Tungsten film(W film) is deposited by using the ion beam assisted deposition(IBAD) on the 316 L substrate surface in this experiment. The micro structure and nano-hardness of the film are investigated by scanning elec...Tungsten film(W film) is deposited by using the ion beam assisted deposition(IBAD) on the 316 L substrate surface in this experiment. The micro structure and nano-hardness of the film are investigated by scanning electron microscopy(SEM) and nano-indentation tester. The tribological behavior of W film under lubrication by oil with ZDDP and MoDTC is evaluated by a SRV test machine. The tribo-film formed on the worn surfaces is investigated by X-ray photoelectron spectroscopy(XPS) to find out the tribological mechanisms between the W film and the two additional additives. The result shows that the W film lubricated by ZDDP and MoDTC-blended base oil has synergistic effects on the friction reduction property, while the anti-wear property is mainly caused by the hard surface of W film.展开更多
Mechanical systems on all length scales may be subjected to nanoscale thin film lubrication(TFL). Molecular dynamics(MD) simulations were conducted to investigate the lubrication mechanism and boundary slip of squalan...Mechanical systems on all length scales may be subjected to nanoscale thin film lubrication(TFL). Molecular dynamics(MD) simulations were conducted to investigate the lubrication mechanism and boundary slip of squalane confined in nanogap at 293 K with two different film thicknesses and a wide range of pressures. The molecular distribution, density and velocity profiles of squalane were analyzed. The results show that the lubricant atoms tend to form layers parallel to the wall, but the lubricant molecules orient randomly throughout the film in the directions both parallel and perpendicular to the wall. Most squalane molecules appear twisted and folded, and extend to several atomic layers so that there are no slips between lubricant layers. The distances between the lubricant layers are irregular rather than broadening far away from the walls. The boundary slip at the interface of bcc Fe(001) and squalane only occurs at high pressure because of the strong nonbond interactions between lubricant atoms and wall atoms. The tendency of boundary slip is more obvious for films with thinner film thickness. According to the simulations, the relationship between the slip length and the pressure is given.展开更多
Based on the theory of unsteady hydrodynamic lubrication and relevant mathematic and physical methods, a basic model was developed to analyze the unsteady lubrication film thickness, pressure stress and friction stres...Based on the theory of unsteady hydrodynamic lubrication and relevant mathematic and physical methods, a basic model was developed to analyze the unsteady lubrication film thickness, pressure stress and friction stress in the work zone in strip rolling. The distribution of pressure stress and friction stress in the work zone was obtained. A numerical simulation was made on a 1850 cold rolling mill. The influence of back tension stress and reduction on the distribution of pressure stress and friction stress between the roll gaps was qualitatively analyzed by numerical simulation. The calculated results indicate that the higher the back tension, the lower the pressure stress and the friction stress in the work zone, and the largest friction stresses are obtained at the inlet and outlet edges. The pressure and friction gradients are rather small at high back tension. The pressure-sensitive lubricant viscosity increases exponentially with the increase of pressure. The unsteady lubrication phenomenon in the roll bite is successfully demonstrated.展开更多
In this study, the effects of the non-Newtonian rheological properties of the lubricant in a thin-film lubrication regime between smooth surfaces were investigated. The thin-film lubrication regime typically appears i...In this study, the effects of the non-Newtonian rheological properties of the lubricant in a thin-film lubrication regime between smooth surfaces were investigated. The thin-film lubrication regime typically appears in Stribeck curves with a clearly observable minimum coefficient of friction (COF) and a low-COF region, which is desired for its lower energy dissipation. A dynamic rheology of the lubricant from the hydrodynamic lubrication regime to the thin-film lubrication regime was proposed based on the convected Maxwell constitutive equation. This rheology model includes the increased relaxation time and the yield stress of the confined lubricant thin film, as well as their dependences on the lubricant film thickness. The Deborah number (De number) was adopted to describe the liquid-solid transition of the confined lubricant thin film under shearing. Then a series of Stribeck curves were calculated based on Tichy's extended lubrication equations with a perturbation of the De number. The results show that the minimum COF points in the Stribeck curve correspond to a critical De number of 1.0, indicating a liquid-to-solid transition of the confined lubricant film. Furthermore, the two proposed parameters in the dynamic rheological model, namely negative slipping length b (indicating the lubricant interracial effect) and the characteristic relaxation time λ0, were found to determine the minimum COF and the width of the low-COF region, both of which were required to optimize the shape of the Stribeck curve. The developed dynamic theological model interprets the correlation between the rheological and interfacial properties of lubricant and its lubrication behavior in the thin-film regime.展开更多
An analytical model for metal rolling in the mixed lubrication regime was developed based on Wilson and Chang’s asperity flattening model and Von Mises homogenous deformation model. A more rigorous average Reynolds e...An analytical model for metal rolling in the mixed lubrication regime was developed based on Wilson and Chang’s asperity flattening model and Von Mises homogenous deformation model. A more rigorous average Reynolds equation was used to calculate the hydrodynamic pressure. The variations of the yield stress with strain were considered in the model. An efficient iteration procedure was developed to solve the contact area, film thickness and hydrodynamic pressure. The model is more practical with fewer assumption and converges quickly. It is applicable to a wider range of rolling regimes. The calculation results using the model agree well with the literature as well as with measured data from a rolling mill.展开更多
