost...Progressive delamination driven by Li-ion diffusion in elastic disk-like thin film electrodes of Li-ion batteries is modeled based on the cohesive model. Axisymmetric diffusion model is considered under both galvanostatic and potentiostatic operations. The effect of edge diffusion on the delamination process is evaluated. It is found that the diffusion from edge leads to an earlier delamination initiation. The edge effect is significant for active disks with a small aspect ratio, but negligible for the case of large aspect ratio. The edge diffusion is weaker in the potentiostatic operation than in the galvanostatic operation.展开更多
Biodegradable metals as electrodes, interconnectors, and device conductors are essential components in the emergence of transient electronics, either for passive implants or active electronic devices, especially in th...Biodegradable metals as electrodes, interconnectors, and device conductors are essential components in the emergence of transient electronics, either for passive implants or active electronic devices, especially in the fields of biomedical electronics. Magnesium and its alloys are strong candidates for biodegradable and implantable conducting materials because of their high conductivity and biocompatibility, in addition to their well-understood dissolution behavior. One critical drawback of Mg and its alloys is their considerably high dissolution rates originating from their low anodic potential, which disturbs the compatibility to biomedical applications. Herein, we introduce a single-phase thin film of a Mg-Zn binary alloy formed by sputtering, which enhances the corrosion resistance of the device electrode, and verify its applicability in biodegradable electronics. The formation of a homogeneous solid solution of single-phase Mg-3Zn was confirmed through X-ray diffraction and transmission electron microscopy. In addition, the dissolution behavior and chemistry was also investigated in various biological fluids by considering the effect of different ion species. Micro-tensile tests showed that the Mg-3Zn alloy electrode exhibited an enhanced yield strain and elongation in relation to a pure Mg electrode. Cell viability test revealed the high biocompatibility rate of the Mg-3Zn binary alloy thin film. Finally, the fabrication of a wireless heater demonstrated the integrability of biodegradable electrodes and highlighted the ability to prolong the lifecycle of thermotherapy-relevant electronics by enhancing the dissolution resistance of the Mg alloy.展开更多
both theoretical and experimental findings of the photoresponse for water spliting of the pyrolytically prepared thin film iron oxide electrodes are given.Fur- ther,the spray time and the corresponding thickness of th...both theoretical and experimental findings of the photoresponse for water spliting of the pyrolytically prepared thin film iron oxide electrodes are given.Fur- ther,the spray time and the corresponding thickness of the Fe_2O_3 thin film were opti- mized to have maximum photoresponse.The effect of iodine doping on photoresponse of iron oxide was investigated.展开更多
Thin-film lithium niobate electro-optical modulator will become the key device in the future optical communication,which has the advantages of high modulation rate,low half-wave voltage,large bandwidth,and easy integr...Thin-film lithium niobate electro-optical modulator will become the key device in the future optical communication,which has the advantages of high modulation rate,low half-wave voltage,large bandwidth,and easy integration compared with conventional bulk lithium niobate modulator.However,because the electrode gap of the lithium niobate film modulator is very narrow,when the microwave frequency gets higher,it leads to higher microwave loss,and the electro-optical performance of the modulator will be greatly reduced.Here,we propose a thin film lithium niobate electro-optic modulator with a bimetallic layer electrode structure to achieve microwave loss less than 8 dB/cm in the range of 200 GHz,exhibiting a voltage-length product of 1.1 V·cm and a 3 dB electro-optic bandwidth greater than 160 GHz.High-speed data transmission test has been performed,showing good performance.展开更多
