Poly-crystalline silicon thin film has big potential of reducing the cost of solar cells. In this paper the preparation of thin film is introduced, and then the morphology of poly-crystalline thin film, is discussed. ...Poly-crystalline silicon thin film has big potential of reducing the cost of solar cells. In this paper the preparation of thin film is introduced, and then the morphology of poly-crystalline thin film, is discussed. On the film we developed poly-crystalline silicon thin film solar cells with efficiency up to 6.05% without anti-reflection coating.展开更多
The effect of silicon doping on the residual stress of CVD diamond films is examined using both X-ray diffraction (XRD) analysis and Raman spectroscopy measurements. The examined Si-doped diamond films are deposited o...The effect of silicon doping on the residual stress of CVD diamond films is examined using both X-ray diffraction (XRD) analysis and Raman spectroscopy measurements. The examined Si-doped diamond films are deposited on WC-Co substrates in a home-made bias-enhanced HFCVD apparatus. Ethyl silicate (Si(OC2H5)4) is dissolved in acetone to obtain various Si/C mole ratio ranging from 0.1% to 1.4% in the reaction gas. Characterizations with SEM and XRD indicate increasing silicon concentration may result in grain size decreasing and diamond [110] texture becoming dominant. The residual stress values of as-deposited Si-doped diamond films are evaluated by both sin2ψ method, which measures the (220) diamond Bragg diffraction peaks using XRD, with ψ-values ranging from 0° to 45°, and Raman spectroscopy, which detects the diamond Raman peak shift from the natural diamond line at 1332 cm-1. The residual stress evolution on the silicon doping level estimated from the above two methods presents rather good agreements, exhibiting that all deposited Si-doped diamond films present compressive stress and the sample with Si/C mole ratio of 0.1% possesses the largest residual stress of ~1.75 GPa (Raman) or ~2.3 GPa (XRD). As the silicon doping level is up further, the residual stress reduces to a relative stable value around 1.3 GPa.展开更多
Large scale homogenous growth of microcrystalline silicon (μ.c-Si:H) on cheap substrates by inductively coupled plasma (ICP) of Ar diluted Sill4 has been studied. From XRD and Raman spectrum, we find that substr...Large scale homogenous growth of microcrystalline silicon (μ.c-Si:H) on cheap substrates by inductively coupled plasma (ICP) of Ar diluted Sill4 has been studied. From XRD and Raman spectrum, we find that substrates can greatly affect the crystalline orientation, and the μc-Si:H films are comprised of small particles. Thickness detection by surface profilometry shows that the thin μc-Si:H films are homogenous in large scale. Distributions of both ion density and electron temperature are found to be uniform in the vicinity of substrate by means of diagnosis of Langmuir probe. Based on these experimental results, it can be proposed that rough surfaces play important roles in the crystalline network formation and Ar can affect the reaction process and improve the characteristics of μc-Si:H films. Also, ICP reactor can deposit the thin film in large scale.展开更多
The dependence of the Recombination- Generation( R- G) current on the bulk trap characteristics and sili- con film structure in SOI lateral p+ p- n+ diode has been analyzed num erically by using the simulation tool,D...The dependence of the Recombination- Generation( R- G) current on the bulk trap characteristics and sili- con film structure in SOI lateral p+ p- n+ diode has been analyzed num erically by using the simulation tool,DESSIS- ISE.By varying the bulk trap characteristics such as the trap density and energy level spectrum systematically,the dependence of the R- G current on both of them has been dem onstrated in details.Moreover,the silicon film doping concentration and thickness are changed to make silicon body varies from the fully- depletion m ode into the partial- ly- depletion one.The influence of the transfer of silicon body characteristics on the R- G currenthas also been care- fully examined.A better understanding is obtained of the behavior of bulk trap R- G current in the SOI lateral gat- ed- diode.展开更多
Silicon dioxide (SiO2) films were prepared on sapphire (α-Al2O3) by radio frequency magnetron reactive sputtering in order to increase both transmission and rain erosion resistant performance of infrared domes of...Silicon dioxide (SiO2) films were prepared on sapphire (α-Al2O3) by radio frequency magnetron reactive sputtering in order to increase both transmission and rain erosion resistant performance of infrared domes of sapphire. Composition and structure of SiO2 films were analyzed by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), respectively. The transmittance of uncoated and coated sapphire was measured using a Fourier transform infrared (FTIR) spectrometer. Rain erosion tests of the uncoated and coated sapphire were performed at 211 m/s impact velocity with an exposure time ranging from 1 to 8 min on a whirling arm rig. Results show that the deposited films can greatly increase the transmission of sapphire in mid-wave IR. After rain erosion test, decreases in normalized transmission were less than 1% for designed SiO2 films and the SiO2 coating was strongly bonded to the sapphire substrate. In addition, sapphires coated with SiO2 films had a higher transmittance than uncoated ones after rain erosion.展开更多