The tribological tests were performed using Nitinol 60 alloy pin sliding over GCr15 steel disc in the tribometer system. Four kinds of oils were experimentally investigated as lubrication oils for lubricating Nitinol ...The tribological tests were performed using Nitinol 60 alloy pin sliding over GCr15 steel disc in the tribometer system. Four kinds of oils were experimentally investigated as lubrication oils for lubricating Nitinol 60 alloy in the boundary lubrication regime. The experimental results were compared with a reference dry friction. It was found that Nitinol 60 alloy can be lubricated significantly and has shown remarkable lubrication performance. A superlubricity behavior of Nitinol 60 alloy was observed under castor oil lubrication. An ultra-low coefficient of friction of Nitinol 60 alloy about 0.008 between Nitinol 60 alloy and GCr15 steel was obtained under castor oil lubrication condition after a running-in period. Accordingly, the present study is focused on the lubrication behaviors of castor oil as potential lubrication oil for Nitinol 60 alloy. In the presence of castor oil, coefficient of friction is kept at 0.008 at steady state, corresponding to so-called superlubricity regime (when sliding is then approaching pure rolling). The mechanism of superlubricity is attributed to the triboformed OH-terminated surfaces from friction-induced dissociation of castor oil and the boundary lubrication films formed on the contact surface due to high polarity and long chain of castor oil allowing strong interactions with the lubricated surfaces.展开更多
A specific revised HFCVD apparatus and a novel process combining HFCVD and polishing technique were presented to deposit the micro-and nano-crystalline multilayered ultra-smooth diamond(USCD) film on the interior-ho...A specific revised HFCVD apparatus and a novel process combining HFCVD and polishing technique were presented to deposit the micro-and nano-crystalline multilayered ultra-smooth diamond(USCD) film on the interior-hole surface of WC-Co drawing dies with aperture ranging from d1.0 mm to 60 mm.Characterization results indicate that the surface roughness values(Ra) in the entry zone,drawing zone and bearing zone of as-fabricated USCD coated drawing die were measured as low as 25.7,23.3 and 25.5 nm,respectively.Furthermore,the friction properties of USCD films were examined in both dry sliding and water-lubricating conditions,and the results show that the USCD film presents much superior friction properties.Its friction coefficients against ball-bearing steel,copper and silicon nitride balls(d4 mm),is always lower than that of microcrystalline diamond(MCD) or WC-Co sample,regardless of the lubricating condition.Meanwhile,it still presents competitive wear resistance with the MCD films.Finally,the working lifetime and performance of as-fabricated USCD coated drawing dies were examined under producing low-carbon steel pipes in dry-sliding and water-lubricating conditions.Under the water-lubricating drawing condition,its production significantly increases by about 20 times compared with the conventional WC-Co drawing dies.展开更多
A lubrication model was developed for explaining how to form an oil film inthe deformation zone, predicting the film thickness and determining the characteristics oflubrication in the strip rolling process, combined w...A lubrication model was developed for explaining how to form an oil film inthe deformation zone, predicting the film thickness and determining the characteristics oflubrication in the strip rolling process, combined with the knowledge of hydrodynamic lubricationand rolling theories. Various mineral oils with viscosities from 0.032 to 1.6 Pa-s were used toobtain different film thicknesses in the strip cold rolling. Results from the experiment andcalculation show that the oil film forming in hydrodynamic lubrication is up to the bit angle and ahigher rolling speed or a higher rolling oil viscosity. The mechanism of mechanical entrainmentalways affects the film thickness that increases with the rolling oil viscosity increasing or thereduction rate decreasing in rolling.展开更多
In order to understand lubrication mechanism at the nanoscale, researchers have used many physical experimental approaches, such as surface force apparatus, atomic force microscopy and ball-on-disk tribometer. The res...In order to understand lubrication mechanism at the nanoscale, researchers have used many physical experimental approaches, such as surface force apparatus, atomic force microscopy and ball-on-disk tribometer. The results show that the variation rules of the friction force, film thicknessand viscosity of the lubricant at the nanoscale are different from elastohydrodynamic lubrication (EHL). It is speculated that these differences are attributed to the special arrangement of the molecules at the nanoscale. However, it is difficult to obtain the molecular orientation and distribution directly from the lubricant molecules in these experiments. In recent years, more and more attention has been paid to use new techniques to overcome the shortcomings of traditional experiments, including various spectral methods. The most representative achievements in the experimental research of molecular arrangement are reviewed in this paper: The change of film structure of a liquid crystal under confinement has been obtained using X-ray method. The molecular orientation change of lubricant films has been observed using absorption spectroscopy. Infrared spectroscopy has been used to measure the anisotropy of molecular orientation in the contact region when the lubricant film thickness is reduced to a few tens of nanometers. In situ Raman spectroscopy has been performed to measure the molecular orientation of the lubricant film semi-quantitatively. These results prove that confinement and shear in the contact region can change the arrangement of lubricant molecules. As a result, the lubrication characteristics are affected. The shortages of these works are also discussed based on practicable results. Further work is needed to separate the information of the solid-liquid interface from the bulk liquid film.展开更多
