Based on the theoretical and experimental investigation of a thin silicon layer(TSL) with linear variable doping(LVD) and further research on the TSL LVD with a multiple step field plate(MSFP),a breakdown voltag...Based on the theoretical and experimental investigation of a thin silicon layer(TSL) with linear variable doping(LVD) and further research on the TSL LVD with a multiple step field plate(MSFP),a breakdown voltage(BV) model is proposed and experimentally verified in this paper.With the two-dimensional Poisson equation of the silicon on insulator(SOI) device,the lateral electric field in drift region of the thin silicon layer is assumed to be constant.For the SOI device with LVD in the thin silicon layer,the dependence of the BV on impurity concentration under the drain is investigated by an enhanced dielectric layer field(ENDIF),from which the reduced surface field(RESURF) condition is deduced.The drain in the centre of the device has a good self-isolation effect,but the problem of the high voltage interconnection(HVI) line will become serious.The two step field plates including the source field plate and gate field plate can be adopted to shield the HVI adverse effect on the device.Based on this model,the TSL LVD SOI n-channel lateral double-diffused MOSFET(nLDMOS) with MSFP is realized.The experimental breakdown voltage(BV) and specific on-resistance(R on,sp) of the TSL LVD SOI device are 694 V and 21.3 ·mm 2 with a drift region length of 60 μm,buried oxide layer of 3 μm,and silicon layer of 0.15 μm,respectively.展开更多
Monte Carlo simulations reveal considerable straggling of energy loss by the same ions with the same energy in fully-depleted silicon-on-insulator (FDSOI) devices with ultra-thin sensitive silicon layers down to 2.5...Monte Carlo simulations reveal considerable straggling of energy loss by the same ions with the same energy in fully-depleted silicon-on-insulator (FDSOI) devices with ultra-thin sensitive silicon layers down to 2.5 rim. The absolute straggling of deposited energy decreases with decreasing thickness of the active silicon layer. While the relative straggling increases gradually with decreasing thickness of silicon films and exhibits a sharp rise as the thickness of the silicon film descends below a threshold value of 50 nm, with the dispersion of deposited energy ascending above ~10%. Ion species and energy dependence of the energy-loss straggling are also investigated. For a given beam, the dispersion of deposited energy results in large uncertainty on the actual linear energy transfer (LET) of incident ions, and thus single event effect (SEE) responses, which pose great challenges for traditional error rate prediction methods.展开更多
A novel type of n/i/i/p heterojunction solar cell with a-Si:H(15 nm)/a-Si:H(10 nm)/epitaxial c-Si(47 p.m)/epitaxial c-Si(3 um) structure is fabricated by using the layer transfer technique, and the emitter l...A novel type of n/i/i/p heterojunction solar cell with a-Si:H(15 nm)/a-Si:H(10 nm)/epitaxial c-Si(47 p.m)/epitaxial c-Si(3 um) structure is fabricated by using the layer transfer technique, and the emitter layer is deposited by hot wire chemical vapour deposition. The effect of the doping concentration of the emitter layer Sd (Sd=PH3/(PH3 +SiH4+H2)) on the performance of the solar cell is studied by means of current density-voltage and external quantum efficiency. The results show that the conversion efficiency of the solar cell first increases to a maximum value and then decreases with Sd increasing from 0.1% to 0.4%. The best performance of the solar cell is obtained at Sd = 0.2% with an open circuit voltage of 534 mV, a short circuit current density of 23.35 mA/cm2, a fill factor of 63.3%, and a conversion efficiency of 7.9%.展开更多
Si-doped zinc oxide(SZO) thin films are deposited by using a co-sputtering method,and used as the channel active layers of ZnO-based TFTs with single and dual active layer structures.The effects of silicon content o...Si-doped zinc oxide(SZO) thin films are deposited by using a co-sputtering method,and used as the channel active layers of ZnO-based TFTs with single and dual active layer structures.The effects of silicon content on the optical transmittance of the SZO thin film and electrical properties of the SZO TFT are investigated.Moreover,the electrical performances and bias-stress stabilities of the single- and dual-active-layer TFTs are investigated and compared to reveal the effects of the Si doping and dual-active-layer structure.The average transmittances of all the SZO films are about 90% in the visible light region of 400 nm-800 nm,and the optical band gap of the SZO film gradually increases with increasing Si content.The Si-doping can effectively suppress the grain growth of ZnO,revealed by atomic force microscope analysis.Compared with that of the undoped ZnO TFT,the off-state current of the SZO TFT is reduced by more than two orders of magnitude and it is 1.5 × 10^-12 A,and thus the on/off current ratio is increased by more than two orders of magnitude.In summary,the SZO/ZnO TFT with dual-active-layer structure exhibits a high on/off current ratio of 4.0 × 10^6 and superior stability under gate-bias and drain-bias stress.展开更多
A new analytical model of high voltage silicon on insulator (SOI) thin film devices is proposed, and a formula of silicon critical electric field is derived as a function of silicon film thickness by solving a 2D Po...A new analytical model of high voltage silicon on insulator (SOI) thin film devices is proposed, and a formula of silicon critical electric field is derived as a function of silicon film thickness by solving a 2D Poisson equation from an effective ionization rate, with a threshold energy taken into account for electron multiplying. Unlike a conventional silicon critical electric field that is constant and independent of silicon film thickness, the proposed silicon critical electric field increases sharply with silicon fihn thickness decreasing especially in the case of thin films, and can come to 141V/μm at a film thickness of 0.1 μm which is much larger than the normal value of about 30 V/μm. From the proposed formula of silicon critical electric field, the expressions of dielectric layer electric field and vertical breakdown voltage (VB,V) are obtained. Based on the model, an ultra thin film can be used to enhance dielectric layer electric field and so increase vertical breakdown voltage for SOI devices because of its high silicon critical electric field, and with a dielectric layer thickness of 2 μm the vertical breakdown voltages reach 852 and 300V for the silicon film thicknesses of 0.1 and 5μm, respectively. In addition, a relation between dielectric layer thickness and silicon film thickness is obtained, indicating a minimum vertical breakdown voltage that should be avoided when an SOI device is designed. 2D simulated results and some experimental results are in good agreement with analytical results.展开更多