Hydrogenated amorphous silicon (a-Si:H) films with high and same order of magnitude photosensitivity (-10^5) but different stability were prepared by using microwave electron cyclotron resonance chemical vapour d...Hydrogenated amorphous silicon (a-Si:H) films with high and same order of magnitude photosensitivity (-10^5) but different stability were prepared by using microwave electron cyclotron resonance chemical vapour deposition system under the different deposition conditions. It was proposed that there was no direct correlation between the photosensitivity and the hydrogen content (CH) as well as H-Si bonding configurations, but for the stability, they were the critical factors. The experimental results indicated that higher substrate temperature, hydrogen dilution ratio and lower deposition rate played an important role in improving the microstructure of a-Si:H films. We used hydrogen elimination model to explain our experimental results.展开更多
This paper studies the effects of silane back diffusion in the initial plasma ignition stage on the properties of microcrystalline silicon (μc-Si:H) films by Raman spectroscopy and spectroscopic ellipsometry, thro...This paper studies the effects of silane back diffusion in the initial plasma ignition stage on the properties of microcrystalline silicon (μc-Si:H) films by Raman spectroscopy and spectroscopic ellipsometry, through delaying the injection of SiH4 gas to the reactor before plasma ignition. Compared with standard discharge condition, delayed SiH4 gas condition could prevent the back diffusion of Sill4 from the reactor to the deposition region effectively, which induced the formation of a thick amorphous incubation layer in the interface between bulk film and glass substrate. Applying this method, it obtains the improvement of spectral response in the middle and long wavelength region by combining this method with solar cell fabrication. Finally, results are explained by modifying zero-order analytical model, and a good agreement is found between the model and experiments concerning the optimum delayed injection time.展开更多
Hydrogenated silicon (Si:H) thin films for application in solar ceils were deposited by using very high frequency plasma enhanced chemical vapour deposition (VHF PECVD) at a substrate temperature of about 170 ℃,...Hydrogenated silicon (Si:H) thin films for application in solar ceils were deposited by using very high frequency plasma enhanced chemical vapour deposition (VHF PECVD) at a substrate temperature of about 170 ℃, The electrical, structural, and optical properties of the films were investigated. The deposited films were then applied as i-layers for p-i-n single junction solar cells. The current-voltage (I - V) characteristics of the cells were measured before and after the light soaking. The results suggest that the films deposited near the transition region have an optimum properties for application in solar cells. The cell with an i-layer prepared near the transition region shows the best stable performance.展开更多
The structural un-uniformity of microcrystalline silicon, thin film, amorphous incubation layerc-Si:H films prepared using very high frequency plasma-enhanced chemical vapour deposition method has been investigated ...The structural un-uniformity of microcrystalline silicon, thin film, amorphous incubation layerc-Si:H films prepared using very high frequency plasma-enhanced chemical vapour deposition method has been investigated by Raman spectroscopy, spectroscopic ellipsometer and atomic force mi- croscopy. It was found that the formation of amorphous incubation layer was caused by the back diffusion of SiH4 and the amorphous induction of glass surface during the initial ignition process, and growth of the incubation layer can be suppressed and uniform μc-Si:H phase is generated by the application of delayed initial SiH4 density and silane profiling methods.展开更多
Influence of the parameters of plasma enhanced chemical vapor deposition (PECVD) on the surface morphology of hydrogenated amorphous silicon (α-Si:H) film was investigated. The root-mean-square (RMS) roughness...Influence of the parameters of plasma enhanced chemical vapor deposition (PECVD) on the surface morphology of hydrogenated amorphous silicon (α-Si:H) film was investigated. The root-mean-square (RMS) roughness of the film was measured by atomic force microscope (AFM) and the relevant results were analyzed using the surface smoothing mechanism of film deposition. It is shown that an α-Si:H film with smooth surface morphology can be obtained by increasing the PH3/N2 gas flow rate for 10% in a high frequency (HF) mode. For high power, however, the surface morphology of the film will deteriorate when the Sill4 gas flow rate increases. Furthermore, optimized parameters of PECVD for growing the film with smooth surface were obtained to be Sill4:25 sccm (standard cubic centimeters per minute), At: 275 sccm, 10%PH3/N2:2 sccm, HF power: 15 W, pressure: 0.9 Torr and temperature: 350℃. In addition, for in thick fihn deposition on silicon substrate, a N20 and NH3 preprocessing method is proposed to suppress the formation of gas bubbles.展开更多
AIM:To compare the effects of first and second generation silicone hydrogel(SiH) contact lens wear on tear film osmolarity.METHODS:The healthy subjects who have never used contact lenses before were enrolled in the st...AIM:To compare the effects of first and second generation silicone hydrogel(SiH) contact lens wear on tear film osmolarity.METHODS:The healthy subjects who have never used contact lenses before were enrolled in the study.Tear film osmolarity values of 16 eyes(group 1) who wore first generation SiH contact lenses were compared with those of 18 eyes(group 2) who wore second generation SiH contact lenses after three months follow-up.RESULTS:Beforecontactlenswear,tearfilmosmolarity of groups 1 and 2 were 305.02±49.08 milliosmole(mOsm) and 284.66±30.18mOsm,respectively.After three months of contact lens wear,osmolarity values were found 317.74±60.23mOsm in group 1 and 298.40±37.77mOsm in group 2.Although osmolarity values for both groups of SiH contact lens wear after three months periods were slightly higher than before the contact lens wear,the difference was not statistically significant. CONCLUSION:Contact lens wear may cause evaporation from the tear film and can increase tear film osmolarity leading to symptoms of dry eye disease.In the current study,there is a tendency to increase tear film osmolarity for both groups of SiH contact lens wear,but the difference is not statistically significant.展开更多