A theoretical model for mixed lubrication with more accurate contact length has been developed based on the average volume flow model and asperity flattening model,and the lubricant volume flow rate and outlet speed r...A theoretical model for mixed lubrication with more accurate contact length has been developed based on the average volume flow model and asperity flattening model,and the lubricant volume flow rate and outlet speed ratio are determined by integrating differential equations based on rolling parameters.The lubrication characteristics at the roll-strip interface with different surface roughness,rolling speed,reduction and lubricant viscosity are analyzed respectively.Additionally,the average volume flow rates of lubricant under different rolling conditions are calculated and used to explain the change rule of lubrication characteristics.The developed scheme is able to determine the total pressure,lubricant pressure,film thickness and real contact area at any point within the work zone.The prediction and analysis of mixed lubrication characteristics at the interface is meaningful to better control the surface quality and optimize the rolling process.展开更多
The friction behavior of the hot filament chemical vapor deposition(HFCVD) diamond film plays a critical role on its applications in mechanical fields and largely depends on the environment. Studies on the tribologi...The friction behavior of the hot filament chemical vapor deposition(HFCVD) diamond film plays a critical role on its applications in mechanical fields and largely depends on the environment. Studies on the tribological properties of HFCVD diamond films coated on Co-cemented tungsten carbide (WC-Co) substrates are rarely reported in available literatures, especially in the water lubricating conditions. In this paper, conventional microcrystalline diamond(MCD) and fine-grained diamond(FGD) films are deposited on WC-Co substrates and their friction properties are evaluated on a reciprocating ball-on-plate tribometer, where they are brought to slide against ball-bearing steel and copper balls in dry and water lubricating conditions. Scanning electron microscopy(SEM), atomic force microscopy(AFM), surface profilometer and Raman spectroscopy are adopted to characterize as-deposited diamond films; SEM and energy dispersive X-ray(EDX) are used to investigate the worn region on the surfaces of both counterface balls and diamond films. The research results show that the friction coefficient of HFCVD diamond films always starts with a high initial value, and then gradually transits to a relative stable state. For a given counterface and a sliding condition, the FGD film presents lower stable friction coefficients by 0.02-0.03 than MCD film. The transferred materials adhered on sliding interface are supposed to have predominate effect on the friction behaviors of HFCVD diamond films. Furthermore, the effect of water lubricating on reducing friction coefficient is significant. For a given counterpart, the stable friction coefficients of MCD or FGD films reduce by about 0.07-0.08 while sliding in the water lubricating condition, relative to in dry sliding condition. This study is beneficial for widespread applications of HFCVD diamond coated mechanical components and adopting water lubricating system, replacing ofoil lubricating, in a variety of mechanical processing fields to implement the green production process.展开更多
On the basis of thin film lubrication theory, the influence of fluid film(disordered film), ordered film and adsorbed film on tribological behavior of lubricating oil in thin-film lubrication(TFL) regime was studied. ...On the basis of thin film lubrication theory, the influence of fluid film(disordered film), ordered film and adsorbed film on tribological behavior of lubricating oil in thin-film lubrication(TFL) regime was studied. The μ-L(friction coefficient versus load) curves of different oil viscosity and additive dosage were obtained by a high frequency reciprocating test rig and the adsorption capacity of additive on steel surface were measured by QCM-D. Based on the Stribeck curve and thin film lubrication theory model, some conclusions can be drawn up, namely:(1) The μ-L curves and the parameters of L0 and μ0, obtained from the high frequency reciprocating test rig with ball-disc contact, can be used to study tribological behaviors of lubricating oil under TFL conditions.(2) In comparison with the high viscosity base fluid, the lower one can enter into TFL regime under lower load and keeps a lower friction coefficient in TFL regime.(3) The polar molecules in additive formulation produce ordered adsorbed layer on steel surface to reduce friction coefficient. And in TFL regime, the molecule's polarity, layer thickness and saturation degree on steel surface probably can influence lubricant's tribological behaviors between the moving interfaces. Moreover, the further study would be focused on the competitive adsorption of different additives, the formation of dual- and/or tri-molecular adsorption layers, and other aspects.展开更多
Observation was carried out of the structure of sulphuric,oxalic or phosphoric film on Al after treatment of reanodizing and electrolytic depositing lubricant in (NH_4)_2MoS_4 solution,as well as of the deposited prod...Observation was carried out of the structure of sulphuric,oxalic or phosphoric film on Al after treatment of reanodizing and electrolytic depositing lubricant in (NH_4)_2MoS_4 solution,as well as of the deposited products by means of EMPA,TEM and energy spectro-scopic analysis.The deposited products are mixture of compounds of S and Mo rather than single MoS_2 and most of them dcposited near the surface layer of the film.Some regular long pores without barrier layer occurred in the film,but the regular fine channels without relation to the structural element parameters of original anodized film were found in the thickened barrier layer of phosphoric film.Sulphur may be remained as Mo sulphide in the film during heating under Ar protective environment.展开更多
The thermal elasto-hydrodynamic lubrication characteristics of the internal meshing gears in a planetary gear train under vibrations were examined considering the influence of the modification coefficient and time-var...The thermal elasto-hydrodynamic lubrication characteristics of the internal meshing gears in a planetary gear train under vibrations were examined considering the influence of the modification coefficient and time-varying meshing stiffness.Based on dynamic theory of the gear system,a dynamic model of the planetary gear train was established.The lubrication performances of modified gear systems under vibrations and static loads were analyzed.Compared with other transmission types,the best lubrication effect could be produced by the positive transmission.A thicker lubricating oil film could be formed,and the friction coefficient and oil film flash temperature are the smallest.Increasing modification coefficient improves the lubrication performance continuously but intensifies the engage-in and tooth-change impact.For the planetary and inner gears,the increase in the modification coefficient also leads a decrease in the oil film stiffness.展开更多