The structural un-uniformity of microcrystalline silicon, thin film, amorphous incubation layerc-Si:H films prepared using very high frequency plasma-enhanced chemical vapour deposition method has been investigated ...The structural un-uniformity of microcrystalline silicon, thin film, amorphous incubation layerc-Si:H films prepared using very high frequency plasma-enhanced chemical vapour deposition method has been investigated by Raman spectroscopy, spectroscopic ellipsometer and atomic force mi- croscopy. It was found that the formation of amorphous incubation layer was caused by the back diffusion of SiH4 and the amorphous induction of glass surface during the initial ignition process, and growth of the incubation layer can be suppressed and uniform μc-Si:H phase is generated by the application of delayed initial SiH4 density and silane profiling methods.展开更多
This work involves an investigation of nanostructures, microelectronic properties and domain engineering of nanoparticles thin layers of Pb(Zn1/ 3Nb2/3)O3-PbTiO3 (PZN-PT) ferroelectric single crystals deposited on nan...This work involves an investigation of nanostructures, microelectronic properties and domain engineering of nanoparticles thin layers of Pb(Zn1/ 3Nb2/3)O3-PbTiO3 (PZN-PT) ferroelectric single crystals deposited on nanostructured silicon substrate. In this study, devices made from PZN-4.5PT nanoparticles thin films successfully deposited on silicon substrate have been studied and discussed. SEM images show the formation of local black circles and hexagonal shapes probably due to the nucleation of a new Si-gel component or phase induced by annealing. Micro Xray Fluorescence mapping shows that the high values of Si and B atoms (≅7 and 4 normalized unit respectively) can be explained by the fact that the substrate is p-type silicon. The most interesting result of optical measurements is the very good absorption for all the thin films in UV, Visible and NIR regions with values from 70% to 90% in UV, from 75% to 93% in Visible and NIR. Tauc plots present particularities (rarely encountered behavior) with different segments or absorption changes showing the presence of multiple band gaps coming from the heterogeneity of the thin films (nanowires, gel and nanoparticles). Their values are 1.9 and 2.8 eV for DKRN-Gel, 2.1 and 3.1 eV for DKRN-UD and 2.1 and 3.2 eV for DKRN-D) corresponding respectively to the band gap of nanowires and that of the gel while the last ones correspond to the undoped and doped nanoparticles (3.1 and 3.2 eV respectively).展开更多
Thin p + layers with good electrical properties were fabricated by RTA (rapid thermal annealing) with post FA (furance annealing) of Si +/B + dual implanted silicon wafers. The electrical and structural characteristic...Thin p + layers with good electrical properties were fabricated by RTA (rapid thermal annealing) with post FA (furance annealing) of Si +/B + dual implanted silicon wafers. The electrical and structural characteristics of thin p + layers have been measured by FPP (four point probe), SRP (spreading resistance probe), RBS/channelling. Optimizing the implantation and annealing processes, especially using the thermal cycle of RTA followed by FA, shallow p +n junctions can be fabricated, which shows excellent I V characteristics with revers bias leakage current densities of 1.8?nA/cm 2 at -1.4?V.展开更多
基金Project supported partially by the National Natural Science Foundation of China (Grant Nos. 60906038 and 61076082)
文摘Based on the theoretical and experimental investigation of a thin silicon layer(TSL) with linear variable doping(LVD) and further research on the TSL LVD with a multiple step field plate(MSFP),a breakdown voltage(BV) model is proposed and experimentally verified in this paper.With the two-dimensional Poisson equation of the silicon on insulator(SOI) device,the lateral electric field in drift region of the thin silicon layer is assumed to be constant.For the SOI device with LVD in the thin silicon layer,the dependence of the BV on impurity concentration under the drain is investigated by an enhanced dielectric layer field(ENDIF),from which the reduced surface field(RESURF) condition is deduced.The drain in the centre of the device has a good self-isolation effect,but the problem of the high voltage interconnection(HVI) line will become serious.The two step field plates including the source field plate and gate field plate can be adopted to shield the HVI adverse effect on the device.Based on this model,the TSL LVD SOI n-channel lateral double-diffused MOSFET(nLDMOS) with MSFP is realized.The experimental breakdown voltage(BV) and specific on-resistance(R on,sp) of the TSL LVD SOI device are 694 V and 21.3 ·mm 2 with a drift region length of 60 μm,buried oxide layer of 3 μm,and silicon layer of 0.15 μm,respectively.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11179003 and 10975164)
文摘Monte Carlo simulations reveal considerable straggling of energy loss by the same ions with the same energy in fully-depleted silicon-on-insulator (FDSOI) devices with ultra-thin sensitive silicon layers down to 2.5 rim. The absolute straggling of deposited energy decreases with decreasing thickness of the active silicon layer. While the relative straggling increases gradually with decreasing thickness of silicon films and exhibits a sharp rise as the thickness of the silicon film descends below a threshold value of 50 nm, with the dispersion of deposited energy ascending above ~10%. Ion species and energy dependence of the energy-loss straggling are also investigated. For a given beam, the dispersion of deposited energy results in large uncertainty on the actual linear energy transfer (LET) of incident ions, and thus single event effect (SEE) responses, which pose great challenges for traditional error rate prediction methods.