A versatile metal-organic chemical vapor deposition (MOCVD) system was designed and constructed. Copper films were deposited on silicon (100) substrates by chemical vapor deposition (CVD) using Cu(hfac)2 as a ...A versatile metal-organic chemical vapor deposition (MOCVD) system was designed and constructed. Copper films were deposited on silicon (100) substrates by chemical vapor deposition (CVD) using Cu(hfac)2 as a precursor. The growth of Cu nucleus on silicon substrates by H2 reduction of Cu(hfac)2 was studied by atomic force microscopy and scanning electron microscopy. The growth mode of Cu nucleus is initially Volmer-Weber mode (island), and then transforms to Stranski-Rastanov mode (layer-by-layer plus island). The mechanism of Cu nucleation on silicon (100) substrates was further investigated by X-ray photoelectron spectroscopy. From Cu2p, O1s, F1s, Si2p patterns, the observed C=O, OH and CF3/CF2 should belong to Cu(hfac) formed by the thermal dissociation of Cu(hfac)2. H2 reacts with hfac on the surface, producing OH. With its accumulation, OH reacts with hfac, forming HO-hfac, and desorbs, meanwhile, the copper oxide is reduced, and thus the redox reaction between Cu(hafc)2 and H2 occurs.展开更多
Photovoltaics are currently recognized as a top ranking technology among the new energies. Photovoltaics have the potential to eventually make a considerable contribution to the power generation capacity in the world,...Photovoltaics are currently recognized as a top ranking technology among the new energies. Photovoltaics have the potential to eventually make a considerable contribution to the power generation capacity in the world, especially, in the industrialized countries. Good accomplishment has been obtained in the cost reduction of PV systems, for example in 1974, systems cost (100~150) $/W. In 1981, such systems cost less than (10~30) $/W, and now they cost less than 5 $/W. However, more R&D efforts are still necessary, to achieve large-scale cost-effective production of PV systems to make it competitive with diesel generation of electricity,although PV systems have proven to be competitive in rural and remote areas. In this paper, an overview on high efficiency solar cell technologies will be presented.展开更多
Low temperature liquid phase epitaxy of silicon thin films was successfully carried out at a temperature of (400~500)℃,using Au/Bi alloy as a Si-saturated Sn solution was used to protect the substrate surface,preven...Low temperature liquid phase epitaxy of silicon thin films was successfully carried out at a temperature of (400~500)℃,using Au/Bi alloy as a Si-saturated Sn solution was used to protect the substrate surface,preventing effectively the oxidation of silicon.The grown Si thin films were identified by SEM,AES and C-V measurements.展开更多
We established a model for investigating polycrystalline silicon(poly-Si) thin film transistors(TFTs).The effect of grain boundaries(GBs) on the transfer characteristics of TFT was analyzed by considering the nu...We established a model for investigating polycrystalline silicon(poly-Si) thin film transistors(TFTs).The effect of grain boundaries(GBs) on the transfer characteristics of TFT was analyzed by considering the number and the width of grain boundaries in the channel region,and the dominant transport mechanism of carrier across grain boundaries was subsequently determined.It is shown that the thermionic emission(TE) is dominant in the subthreshold operating region of TFT regardless of the number and the width of grain boundary.To a poly-Si TFT model with a 1 nm-width grain boundary,in the linear region,thermionic emission is similar to that of tunneling(TU),however,with increasing grain boundary width and number,tunneling becomes dominant.展开更多
A new laser-plasma deposition method has been developed for the plasma chemical deposition of hard silicon carbonitride coatings on stainless steel substrates from the hexamethyldisilazane (HMDS) Si<sub><span...A new laser-plasma deposition method has been developed for the plasma chemical deposition of hard silicon carbonitride coatings on stainless steel substrates from the hexamethyldisilazane (HMDS) Si<sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">NH(CH</span><sub><span style="font-size:12px;font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">)</span><sub><span style="font-size:12px;font-family:Verdana;">6</span></sub><span style="font-family:Verdana;"> vapor in a high-speed Ar and Ar</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">+</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">10 vol.% He gas stream at the HMDS gas flow activation after the laser beam focus. The method allows depositing silicon carbonitride coatings at the rate of 0.4</span><span style="font-family:Verdana;"> - </span><span style="font-family:;" "=""><span style="font-family:Verdana;">1.2 μm·min</span><sup><span style="font-size:12px;font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;">, </span><i><span style="font-family:Verdana;">i.e.</span></i><span style="font-family:Verdana;"> ~2 times higher than that at introducing HMDS in the laser beam focus zone. The properties of the prepared coatings have been studied by the methods of IR and Raman spectroscopy, atomic force microscopy, nanoindentation and X-ray diffraction (XRD) analysis. Studying the film structure with the use of XRD showed that the prepared silicon carbonitride coatings are X-ray amorphous. It has been found that the coating deposition rate and the structure of coatings depend on the process parameters: HMDS flow rate and plasma-generating gas (argon or (Ar +</span></span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">He). The method allows depositing SiCN films at a high speed and a hardness of 20</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">22 GPa.</span>展开更多