The thermal elastohydrodynamic lubrication characteristics of a modified gear system under a dynamic load were investigated,including the influence of the modification coefficient and vibrations.Based on the dynamic t...The thermal elastohydrodynamic lubrication characteristics of a modified gear system under a dynamic load were investigated,including the influence of the modification coefficient and vibrations.Based on the dynamic theory of gear systems,a six-degree-of-freedom tribo-dynamics model was established.Thermal elastohydrodynamic lubrication characteristics of a modified gear system under vibrations and a static load were analyzed.The results showed that the positive transmission gear system exhibited the better lubrication effect compared with other transmission types.A thick lubricating oil film could be formed,and the friction coefficient between the teeth and the oil film flash temperature were the smallest.As the modification coefficient increased,the lubrication condition was continuously improved,and the scuffing load capacity was enhanced.The increment of the modification coefficient increased the meshing stiffness of the gear system but reduced the stiffness of the oil film.展开更多
The acid number of the mixed solution of 150SN oil and oleic acid characterizes the volume content of oleic acid in the solution, based on which the adsorptive capability of oleic acid is studied on the 45 steel balls...The acid number of the mixed solution of 150SN oil and oleic acid characterizes the volume content of oleic acid in the solution, based on which the adsorptive capability of oleic acid is studied on the 45 steel balls and disks. Boundary lubrication tests are carried out on a self designed ball-on-disk machine, The base oil is pure 150SN oil, and oleic acid as additive are added into the lubricant. Disks have surface roughness values (Ra) of 0.8 μn and 0.4 μn. The electrical contact resistance method is used to determine the lubrication status. Hypothesize that the molecular film is monomolecular layer in condensed state and the opposing surfaces are completely separated by molecular film. A boundary lubrication model is established according to experimental results and hypothesizes. The experimental and calculatienal results show that the adsorption of polar molecules on steel surface is the main factor to form the boundary lubrication film. Load and sliding speed contribute little to the friction coefficient of boundary lubrication. The properties of steel surface and additive for the lubricant significantly influence on the characters of boundary lubrication. The smaller the surface roughness value is, the smaller the friction coefficient of the boundary lubrication is.展开更多
The tribological characteristics of carbon fiber reinforced polymer composites under distilled-water-lubricated-sliding and dry-sliding against stainless steel were comparatively investigated. Scanning electron micros...The tribological characteristics of carbon fiber reinforced polymer composites under distilled-water-lubricated-sliding and dry-sliding against stainless steel were comparatively investigated. Scanning electron microscopy (SEM) was utilized to examine composite microstructures and modes of failure. The typical chemical states of elements of the transfer film on the stainless steel were examined with X-ray photoelectron spectroscopy (XPS). Wear testing and SEM analysis show that all the composites hold the lowered friction coefficient and show much better wear resistance under water lubricated sliding against stainless steel than those under dry sliding. The wear of composites is characterized by plastic deformation, scuffing, micro cracking, and spalling under both dry-sliding and water lubricated conditions. Plastic deformation, scuffing, micro cracking, and spalling, however, are significantly abated under water-lubricated condition. XPS analysis conforms that none of the materials produces transfer films on the stainless steel counterface with the type familiar from dry sliding, and the transfer of composites onto the counterpart ring surface is significantly hindered while the oxidation of the stainless steel is speeded under water lubrication. The composites hinder transfer onto the steel surface and the boundary lubricating action of water accounts for the much smaller wear rate under water lubrication compared with that under dry sliding. The easier transfer of the composite onto the counterpart steel surface accounts for the larger wear rate of the polymer composite under dry sliding.展开更多
Based on analysis of rheology of oil-in-water emulsions during lubrication process. we have established the mathematical model of film thickness lubricated with emulsions during drawing process, The film thickness cal...Based on analysis of rheology of oil-in-water emulsions during lubrication process. we have established the mathematical model of film thickness lubricated with emulsions during drawing process, The film thickness calculated with the model under general c展开更多
The characteristics of lubricant film at head/disk interface (HDI) are essential to the stability of hard disk drives. In this study, the theoretical models of the lubricant flow and depletion are deduced based on N...The characteristics of lubricant film at head/disk interface (HDI) are essential to the stability of hard disk drives. In this study, the theoretical models of the lubricant flow and depletion are deduced based on Navier-Stokes (NS) and continuity equations. The air bearing pressure on the surface of the lubrication film is solved by the modified Reynolds equation based on Fukui and Kaneko (FK) model. Then the lubricant film deformations for a plane slider and double-track slider are obtained. The equation of lubricant film thickness is deduced with the consideration of van der Waals force, the air bearing pressure, the surface tension, and the external stresses. The lubricant depletion under heat source is simulated and the effects of different working conditions including initial thickness, flying height and the speed of the disk on lubricant depletion are discussed. The main factors that cause the lubricant flow and depletion are analyzed and the ways to reduce the film thickness deformation are proposed. The simulation results indicate that the shearing stress is the most important factor that causes the thickness deformation and other terms listed in the equation have little influence. The thickness deformation is dependent on the working parameter, and the thermal condition evaporation is the most important factor.展开更多