A novel method based on microbe modification has been employed to prepare gold thin film electrode. The preparation method is simple and the electrode obtained is stable and very sensitive in determining heavy metal i...A novel method based on microbe modification has been employed to prepare gold thin film electrode. The preparation method is simple and the electrode obtained is stable and very sensitive in determining heavy metal ions. The quantitation limit of Cu2+ is 0.05 ng/mL.展开更多
The kinetics of interracial processes of CdSe thin film electrode before and after sur- face modification of 1,1'-di linolene ferrocenyl L-B films have been studied in K_4Fe(CN)_6 solution by Intensity Modulated P...The kinetics of interracial processes of CdSe thin film electrode before and after sur- face modification of 1,1'-di linolene ferrocenyl L-B films have been studied in K_4Fe(CN)_6 solution by Intensity Modulated Photocurrent Spectroscopy(IMPS).Potential dependence of surface state relaxation time(T_s),steady state photocurrent(I_s),collection coefficient of minority carriers(G_o), rate constant of photocorrosion(K_(cr)),and density of surface state(N_(ss))were determined in terms of frequency response analysis of IMPS plots.展开更多
Electrochemical behaviours of Europium-ferrocene derivative complex chemically modified electrodes were studied in the paper. Various factors which affect the voltammetry of the thin film modified electrodes, and the...Electrochemical behaviours of Europium-ferrocene derivative complex chemically modified electrodes were studied in the paper. Various factors which affect the voltammetry of the thin film modified electrodes, and the charge transport process of the thin film electrode were discussed. Size of the hydrated anion (counter ion), concentration of the electrolyte, swelling property of the film in the solvent and thickness of the film have significant effects on the voltammetry of the thin film electrode. Electrochemical behaviours of europium-ferrocene derivative compelx chemically modified electrode were studied in an aqueous solution. When scan ning between 0-0.8 V (vs. SCE), experimental results indicate that the chemically modified electrode has good stability and reproducibility. The apparent rate constant of electrode reaction is deteminedd to be 6.7×10-1 s-1.展开更多
文摘By employing the two-dimensional analysis, i.e.,plane strain and plane stress, a semi-analytical method is developed to investigate the interfacial delamination in electrodes. The key parameters are obtained from the governing equations, and their effects on the evolution of the delamination are evaluated. The impact of constraint perpendicular to the plane is also investigated by comparing the plane strain and plane stress. It is found that the delamination in the plane strain condition occurs easier, indicating that the constraint is harmful to maintain the structure stability. According to the obtained governing equations, a formula of the dimensionless critical size for delamination is provided, which is a function of the maximum volumetric strain and the Poisson’s ratio of the active layer.
基金supported by the National Science Foundation of China (11102103 and 11172159)the Shanghai Municipal Education Commission, China (13ZZ070)+1 种基金the Graduate School of Shanghai University (SHUCX120123)the Science and Technology Commission of Shanghai Municipality, China(12ZR1410200)
文摘Progressive delamination driven by Li-ion diffusion in elastic disk-like thin film electrodes of Li-ion batteries is modeled based on the cohesive model. Axisymmetric diffusion model is considered under both galvanostatic and potentiostatic operations. The effect of edge diffusion on the delamination process is evaluated. It is found that the diffusion from edge leads to an earlier delamination initiation. The edge effect is significant for active disks with a small aspect ratio, but negligible for the case of large aspect ratio. The edge diffusion is weaker in the potentiostatic operation than in the galvanostatic operation.