The layer transfer process is one of the most promising methods for low-cost and highly-efficient solar cells, in which transferrable mono-crystalline silicon thin wafers or films can be produced directly from gaseous...The layer transfer process is one of the most promising methods for low-cost and highly-efficient solar cells, in which transferrable mono-crystalline silicon thin wafers or films can be produced directly from gaseous feed-stocks. In this work, we show an approach to preparing seeded substrates for layer-transferrable silicon films. The commercial silicon wafers are used as mother substrates, on which periodically patterned silicon rod arrays are fabricated, and all of the surfaces of the wafers and rods are sheathed by thermal silicon oxide. Thermal evaporated aluminum film is used to fill the gaps between the rods and as the stiff mask, while polymethyl methacrylate (PMMA) and photoresist are used as the soft mask to seal the gap between the filled aluminum and the rods. Under the joint resist of the stiff and soft masks, the oxide on the rod head is selectively removed by wet etching and the seed site is formed on the rod head. The seeded substrate is obtained after the removal of the masks. This joint mask technique will promote the endeavor of the exploration of mechanically stable, unlimitedly reusable substrates for the kerfless technology.展开更多
A novel and simple method was employed to synthesize GaN films on porous silicon (PS) substrates, GaN films were obtained through the reaction between NH3 and Ga2O3 films deposited on the substrates with magnetron s...A novel and simple method was employed to synthesize GaN films on porous silicon (PS) substrates, GaN films were obtained through the reaction between NH3 and Ga2O3 films deposited on the substrates with magnetron sputtering. Since GaN and PS are all good materials for luminescence, it is expected to obtain some new properties from GaN on PS. The samples were analyzed with X-ray diffraction (XRD) to identify crystalline structure. Fourier transmit infrared (FFIR) spectrum was used to analyze the chemical state of the samples. The films were observed with scanning electron microscopy (SEM) and were found to consist of many big crystal grains. Photoluminescence (PL) spectrum was used to illuminate the optical property of the GaN films.展开更多
Aluminum-induced crystallized silicon films were prepared on glass substrates by magnetron sputtering. Aluminum was added in the silicon films intermittently by the regular pulse sputtering of an aluminum target. The ...Aluminum-induced crystallized silicon films were prepared on glass substrates by magnetron sputtering. Aluminum was added in the silicon films intermittently by the regular pulse sputtering of an aluminum target. The amount of aluminum in the silicon films can be controlled by regulating the aluminum sputtering power and the sputtering time of the undoped silicon layer; thus, the Seebeck coefficient and electrical resistivity of the polyerystaUine silicon films can be adjusted. It is found that, when the sputtering power ratio of aluminum to silicon is 16%, both the Seebeck coefficient and the electrical resistivity decrease with the increasing amount of aluminum as expected; the Seebeck coefficient and the electrical resistivity at room temperature are 0.185-0.285 mV/K and 0.30-2.4 Ω.cm, respectively. By reducing the sputtering power ratio to 7%, however, the Seebeck coefficient does not change much, though the electrical resistivity still decreases with the amount of aluminum increasing; the Seebeck coefficient and electrical resistivity at room temperature are 0.219-0.263 mV/K and 0.26-0.80 Ω·cm, respectively.展开更多
A line shaped electron beam recrystallised polycrystalline silicon film on the low cost substrate was investigated for the use of the solar cell absorber. The applied EB energy density strongly influences the surface ...A line shaped electron beam recrystallised polycrystalline silicon film on the low cost substrate was investigated for the use of the solar cell absorber. The applied EB energy density strongly influences the surface morphology of the film system. Lower EB energy density results in droplet morphology and the rougher SiO2 capping layer due to the low fluidity. With the energy increasing, the capping layer becomes smooth and continuous and less and small pinholes form in the silicon film. Tungstendisilicide (WSi2) is formed at the interface tungsten/silicon but also at the grain boundaries of the silicon. Because of the fast melting and cooling of the silicon film, the eutectic of silicon and tungstendisilicide mainly forms at the grain boundary of the primary silicon dendrites. The SEM-EDX analysis shows that there are no chlorine and hydrogen in the area surrounding a pinhole after recrystallization because of outgassing during the solidification.展开更多
基金This work was supported by the Chinese Academy of Sciences within the Hundred Talent Project(No.99-019-422288)National High Technical Research and Development Programme of China(No.2001AA513060).