The molecular dynamics simulation of ultra-thin films under confined shear was performed to investigate the relation between dynamic properties of ultra-thin films and their microstructure. The solid walls were modell...The molecular dynamics simulation of ultra-thin films under confined shear was performed to investigate the relation between dynamic properties of ultra-thin films and their microstructure. The solid walls were modelled using an Au crystal and the fluid molecules were modeled using decane. The simulation results indicate that the microstructure of ultra-thin films is a kind of solid-like layering structure. The density and velocity profiles of the fluid molecules are symmetric. The slip and shear thinning behavior was founded and interpreted.A mathematic model was set up according to the results of the simulation and experiments.展开更多
基金the Beijing Natural Science Foundation (3132023)the National Natural Science Foundation of China (51275494 and 51005218)+1 种基金the Fundamental Research Funds for the Central Universities (2652012115 and 2652013081)the Tribology Science Fund of State Key Laboratory of Tribology (SKLTKF13B10) for their financial support to this research
文摘Tungsten film(W film) is deposited by using the ion beam assisted deposition(IBAD) on the 316 L substrate surface in this experiment. The micro structure and nano-hardness of the film are investigated by scanning electron microscopy(SEM) and nano-indentation tester. The tribological behavior of W film under lubrication by oil with ZDDP and MoDTC is evaluated by a SRV test machine. The tribo-film formed on the worn surfaces is investigated by X-ray photoelectron spectroscopy(XPS) to find out the tribological mechanisms between the W film and the two additional additives. The result shows that the W film lubricated by ZDDP and MoDTC-blended base oil has synergistic effects on the friction reduction property, while the anti-wear property is mainly caused by the hard surface of W film.
基金Funded by the National Natural Science Foundation of China(No.51875105)the Natural Science Foundation of Fujian Province(No.2016J01226).
文摘Mechanical systems on all length scales may be subjected to nanoscale thin film lubrication(TFL). Molecular dynamics(MD) simulations were conducted to investigate the lubrication mechanism and boundary slip of squalane confined in nanogap at 293 K with two different film thicknesses and a wide range of pressures. The molecular distribution, density and velocity profiles of squalane were analyzed. The results show that the lubricant atoms tend to form layers parallel to the wall, but the lubricant molecules orient randomly throughout the film in the directions both parallel and perpendicular to the wall. Most squalane molecules appear twisted and folded, and extend to several atomic layers so that there are no slips between lubricant layers. The distances between the lubricant layers are irregular rather than broadening far away from the walls. The boundary slip at the interface of bcc Fe(001) and squalane only occurs at high pressure because of the strong nonbond interactions between lubricant atoms and wall atoms. The tendency of boundary slip is more obvious for films with thinner film thickness. According to the simulations, the relationship between the slip length and the pressure is given.
基金Project(51175133)supported by the National Natural Science Foundation of China
文摘Based on the theory of unsteady hydrodynamic lubrication and relevant mathematic and physical methods, a basic model was developed to analyze the unsteady lubrication film thickness, pressure stress and friction stress in the work zone in strip rolling. The distribution of pressure stress and friction stress in the work zone was obtained. A numerical simulation was made on a 1850 cold rolling mill. The influence of back tension stress and reduction on the distribution of pressure stress and friction stress between the roll gaps was qualitatively analyzed by numerical simulation. The calculated results indicate that the higher the back tension, the lower the pressure stress and the friction stress in the work zone, and the largest friction stresses are obtained at the inlet and outlet edges. The pressure and friction gradients are rather small at high back tension. The pressure-sensitive lubricant viscosity increases exponentially with the increase of pressure. The unsteady lubrication phenomenon in the roll bite is successfully demonstrated.
基金Project sponsored by the National Basic Research Program of China (Grant No. 2012CB934101)the National Natural Science Foundation of China (Grant Nos. 50975154 and 51175282)
文摘In this study, the effects of the non-Newtonian rheological properties of the lubricant in a thin-film lubrication regime between smooth surfaces were investigated. The thin-film lubrication regime typically appears in Stribeck curves with a clearly observable minimum coefficient of friction (COF) and a low-COF region, which is desired for its lower energy dissipation. A dynamic rheology of the lubricant from the hydrodynamic lubrication regime to the thin-film lubrication regime was proposed based on the convected Maxwell constitutive equation. This rheology model includes the increased relaxation time and the yield stress of the confined lubricant thin film, as well as their dependences on the lubricant film thickness. The Deborah number (De number) was adopted to describe the liquid-solid transition of the confined lubricant thin film under shearing. Then a series of Stribeck curves were calculated based on Tichy's extended lubrication equations with a perturbation of the De number. The results show that the minimum COF points in the Stribeck curve correspond to a critical De number of 1.0, indicating a liquid-to-solid transition of the confined lubricant film. Furthermore, the two proposed parameters in the dynamic rheological model, namely negative slipping length b (indicating the lubricant interracial effect) and the characteristic relaxation time λ0, were found to determine the minimum COF and the width of the low-COF region, both of which were required to optimize the shape of the Stribeck curve. The developed dynamic theological model interprets the correlation between the rheological and interfacial properties of lubricant and its lubrication behavior in the thin-film regime.