基金supported by the Renewable Energy Technology Development (Develop technology to enhance reliability and durability for parts of hydrogen storage tank system) (2022303004020B) grant funded by the Korea Energy Technology Evaluation Planning (KETEP)the Ministry of Science and ICT (Development Project for Emerging Research Instruments Technology),(Project Number: (2022)ERIC)06_1Commercialization Promotion Agency for R&D Outcomes (COMPA)。
文摘Biodegradable metals as electrodes, interconnectors, and device conductors are essential components in the emergence of transient electronics, either for passive implants or active electronic devices, especially in the fields of biomedical electronics. Magnesium and its alloys are strong candidates for biodegradable and implantable conducting materials because of their high conductivity and biocompatibility, in addition to their well-understood dissolution behavior. One critical drawback of Mg and its alloys is their considerably high dissolution rates originating from their low anodic potential, which disturbs the compatibility to biomedical applications. Herein, we introduce a single-phase thin film of a Mg-Zn binary alloy formed by sputtering, which enhances the corrosion resistance of the device electrode, and verify its applicability in biodegradable electronics. The formation of a homogeneous solid solution of single-phase Mg-3Zn was confirmed through X-ray diffraction and transmission electron microscopy. In addition, the dissolution behavior and chemistry was also investigated in various biological fluids by considering the effect of different ion species. Micro-tensile tests showed that the Mg-3Zn alloy electrode exhibited an enhanced yield strain and elongation in relation to a pure Mg electrode. Cell viability test revealed the high biocompatibility rate of the Mg-3Zn binary alloy thin film. Finally, the fabrication of a wireless heater demonstrated the integrability of biodegradable electrodes and highlighted the ability to prolong the lifecycle of thermotherapy-relevant electronics by enhancing the dissolution resistance of the Mg alloy.
文摘both theoretical and experimental findings of the photoresponse for water spliting of the pyrolytically prepared thin film iron oxide electrodes are given.Fur- ther,the spray time and the corresponding thickness of the Fe_2O_3 thin film were opti- mized to have maximum photoresponse.The effect of iodine doping on photoresponse of iron oxide was investigated.
基金supported by the Self-deployment Project of Fujian Science&Technology Innovation Laboratory for Optoelectronic Information of China(No.2021ZZ104)the Fujian Province STS Project(Nos.2020T3002 and 2022T3012)。
文摘Thin-film lithium niobate electro-optical modulator will become the key device in the future optical communication,which has the advantages of high modulation rate,low half-wave voltage,large bandwidth,and easy integration compared with conventional bulk lithium niobate modulator.However,because the electrode gap of the lithium niobate film modulator is very narrow,when the microwave frequency gets higher,it leads to higher microwave loss,and the electro-optical performance of the modulator will be greatly reduced.Here,we propose a thin film lithium niobate electro-optic modulator with a bimetallic layer electrode structure to achieve microwave loss less than 8 dB/cm in the range of 200 GHz,exhibiting a voltage-length product of 1.1 V·cm and a 3 dB electro-optic bandwidth greater than 160 GHz.High-speed data transmission test has been performed,showing good performance.
文摘A novel method based on microbe modification has been employed to prepare gold thin film electrode. The preparation method is simple and the electrode obtained is stable and very sensitive in determining heavy metal ions. The quantitation limit of Cu2+ is 0.05 ng/mL.
基金This work was supported by the National Natural Science Foundation of China
文摘The kinetics of interracial processes of CdSe thin film electrode before and after sur- face modification of 1,1'-di linolene ferrocenyl L-B films have been studied in K_4Fe(CN)_6 solution by Intensity Modulated Photocurrent Spectroscopy(IMPS).Potential dependence of surface state relaxation time(T_s),steady state photocurrent(I_s),collection coefficient of minority carriers(G_o), rate constant of photocorrosion(K_(cr)),and density of surface state(N_(ss))were determined in terms of frequency response analysis of IMPS plots.
文摘Electrochemical behaviours of Europium-ferrocene derivative complex chemically modified electrodes were studied in the paper. Various factors which affect the voltammetry of the thin film modified electrodes, and the charge transport process of the thin film electrode were discussed. Size of the hydrated anion (counter ion), concentration of the electrolyte, swelling property of the film in the solvent and thickness of the film have significant effects on the voltammetry of the thin film electrode. Electrochemical behaviours of europium-ferrocene derivative compelx chemically modified electrode were studied in an aqueous solution. When scan ning between 0-0.8 V (vs. SCE), experimental results indicate that the chemically modified electrode has good stability and reproducibility. The apparent rate constant of electrode reaction is deteminedd to be 6.7×10-1 s-1.