文摘Poly-crystalline silicon thin film has big potential of reducing the cost of solar cells. In this paper the preparation of thin film is introduced, and then the morphology of poly-crystalline thin film, is discussed. On the film we developed poly-crystalline silicon thin film solar cells with efficiency up to 6.05% without anti-reflection coating.
基金Project (51005154) supported by the National Natural Science Foundation of ChinaProject (12CG11) supported by the Chenguang Program of Shanghai Municipal Education Commission, ChinaProject (201104271) supported by the China Postdoctoral Science Foundation
文摘The effect of silicon doping on the residual stress of CVD diamond films is examined using both X-ray diffraction (XRD) analysis and Raman spectroscopy measurements. The examined Si-doped diamond films are deposited on WC-Co substrates in a home-made bias-enhanced HFCVD apparatus. Ethyl silicate (Si(OC2H5)4) is dissolved in acetone to obtain various Si/C mole ratio ranging from 0.1% to 1.4% in the reaction gas. Characterizations with SEM and XRD indicate increasing silicon concentration may result in grain size decreasing and diamond [110] texture becoming dominant. The residual stress values of as-deposited Si-doped diamond films are evaluated by both sin2ψ method, which measures the (220) diamond Bragg diffraction peaks using XRD, with ψ-values ranging from 0° to 45°, and Raman spectroscopy, which detects the diamond Raman peak shift from the natural diamond line at 1332 cm-1. The residual stress evolution on the silicon doping level estimated from the above two methods presents rather good agreements, exhibiting that all deposited Si-doped diamond films present compressive stress and the sample with Si/C mole ratio of 0.1% possesses the largest residual stress of ~1.75 GPa (Raman) or ~2.3 GPa (XRD). As the silicon doping level is up further, the residual stress reduces to a relative stable value around 1.3 GPa.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.10575039) and the Chinese Specialized Research Fund for the Doctoral Program of Higher Education (No.2004057408).
文摘Large scale homogenous growth of microcrystalline silicon (μ.c-Si:H) on cheap substrates by inductively coupled plasma (ICP) of Ar diluted Sill4 has been studied. From XRD and Raman spectrum, we find that substrates can greatly affect the crystalline orientation, and the μc-Si:H films are comprised of small particles. Thickness detection by surface profilometry shows that the thin μc-Si:H films are homogenous in large scale. Distributions of both ion density and electron temperature are found to be uniform in the vicinity of substrate by means of diagnosis of Langmuir probe. Based on these experimental results, it can be proposed that rough surfaces play important roles in the crystalline network formation and Ar can affect the reaction process and improve the characteristics of μc-Si:H films. Also, ICP reactor can deposit the thin film in large scale.
基金摩托罗拉和北京大学的联合研究项目!"Gated-Diode Method Application Development and Sensitivity Analysis"的资助 (合同号 :MSPSESTL
文摘The dependence of the Recombination- Generation( R- G) current on the bulk trap characteristics and sili- con film structure in SOI lateral p+ p- n+ diode has been analyzed num erically by using the simulation tool,DESSIS- ISE.By varying the bulk trap characteristics such as the trap density and energy level spectrum systematically,the dependence of the R- G current on both of them has been dem onstrated in details.Moreover,the silicon film doping concentration and thickness are changed to make silicon body varies from the fully- depletion m ode into the partial- ly- depletion one.The influence of the transfer of silicon body characteristics on the R- G currenthas also been care- fully examined.A better understanding is obtained of the behavior of bulk trap R- G current in the SOI lateral gat- ed- diode.