文摘An analytical model for metal rolling in the mixed lubrication regime was developed based on Wilson and Chang’s asperity flattening model and Von Mises homogenous deformation model. A more rigorous average Reynolds equation was used to calculate the hydrodynamic pressure. The variations of the yield stress with strain were considered in the model. An efficient iteration procedure was developed to solve the contact area, film thickness and hydrodynamic pressure. The model is more practical with fewer assumption and converges quickly. It is applicable to a wider range of rolling regimes. The calculation results using the model agree well with the literature as well as with measured data from a rolling mill.
基金Project(51305331)supported by the National Natural Science Foundation of ChinaProject(2012M511993)supported by China Postdoctoral Science FoundationProject(TPL1202)supported by the Open Fund Program of the State Key Laboratory of Traction Power,Southwest Jiaotong University,China
文摘The tribological tests were performed using Nitinol 60 alloy pin sliding over GCr15 steel disc in the tribometer system. Four kinds of oils were experimentally investigated as lubrication oils for lubricating Nitinol 60 alloy in the boundary lubrication regime. The experimental results were compared with a reference dry friction. It was found that Nitinol 60 alloy can be lubricated significantly and has shown remarkable lubrication performance. A superlubricity behavior of Nitinol 60 alloy was observed under castor oil lubrication. An ultra-low coefficient of friction of Nitinol 60 alloy about 0.008 between Nitinol 60 alloy and GCr15 steel was obtained under castor oil lubrication condition after a running-in period. Accordingly, the present study is focused on the lubrication behaviors of castor oil as potential lubrication oil for Nitinol 60 alloy. In the presence of castor oil, coefficient of friction is kept at 0.008 at steady state, corresponding to so-called superlubricity regime (when sliding is then approaching pure rolling). The mechanism of superlubricity is attributed to the triboformed OH-terminated surfaces from friction-induced dissociation of castor oil and the boundary lubrication films formed on the contact surface due to high polarity and long chain of castor oil allowing strong interactions with the lubricated surfaces.
基金Project(51005154) supported by the National Natural Science Foundation of ChinaProject(12CG11) supported by the Chenguang Program of Shanghai Municipal Education Commission,ChinaProject(201104271) supported by the China Postdoctoral Science Foundation Special Funded Project
文摘A specific revised HFCVD apparatus and a novel process combining HFCVD and polishing technique were presented to deposit the micro-and nano-crystalline multilayered ultra-smooth diamond(USCD) film on the interior-hole surface of WC-Co drawing dies with aperture ranging from d1.0 mm to 60 mm.Characterization results indicate that the surface roughness values(Ra) in the entry zone,drawing zone and bearing zone of as-fabricated USCD coated drawing die were measured as low as 25.7,23.3 and 25.5 nm,respectively.Furthermore,the friction properties of USCD films were examined in both dry sliding and water-lubricating conditions,and the results show that the USCD film presents much superior friction properties.Its friction coefficients against ball-bearing steel,copper and silicon nitride balls(d4 mm),is always lower than that of microcrystalline diamond(MCD) or WC-Co sample,regardless of the lubricating condition.Meanwhile,it still presents competitive wear resistance with the MCD films.Finally,the working lifetime and performance of as-fabricated USCD coated drawing dies were examined under producing low-carbon steel pipes in dry-sliding and water-lubricating conditions.Under the water-lubricating drawing condition,its production significantly increases by about 20 times compared with the conventional WC-Co drawing dies.
文摘A lubrication model was developed for explaining how to form an oil film inthe deformation zone, predicting the film thickness and determining the characteristics oflubrication in the strip rolling process, combined with the knowledge of hydrodynamic lubricationand rolling theories. Various mineral oils with viscosities from 0.032 to 1.6 Pa-s were used toobtain different film thicknesses in the strip cold rolling. Results from the experiment andcalculation show that the oil film forming in hydrodynamic lubrication is up to the bit angle and ahigher rolling speed or a higher rolling oil viscosity. The mechanism of mechanical entrainmentalways affects the film thickness that increases with the rolling oil viscosity increasing or thereduction rate decreasing in rolling.
基金Supported by National Natural Science Foundation of China(Grant Nos.51335005,51321092)
文摘In order to understand lubrication mechanism at the nanoscale, researchers have used many physical experimental approaches, such as surface force apparatus, atomic force microscopy and ball-on-disk tribometer. The results show that the variation rules of the friction force, film thicknessand viscosity of the lubricant at the nanoscale are different from elastohydrodynamic lubrication (EHL). It is speculated that these differences are attributed to the special arrangement of the molecules at the nanoscale. However, it is difficult to obtain the molecular orientation and distribution directly from the lubricant molecules in these experiments. In recent years, more and more attention has been paid to use new techniques to overcome the shortcomings of traditional experiments, including various spectral methods. The most representative achievements in the experimental research of molecular arrangement are reviewed in this paper: The change of film structure of a liquid crystal under confinement has been obtained using X-ray method. The molecular orientation change of lubricant films has been observed using absorption spectroscopy. Infrared spectroscopy has been used to measure the anisotropy of molecular orientation in the contact region when the lubricant film thickness is reduced to a few tens of nanometers. In situ Raman spectroscopy has been performed to measure the molecular orientation of the lubricant film semi-quantitatively. These results prove that confinement and shear in the contact region can change the arrangement of lubricant molecules. As a result, the lubrication characteristics are affected. The shortages of these works are also discussed based on practicable results. Further work is needed to separate the information of the solid-liquid interface from the bulk liquid film.
