The traditional compressed sensing method for improving resolution is realized in the frequency domain.This method is aff ected by noise,which limits the signal-to-noise ratio and resolution,resulting in poor inversio...The traditional compressed sensing method for improving resolution is realized in the frequency domain.This method is aff ected by noise,which limits the signal-to-noise ratio and resolution,resulting in poor inversion.To solve this problem,we improved the objective function that extends the frequency domain to the Gaussian frequency domain having denoising and smoothing characteristics.Moreover,the reconstruction of the sparse refl ection coeffi cient is implemented by the mixed L1_L2 norm algorithm,which converts the L0 norm problem into an L1 norm problem.Additionally,a fast threshold iterative algorithm is introduced to speed up convergence and the conjugate gradient algorithm is used to achieve debiasing for eliminating the threshold constraint and amplitude error.The model test indicates that the proposed method is superior to the conventional OMP and BPDN methods.It not only has better denoising and smoothing eff ects but also improves the recognition accuracy of thin interbeds.The actual data application also shows that the new method can eff ectively expand the seismic frequency band and improve seismic data resolution,so the method is conducive to the identifi cation of thin interbeds for beach-bar sand reservoirs.展开更多
Under the condition of thin interbeds with great lateral changes in terrestrial basins,a seismic meme inversion method is established based on the analysis of seismic sedimentology technology.The relationship between ...Under the condition of thin interbeds with great lateral changes in terrestrial basins,a seismic meme inversion method is established based on the analysis of seismic sedimentology technology.The relationship between seismic waveform and high-frequency well logs is established through dynamic clustering of seismic waveform to improve the vertical and horizontal resolution of inversion results;meanwhile,by constructing the Bayesian inversion framework of different seismic facies,the real facies controlled inversion is realized.The forward model verification results show that the seismic meme inversion can realize precise prediction of 3 m thick thin interbeds,proving the rationality and high precision of the method.The application in the Daqing placanticline shows that the seismic meme inversion could identify 2 m thin interbeds,and the coincidence rates of inversion results and drilling data were more than 80%.The seismic meme inversion method can improve the accuracy of reservoir prediction and provides a useful mean for thin interbeds prediction in terrestrial basins.展开更多
基金National Science and Technology Major Project(No.2016ZX05006-002 and 2017ZX05072-001).
文摘The traditional compressed sensing method for improving resolution is realized in the frequency domain.This method is aff ected by noise,which limits the signal-to-noise ratio and resolution,resulting in poor inversion.To solve this problem,we improved the objective function that extends the frequency domain to the Gaussian frequency domain having denoising and smoothing characteristics.Moreover,the reconstruction of the sparse refl ection coeffi cient is implemented by the mixed L1_L2 norm algorithm,which converts the L0 norm problem into an L1 norm problem.Additionally,a fast threshold iterative algorithm is introduced to speed up convergence and the conjugate gradient algorithm is used to achieve debiasing for eliminating the threshold constraint and amplitude error.The model test indicates that the proposed method is superior to the conventional OMP and BPDN methods.It not only has better denoising and smoothing eff ects but also improves the recognition accuracy of thin interbeds.The actual data application also shows that the new method can eff ectively expand the seismic frequency band and improve seismic data resolution,so the method is conducive to the identifi cation of thin interbeds for beach-bar sand reservoirs.
文摘Under the condition of thin interbeds with great lateral changes in terrestrial basins,a seismic meme inversion method is established based on the analysis of seismic sedimentology technology.The relationship between seismic waveform and high-frequency well logs is established through dynamic clustering of seismic waveform to improve the vertical and horizontal resolution of inversion results;meanwhile,by constructing the Bayesian inversion framework of different seismic facies,the real facies controlled inversion is realized.The forward model verification results show that the seismic meme inversion can realize precise prediction of 3 m thick thin interbeds,proving the rationality and high precision of the method.The application in the Daqing placanticline shows that the seismic meme inversion could identify 2 m thin interbeds,and the coincidence rates of inversion results and drilling data were more than 80%.The seismic meme inversion method can improve the accuracy of reservoir prediction and provides a useful mean for thin interbeds prediction in terrestrial basins.