文摘Silicon dioxide (SiO2) films were prepared on sapphire (α-Al2O3) by radio frequency magnetron reactive sputtering in order to increase both transmission and rain erosion resistant performance of infrared domes of sapphire. Composition and structure of SiO2 films were analyzed by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), respectively. The transmittance of uncoated and coated sapphire was measured using a Fourier transform infrared (FTIR) spectrometer. Rain erosion tests of the uncoated and coated sapphire were performed at 211 m/s impact velocity with an exposure time ranging from 1 to 8 min on a whirling arm rig. Results show that the deposited films can greatly increase the transmission of sapphire in mid-wave IR. After rain erosion test, decreases in normalized transmission were less than 1% for designed SiO2 films and the SiO2 coating was strongly bonded to the sapphire substrate. In addition, sapphires coated with SiO2 films had a higher transmittance than uncoated ones after rain erosion.
文摘Hydrogenated amorphous silicon (a-Si:H) films with high and same order of magnitude photosensitivity (-10^5) but different stability were prepared by using microwave electron cyclotron resonance chemical vapour deposition system under the different deposition conditions. It was proposed that there was no direct correlation between the photosensitivity and the hydrogen content (CH) as well as H-Si bonding configurations, but for the stability, they were the critical factors. The experimental results indicated that higher substrate temperature, hydrogen dilution ratio and lower deposition rate played an important role in improving the microstructure of a-Si:H films. We used hydrogen elimination model to explain our experimental results.
基金Project supported by the State Key Development Program for Basic Research of China (Grant No. 2006CB202601)
文摘This paper studies the effects of silane back diffusion in the initial plasma ignition stage on the properties of microcrystalline silicon (μc-Si:H) films by Raman spectroscopy and spectroscopic ellipsometry, through delaying the injection of SiH4 gas to the reactor before plasma ignition. Compared with standard discharge condition, delayed SiH4 gas condition could prevent the back diffusion of Sill4 from the reactor to the deposition region effectively, which induced the formation of a thick amorphous incubation layer in the interface between bulk film and glass substrate. Applying this method, it obtains the improvement of spectral response in the middle and long wavelength region by combining this method with solar cell fabrication. Finally, results are explained by modifying zero-order analytical model, and a good agreement is found between the model and experiments concerning the optimum delayed injection time.
文摘Hydrogenated silicon (Si:H) thin films for application in solar ceils were deposited by using very high frequency plasma enhanced chemical vapour deposition (VHF PECVD) at a substrate temperature of about 170 ℃, The electrical, structural, and optical properties of the films were investigated. The deposited films were then applied as i-layers for p-i-n single junction solar cells. The current-voltage (I - V) characteristics of the cells were measured before and after the light soaking. The results suggest that the films deposited near the transition region have an optimum properties for application in solar cells. The cell with an i-layer prepared near the transition region shows the best stable performance.
基金Project supported by the State Key Development Program for Basic Research of China(Grant No.2006CB202601)the Natural Science Research Program of the Education Bureau of Henan Province of China(Grant No.2009A140007)
文摘The structural un-uniformity of microcrystalline silicon, thin film, amorphous incubation layerc-Si:H films prepared using very high frequency plasma-enhanced chemical vapour deposition method has been investigated by Raman spectroscopy, spectroscopic ellipsometer and atomic force mi- croscopy. It was found that the formation of amorphous incubation layer was caused by the back diffusion of SiH4 and the amorphous induction of glass surface during the initial ignition process, and growth of the incubation layer can be suppressed and uniform μc-Si:H phase is generated by the application of delayed initial SiH4 density and silane profiling methods.
基金National Natural Science Foundation of China (Nos.60407013,60876081)the Shanghai-Applied Materials Research and Development Fund of China (No.06SA04)the National High Technology Research and Development Program of China (Nos.2009AA04Z317,2007AA04Z354-03)
文摘Influence of the parameters of plasma enhanced chemical vapor deposition (PECVD) on the surface morphology of hydrogenated amorphous silicon (α-Si:H) film was investigated. The root-mean-square (RMS) roughness of the film was measured by atomic force microscope (AFM) and the relevant results were analyzed using the surface smoothing mechanism of film deposition. It is shown that an α-Si:H film with smooth surface morphology can be obtained by increasing the PH3/N2 gas flow rate for 10% in a high frequency (HF) mode. For high power, however, the surface morphology of the film will deteriorate when the Sill4 gas flow rate increases. Furthermore, optimized parameters of PECVD for growing the film with smooth surface were obtained to be Sill4:25 sccm (standard cubic centimeters per minute), At: 275 sccm, 10%PH3/N2:2 sccm, HF power: 15 W, pressure: 0.9 Torr and temperature: 350℃. In addition, for in thick fihn deposition on silicon substrate, a N20 and NH3 preprocessing method is proposed to suppress the formation of gas bubbles.