基金Project(2012BAF09B04)supported by the National Key Technology Research and Development Program of China
文摘A theoretical model for mixed lubrication with more accurate contact length has been developed based on the average volume flow model and asperity flattening model,and the lubricant volume flow rate and outlet speed ratio are determined by integrating differential equations based on rolling parameters.The lubrication characteristics at the roll-strip interface with different surface roughness,rolling speed,reduction and lubricant viscosity are analyzed respectively.Additionally,the average volume flow rates of lubricant under different rolling conditions are calculated and used to explain the change rule of lubrication characteristics.The developed scheme is able to determine the total pressure,lubricant pressure,film thickness and real contact area at any point within the work zone.The prediction and analysis of mixed lubrication characteristics at the interface is meaningful to better control the surface quality and optimize the rolling process.
基金supported by National Natural Science Foundation of China (Grant No. 50575135)Program for New Century Excellent Talents of Ministry of Education of China (Grant No. NCET-06-0399)Tribology Science Fund of the State Key Laboratory of Tribology, China
文摘The friction behavior of the hot filament chemical vapor deposition(HFCVD) diamond film plays a critical role on its applications in mechanical fields and largely depends on the environment. Studies on the tribological properties of HFCVD diamond films coated on Co-cemented tungsten carbide (WC-Co) substrates are rarely reported in available literatures, especially in the water lubricating conditions. In this paper, conventional microcrystalline diamond(MCD) and fine-grained diamond(FGD) films are deposited on WC-Co substrates and their friction properties are evaluated on a reciprocating ball-on-plate tribometer, where they are brought to slide against ball-bearing steel and copper balls in dry and water lubricating conditions. Scanning electron microscopy(SEM), atomic force microscopy(AFM), surface profilometer and Raman spectroscopy are adopted to characterize as-deposited diamond films; SEM and energy dispersive X-ray(EDX) are used to investigate the worn region on the surfaces of both counterface balls and diamond films. The research results show that the friction coefficient of HFCVD diamond films always starts with a high initial value, and then gradually transits to a relative stable state. For a given counterface and a sliding condition, the FGD film presents lower stable friction coefficients by 0.02-0.03 than MCD film. The transferred materials adhered on sliding interface are supposed to have predominate effect on the friction behaviors of HFCVD diamond films. Furthermore, the effect of water lubricating on reducing friction coefficient is significant. For a given counterpart, the stable friction coefficients of MCD or FGD films reduce by about 0.07-0.08 while sliding in the water lubricating condition, relative to in dry sliding condition. This study is beneficial for widespread applications of HFCVD diamond coated mechanical components and adopting water lubricating system, replacing ofoil lubricating, in a variety of mechanical processing fields to implement the green production process.
基金the PetroChina for its financial support (Grant number: 2011B-2503-2)
文摘On the basis of thin film lubrication theory, the influence of fluid film(disordered film), ordered film and adsorbed film on tribological behavior of lubricating oil in thin-film lubrication(TFL) regime was studied. The μ-L(friction coefficient versus load) curves of different oil viscosity and additive dosage were obtained by a high frequency reciprocating test rig and the adsorption capacity of additive on steel surface were measured by QCM-D. Based on the Stribeck curve and thin film lubrication theory model, some conclusions can be drawn up, namely:(1) The μ-L curves and the parameters of L0 and μ0, obtained from the high frequency reciprocating test rig with ball-disc contact, can be used to study tribological behaviors of lubricating oil under TFL conditions.(2) In comparison with the high viscosity base fluid, the lower one can enter into TFL regime under lower load and keeps a lower friction coefficient in TFL regime.(3) The polar molecules in additive formulation produce ordered adsorbed layer on steel surface to reduce friction coefficient. And in TFL regime, the molecule's polarity, layer thickness and saturation degree on steel surface probably can influence lubricant's tribological behaviors between the moving interfaces. Moreover, the further study would be focused on the competitive adsorption of different additives, the formation of dual- and/or tri-molecular adsorption layers, and other aspects.
文摘Observation was carried out of the structure of sulphuric,oxalic or phosphoric film on Al after treatment of reanodizing and electrolytic depositing lubricant in (NH_4)_2MoS_4 solution,as well as of the deposited products by means of EMPA,TEM and energy spectro-scopic analysis.The deposited products are mixture of compounds of S and Mo rather than single MoS_2 and most of them dcposited near the surface layer of the film.Some regular long pores without barrier layer occurred in the film,but the regular fine channels without relation to the structural element parameters of original anodized film were found in the thickened barrier layer of phosphoric film.Sulphur may be remained as Mo sulphide in the film during heating under Ar protective environment.
基金Projects(51575289,51705270)supported by the National Natural Science Foundation of China。
文摘The thermal elasto-hydrodynamic lubrication characteristics of the internal meshing gears in a planetary gear train under vibrations were examined considering the influence of the modification coefficient and time-varying meshing stiffness.Based on dynamic theory of the gear system,a dynamic model of the planetary gear train was established.The lubrication performances of modified gear systems under vibrations and static loads were analyzed.Compared with other transmission types,the best lubrication effect could be produced by the positive transmission.A thicker lubricating oil film could be formed,and the friction coefficient and oil film flash temperature are the smallest.Increasing modification coefficient improves the lubrication performance continuously but intensifies the engage-in and tooth-change impact.For the planetary and inner gears,the increase in the modification coefficient also leads a decrease in the oil film stiffness.
