The hysteresis loop changes of ferroelecric SrBi_2 Ta_2 O_9 (SBT) thin films(330nm) us the temperature of forming gas (5 percent hydrogen+95 percent nitrogen) annealing weremeasured when the annealing time was 1min an...The hysteresis loop changes of ferroelecric SrBi_2 Ta_2 O_9 (SBT) thin films(330nm) us the temperature of forming gas (5 percent hydrogen+95 percent nitrogen) annealing weremeasured when the annealing time was 1min and 10min. The selected annealing temperature was at 100deg C,200 deg C 250 deg C, 300 deg C, 350 deg C,400 deg C and 450 deg C, respectively. Our resultsshowed that the ferroelectric properties were easily destroyed and the leakage current changedabruptly when the SBT thin films were in their ferroelectric phase (<270 deg C). The space chargesat the grain boundary may take an important role' in absorption polarity molecular hydrogen when theSBT thin films were in the ferroelectric phase. The oxygen recovery experiments were also performedand investigated in this work.展开更多
Based on the assumption that profile of thin walled tube in free hydro-bulging process is a quadratic curve and any point on the profile moves vertically to the profile, mathematical models were deduced for analyzing ...Based on the assumption that profile of thin walled tube in free hydro-bulging process is a quadratic curve and any point on the profile moves vertically to the profile, mathematical models were deduced for analyzing the deformation behavior. The critical pressure and the maximum bulge coefficient(height) at bursting can be determined based on the models, in which a shape factor a is introduced to tightly communicate the material property and geometric parameters to plastic deformation. Free hydro-bulging experiments of stainless steel and low carbon steel tubes were conducted to validate the models, and the experimental data indicate that the theoretical predictions are reliable and accurate. The results display that the profile, dependent on the material and geometric parameters, can be hyperbola, parabola, arc and ellipse or alternative among them; moreover, the forming pressure and forming limit are both closely connected with material and geometric parameters.展开更多
Aiming at overcoming the difficulties in integral forming of thin-walled tubes with complex shapes, a novel forming method by inner and outer pressure through viscous was proposed. In this method, by dividing large de...Aiming at overcoming the difficulties in integral forming of thin-walled tubes with complex shapes, a novel forming method by inner and outer pressure through viscous was proposed. In this method, by dividing large deformation of the part into inner and outer pressure forming deformations, the limit deformation of tube part can be increased by several times. Meanwhile, the principle of viscous inner and outer pressure forming was provided, and key problems during the forming process such as reduction of the wall-thickness and instability wrinkling were analyzed. Thereby, the complex curved surface super-alloy GH3044 thin-walled tube with varying diameter ratio of 1.35(the ratio between the maximum and minimum diameters of the part) can be integrally formed by this method. The experimental surface of the formed part is superior in quality and the wall-thickness distribution is uniform. The results show that the viscous inner and outer pressure forming can provide a new approach for integral forming of thin-walled tubes with complex shapes.展开更多
A new effective tool design of three-rank form of electroremoval was present using a precision recycle system offering faster performance in removing the indium-tin-oxide(ITO) thin-films on color filter surface of dis...A new effective tool design of three-rank form of electroremoval was present using a precision recycle system offering faster performance in removing the indium-tin-oxide(ITO) thin-films on color filter surface of displays. Higher electric power is not required since the three-rank form tool is adopted as a feeding mode to reduce the response area. The low yield of ITO persists throughout the entire semiconductor production process. By establishing a recycle process of ultra-precise removal of the thin-film nanostructure, defective products in the optoelectronic semiconductors industry can be effectively recycled, decreasing both production costs and pollution. A 5th generation TFT-LCD was used. The design features of the removal processes for the thin-films and the tool design of three-rank form were of major interest. For the precision removal processes, a pulsed current can improve the effect of dreg discharge and contributes to the achievement of a fast workpiece (displays' color filter) feed rate, but raises the current rating. High flow velocity of the electrolyte with a high rotational speed of the tool electrodes elevates the ITO removal effect. A displays' color filter with a fast feed rate is combined with enough electric power to provide highly effective removal. A small thickness of the rank and a small arc angle of the negative-electrode correspond to a higher removal rate for ITO-film. An effective three-rank form negative-electrode provides larger discharge mobility and better removal effect. It only needs a short period of time to remove the ITO easily and cleanly.展开更多
基金This work sponsored by Motorola SPS Digital DNA Laboratories. It is also supported by a grant for State Key Program for Basic Research of China. We would like to thank Dr. Peir Y. Chu of Motorola SPS for his great help, useful advice and discussion.