文摘AIM:To compare the effects of first and second generation silicone hydrogel(SiH) contact lens wear on tear film osmolarity.METHODS:The healthy subjects who have never used contact lenses before were enrolled in the study.Tear film osmolarity values of 16 eyes(group 1) who wore first generation SiH contact lenses were compared with those of 18 eyes(group 2) who wore second generation SiH contact lenses after three months follow-up.RESULTS:Beforecontactlenswear,tearfilmosmolarity of groups 1 and 2 were 305.02±49.08 milliosmole(mOsm) and 284.66±30.18mOsm,respectively.After three months of contact lens wear,osmolarity values were found 317.74±60.23mOsm in group 1 and 298.40±37.77mOsm in group 2.Although osmolarity values for both groups of SiH contact lens wear after three months periods were slightly higher than before the contact lens wear,the difference was not statistically significant. CONCLUSION:Contact lens wear may cause evaporation from the tear film and can increase tear film osmolarity leading to symptoms of dry eye disease.In the current study,there is a tendency to increase tear film osmolarity for both groups of SiH contact lens wear,but the difference is not statistically significant.
基金ACKN0WLEDGMENT This work was supported by the National Natural Science Foundation of China (No.20576112).
文摘A versatile metal-organic chemical vapor deposition (MOCVD) system was designed and constructed. Copper films were deposited on silicon (100) substrates by chemical vapor deposition (CVD) using Cu(hfac)2 as a precursor. The growth of Cu nucleus on silicon substrates by H2 reduction of Cu(hfac)2 was studied by atomic force microscopy and scanning electron microscopy. The growth mode of Cu nucleus is initially Volmer-Weber mode (island), and then transforms to Stranski-Rastanov mode (layer-by-layer plus island). The mechanism of Cu nucleation on silicon (100) substrates was further investigated by X-ray photoelectron spectroscopy. From Cu2p, O1s, F1s, Si2p patterns, the observed C=O, OH and CF3/CF2 should belong to Cu(hfac) formed by the thermal dissociation of Cu(hfac)2. H2 reacts with hfac on the surface, producing OH. With its accumulation, OH reacts with hfac, forming HO-hfac, and desorbs, meanwhile, the copper oxide is reduced, and thus the redox reaction between Cu(hafc)2 and H2 occurs.
文摘Photovoltaics are currently recognized as a top ranking technology among the new energies. Photovoltaics have the potential to eventually make a considerable contribution to the power generation capacity in the world, especially, in the industrialized countries. Good accomplishment has been obtained in the cost reduction of PV systems, for example in 1974, systems cost (100~150) $/W. In 1981, such systems cost less than (10~30) $/W, and now they cost less than 5 $/W. However, more R&D efforts are still necessary, to achieve large-scale cost-effective production of PV systems to make it competitive with diesel generation of electricity,although PV systems have proven to be competitive in rural and remote areas. In this paper, an overview on high efficiency solar cell technologies will be presented.
文摘Low temperature liquid phase epitaxy of silicon thin films was successfully carried out at a temperature of (400~500)℃,using Au/Bi alloy as a Si-saturated Sn solution was used to protect the substrate surface,preventing effectively the oxidation of silicon.The grown Si thin films were identified by SEM,AES and C-V measurements.
基金Funded by the National Natural Science Foundation of China(Nos.51202063 and 51177003)Hubei Provincial Department of Education(No.Q20111009)
文摘We established a model for investigating polycrystalline silicon(poly-Si) thin film transistors(TFTs).The effect of grain boundaries(GBs) on the transfer characteristics of TFT was analyzed by considering the number and the width of grain boundaries in the channel region,and the dominant transport mechanism of carrier across grain boundaries was subsequently determined.It is shown that the thermionic emission(TE) is dominant in the subthreshold operating region of TFT regardless of the number and the width of grain boundary.To a poly-Si TFT model with a 1 nm-width grain boundary,in the linear region,thermionic emission is similar to that of tunneling(TU),however,with increasing grain boundary width and number,tunneling becomes dominant.