基金Projects(51575289,51705270)supported by the National Natural Science Foundation of China。
文摘The thermal elastohydrodynamic lubrication characteristics of a modified gear system under a dynamic load were investigated,including the influence of the modification coefficient and vibrations.Based on the dynamic theory of gear systems,a six-degree-of-freedom tribo-dynamics model was established.Thermal elastohydrodynamic lubrication characteristics of a modified gear system under vibrations and a static load were analyzed.The results showed that the positive transmission gear system exhibited the better lubrication effect compared with other transmission types.A thick lubricating oil film could be formed,and the friction coefficient between the teeth and the oil film flash temperature were the smallest.As the modification coefficient increased,the lubrication condition was continuously improved,and the scuffing load capacity was enhanced.The increment of the modification coefficient increased the meshing stiffness of the gear system but reduced the stiffness of the oil film.
基金This project is supported by Specialized Research Fund for Doctoral Program of Higher Education, China(No.20030561007)
文摘The acid number of the mixed solution of 150SN oil and oleic acid characterizes the volume content of oleic acid in the solution, based on which the adsorptive capability of oleic acid is studied on the 45 steel balls and disks. Boundary lubrication tests are carried out on a self designed ball-on-disk machine, The base oil is pure 150SN oil, and oleic acid as additive are added into the lubricant. Disks have surface roughness values (Ra) of 0.8 μn and 0.4 μn. The electrical contact resistance method is used to determine the lubrication status. Hypothesize that the molecular film is monomolecular layer in condensed state and the opposing surfaces are completely separated by molecular film. A boundary lubrication model is established according to experimental results and hypothesizes. The experimental and calculatienal results show that the adsorption of polar molecules on steel surface is the main factor to form the boundary lubrication film. Load and sliding speed contribute little to the friction coefficient of boundary lubrication. The properties of steel surface and additive for the lubricant significantly influence on the characters of boundary lubrication. The smaller the surface roughness value is, the smaller the friction coefficient of the boundary lubrication is.
基金Project(59925513) supported by theNational Natural Science Foundation of China Project(9905) supported by the State Key Laboratory of Fluid Power Transmission and Control of Zhejiang University, China
文摘The tribological characteristics of carbon fiber reinforced polymer composites under distilled-water-lubricated-sliding and dry-sliding against stainless steel were comparatively investigated. Scanning electron microscopy (SEM) was utilized to examine composite microstructures and modes of failure. The typical chemical states of elements of the transfer film on the stainless steel were examined with X-ray photoelectron spectroscopy (XPS). Wear testing and SEM analysis show that all the composites hold the lowered friction coefficient and show much better wear resistance under water lubricated sliding against stainless steel than those under dry sliding. The wear of composites is characterized by plastic deformation, scuffing, micro cracking, and spalling under both dry-sliding and water lubricated conditions. Plastic deformation, scuffing, micro cracking, and spalling, however, are significantly abated under water-lubricated condition. XPS analysis conforms that none of the materials produces transfer films on the stainless steel counterface with the type familiar from dry sliding, and the transfer of composites onto the counterpart ring surface is significantly hindered while the oxidation of the stainless steel is speeded under water lubrication. The composites hinder transfer onto the steel surface and the boundary lubricating action of water accounts for the much smaller wear rate under water lubrication compared with that under dry sliding. The easier transfer of the composite onto the counterpart steel surface accounts for the larger wear rate of the polymer composite under dry sliding.
文摘Based on analysis of rheology of oil-in-water emulsions during lubrication process. we have established the mathematical model of film thickness lubricated with emulsions during drawing process, The film thickness calculated with the model under general c
基金Project supported by the National Natural Science Foundation of China(Grant No.51275124)
文摘The characteristics of lubricant film at head/disk interface (HDI) are essential to the stability of hard disk drives. In this study, the theoretical models of the lubricant flow and depletion are deduced based on Navier-Stokes (NS) and continuity equations. The air bearing pressure on the surface of the lubrication film is solved by the modified Reynolds equation based on Fukui and Kaneko (FK) model. Then the lubricant film deformations for a plane slider and double-track slider are obtained. The equation of lubricant film thickness is deduced with the consideration of van der Waals force, the air bearing pressure, the surface tension, and the external stresses. The lubricant depletion under heat source is simulated and the effects of different working conditions including initial thickness, flying height and the speed of the disk on lubricant depletion are discussed. The main factors that cause the lubricant flow and depletion are analyzed and the ways to reduce the film thickness deformation are proposed. The simulation results indicate that the shearing stress is the most important factor that causes the thickness deformation and other terms listed in the equation have little influence. The thickness deformation is dependent on the working parameter, and the thermal condition evaporation is the most important factor.
文摘The molecular dynamics simulation of ultra-thin films under confined shear was performed to investigate the relation between dynamic properties of ultra-thin films and their microstructure. The solid walls were modelled using an Au crystal and the fluid molecules were modeled using decane. The simulation results indicate that the microstructure of ultra-thin films is a kind of solid-like layering structure. The density and velocity profiles of the fluid molecules are symmetric. The slip and shear thinning behavior was founded and interpreted.A mathematic model was set up according to the results of the simulation and experiments.