文摘The hysteresis loop changes of ferroelecric SrBi_2 Ta_2 O_9 (SBT) thin films(330nm) us the temperature of forming gas (5 percent hydrogen+95 percent nitrogen) annealing weremeasured when the annealing time was 1min and 10min. The selected annealing temperature was at 100deg C,200 deg C 250 deg C, 300 deg C, 350 deg C,400 deg C and 450 deg C, respectively. Our resultsshowed that the ferroelectric properties were easily destroyed and the leakage current changedabruptly when the SBT thin films were in their ferroelectric phase (<270 deg C). The space chargesat the grain boundary may take an important role' in absorption polarity molecular hydrogen when theSBT thin films were in the ferroelectric phase. The oxygen recovery experiments were also performedand investigated in this work.
文摘Based on the assumption that profile of thin walled tube in free hydro-bulging process is a quadratic curve and any point on the profile moves vertically to the profile, mathematical models were deduced for analyzing the deformation behavior. The critical pressure and the maximum bulge coefficient(height) at bursting can be determined based on the models, in which a shape factor a is introduced to tightly communicate the material property and geometric parameters to plastic deformation. Free hydro-bulging experiments of stainless steel and low carbon steel tubes were conducted to validate the models, and the experimental data indicate that the theoretical predictions are reliable and accurate. The results display that the profile, dependent on the material and geometric parameters, can be hyperbola, parabola, arc and ellipse or alternative among them; moreover, the forming pressure and forming limit are both closely connected with material and geometric parameters.
基金Funded by the National Natural Science Foundation of China(No.51205260)
文摘Aiming at overcoming the difficulties in integral forming of thin-walled tubes with complex shapes, a novel forming method by inner and outer pressure through viscous was proposed. In this method, by dividing large deformation of the part into inner and outer pressure forming deformations, the limit deformation of tube part can be increased by several times. Meanwhile, the principle of viscous inner and outer pressure forming was provided, and key problems during the forming process such as reduction of the wall-thickness and instability wrinkling were analyzed. Thereby, the complex curved surface super-alloy GH3044 thin-walled tube with varying diameter ratio of 1.35(the ratio between the maximum and minimum diameters of the part) can be integrally formed by this method. The experimental surface of the formed part is superior in quality and the wall-thickness distribution is uniform. The results show that the viscous inner and outer pressure forming can provide a new approach for integral forming of thin-walled tubes with complex shapes.
基金supported by BEN TEN THECO.,and National Science Council,under contract 96-2622-E-152-001-CC397-2410-H-152-016
文摘A new effective tool design of three-rank form of electroremoval was present using a precision recycle system offering faster performance in removing the indium-tin-oxide(ITO) thin-films on color filter surface of displays. Higher electric power is not required since the three-rank form tool is adopted as a feeding mode to reduce the response area. The low yield of ITO persists throughout the entire semiconductor production process. By establishing a recycle process of ultra-precise removal of the thin-film nanostructure, defective products in the optoelectronic semiconductors industry can be effectively recycled, decreasing both production costs and pollution. A 5th generation TFT-LCD was used. The design features of the removal processes for the thin-films and the tool design of three-rank form were of major interest. For the precision removal processes, a pulsed current can improve the effect of dreg discharge and contributes to the achievement of a fast workpiece (displays' color filter) feed rate, but raises the current rating. High flow velocity of the electrolyte with a high rotational speed of the tool electrodes elevates the ITO removal effect. A displays' color filter with a fast feed rate is combined with enough electric power to provide highly effective removal. A small thickness of the rank and a small arc angle of the negative-electrode correspond to a higher removal rate for ITO-film. An effective three-rank form negative-electrode provides larger discharge mobility and better removal effect. It only needs a short period of time to remove the ITO easily and cleanly.