文摘A new laser-plasma deposition method has been developed for the plasma chemical deposition of hard silicon carbonitride coatings on stainless steel substrates from the hexamethyldisilazane (HMDS) Si<sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">NH(CH</span><sub><span style="font-size:12px;font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">)</span><sub><span style="font-size:12px;font-family:Verdana;">6</span></sub><span style="font-family:Verdana;"> vapor in a high-speed Ar and Ar</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">+</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">10 vol.% He gas stream at the HMDS gas flow activation after the laser beam focus. The method allows depositing silicon carbonitride coatings at the rate of 0.4</span><span style="font-family:Verdana;"> - </span><span style="font-family:;" "=""><span style="font-family:Verdana;">1.2 μm·min</span><sup><span style="font-size:12px;font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;">, </span><i><span style="font-family:Verdana;">i.e.</span></i><span style="font-family:Verdana;"> ~2 times higher than that at introducing HMDS in the laser beam focus zone. The properties of the prepared coatings have been studied by the methods of IR and Raman spectroscopy, atomic force microscopy, nanoindentation and X-ray diffraction (XRD) analysis. Studying the film structure with the use of XRD showed that the prepared silicon carbonitride coatings are X-ray amorphous. It has been found that the coating deposition rate and the structure of coatings depend on the process parameters: HMDS flow rate and plasma-generating gas (argon or (Ar +</span></span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">He). The method allows depositing SiCN films at a high speed and a hardness of 20</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">22 GPa.</span>
基金Project supported by the National Natural Science Foundation of China(Grant No.11374313)the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.11504392)
文摘The layer transfer process is one of the most promising methods for low-cost and highly-efficient solar cells, in which transferrable mono-crystalline silicon thin wafers or films can be produced directly from gaseous feed-stocks. In this work, we show an approach to preparing seeded substrates for layer-transferrable silicon films. The commercial silicon wafers are used as mother substrates, on which periodically patterned silicon rod arrays are fabricated, and all of the surfaces of the wafers and rods are sheathed by thermal silicon oxide. Thermal evaporated aluminum film is used to fill the gaps between the rods and as the stiff mask, while polymethyl methacrylate (PMMA) and photoresist are used as the soft mask to seal the gap between the filled aluminum and the rods. Under the joint resist of the stiff and soft masks, the oxide on the rod head is selectively removed by wet etching and the seed site is formed on the rod head. The seeded substrate is obtained after the removal of the masks. This joint mask technique will promote the endeavor of the exploration of mechanically stable, unlimitedly reusable substrates for the kerfless technology.
基金This work was financially supported by the National Natural Science Foundation of China (Nos. 90201025 and 90301002).
文摘A novel and simple method was employed to synthesize GaN films on porous silicon (PS) substrates, GaN films were obtained through the reaction between NH3 and Ga2O3 films deposited on the substrates with magnetron sputtering. Since GaN and PS are all good materials for luminescence, it is expected to obtain some new properties from GaN on PS. The samples were analyzed with X-ray diffraction (XRD) to identify crystalline structure. Fourier transmit infrared (FFIR) spectrum was used to analyze the chemical state of the samples. The films were observed with scanning electron microscopy (SEM) and were found to consist of many big crystal grains. Photoluminescence (PL) spectrum was used to illuminate the optical property of the GaN films.
基金financially supported by the Ministry of Science and Technology of China under a Joint Research Program of China-Japan-Korea(No.2010DFA62170)the National Natural Science Foundation of China(No.51172123)
文摘Aluminum-induced crystallized silicon films were prepared on glass substrates by magnetron sputtering. Aluminum was added in the silicon films intermittently by the regular pulse sputtering of an aluminum target. The amount of aluminum in the silicon films can be controlled by regulating the aluminum sputtering power and the sputtering time of the undoped silicon layer; thus, the Seebeck coefficient and electrical resistivity of the polyerystaUine silicon films can be adjusted. It is found that, when the sputtering power ratio of aluminum to silicon is 16%, both the Seebeck coefficient and the electrical resistivity decrease with the increasing amount of aluminum as expected; the Seebeck coefficient and the electrical resistivity at room temperature are 0.185-0.285 mV/K and 0.30-2.4 Ω.cm, respectively. By reducing the sputtering power ratio to 7%, however, the Seebeck coefficient does not change much, though the electrical resistivity still decreases with the amount of aluminum increasing; the Seebeck coefficient and electrical resistivity at room temperature are 0.219-0.263 mV/K and 0.26-0.80 Ω·cm, respectively.
基金This project was financially supported by the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (No.0329571B).
文摘A line shaped electron beam recrystallised polycrystalline silicon film on the low cost substrate was investigated for the use of the solar cell absorber. The applied EB energy density strongly influences the surface morphology of the film system. Lower EB energy density results in droplet morphology and the rougher SiO2 capping layer due to the low fluidity. With the energy increasing, the capping layer becomes smooth and continuous and less and small pinholes form in the silicon film. Tungstendisilicide (WSi2) is formed at the interface tungsten/silicon but also at the grain boundaries of the silicon. Because of the fast melting and cooling of the silicon film, the eutectic of silicon and tungstendisilicide mainly forms at the grain boundary of the primary silicon dendrites. The SEM-EDX analysis shows that there are no chlorine and hydrogen in the area surrounding a pinhole after recrystallization because of outgassing during the solidification.