基金Project supported by the National High Technology Research and Development Program of China (Grant No. 2006AA03Z219)the Jiangsu Innovation Program for Graduate Education, China (Grant No. CXZZ11 0206)the Priority Academic Program Development of Jiangsu Higher Education Institutions, China
文摘A novel type of n/i/i/p heterojunction solar cell with a-Si:H(15 nm)/a-Si:H(10 nm)/epitaxial c-Si(47 p.m)/epitaxial c-Si(3 um) structure is fabricated by using the layer transfer technique, and the emitter layer is deposited by hot wire chemical vapour deposition. The effect of the doping concentration of the emitter layer Sd (Sd=PH3/(PH3 +SiH4+H2)) on the performance of the solar cell is studied by means of current density-voltage and external quantum efficiency. The results show that the conversion efficiency of the solar cell first increases to a maximum value and then decreases with Sd increasing from 0.1% to 0.4%. The best performance of the solar cell is obtained at Sd = 0.2% with an open circuit voltage of 534 mV, a short circuit current density of 23.35 mA/cm2, a fill factor of 63.3%, and a conversion efficiency of 7.9%.
基金supported by the National Natural Science Foundation of China(Grant Nos.61076113 and 61274085)the Natural Science Foundation of Guangdong Province(Grant No.2016A030313474)the University Development Fund(Nanotechnology Research Institute,Grant No.00600009)of the University of Hong Kong,China
文摘Si-doped zinc oxide(SZO) thin films are deposited by using a co-sputtering method,and used as the channel active layers of ZnO-based TFTs with single and dual active layer structures.The effects of silicon content on the optical transmittance of the SZO thin film and electrical properties of the SZO TFT are investigated.Moreover,the electrical performances and bias-stress stabilities of the single- and dual-active-layer TFTs are investigated and compared to reveal the effects of the Si doping and dual-active-layer structure.The average transmittances of all the SZO films are about 90% in the visible light region of 400 nm-800 nm,and the optical band gap of the SZO film gradually increases with increasing Si content.The Si-doping can effectively suppress the grain growth of ZnO,revealed by atomic force microscope analysis.Compared with that of the undoped ZnO TFT,the off-state current of the SZO TFT is reduced by more than two orders of magnitude and it is 1.5 × 10^-12 A,and thus the on/off current ratio is increased by more than two orders of magnitude.In summary,the SZO/ZnO TFT with dual-active-layer structure exhibits a high on/off current ratio of 4.0 × 10^6 and superior stability under gate-bias and drain-bias stress.
基金Project supported by the National Natural Science Foundation of China (Grant No 60436030)National Laboratory of Analogue Integrated Circuits,China (Grant No 9140C090305060C09)
文摘A new analytical model of high voltage silicon on insulator (SOI) thin film devices is proposed, and a formula of silicon critical electric field is derived as a function of silicon film thickness by solving a 2D Poisson equation from an effective ionization rate, with a threshold energy taken into account for electron multiplying. Unlike a conventional silicon critical electric field that is constant and independent of silicon film thickness, the proposed silicon critical electric field increases sharply with silicon fihn thickness decreasing especially in the case of thin films, and can come to 141V/μm at a film thickness of 0.1 μm which is much larger than the normal value of about 30 V/μm. From the proposed formula of silicon critical electric field, the expressions of dielectric layer electric field and vertical breakdown voltage (VB,V) are obtained. Based on the model, an ultra thin film can be used to enhance dielectric layer electric field and so increase vertical breakdown voltage for SOI devices because of its high silicon critical electric field, and with a dielectric layer thickness of 2 μm the vertical breakdown voltages reach 852 and 300V for the silicon film thicknesses of 0.1 and 5μm, respectively. In addition, a relation between dielectric layer thickness and silicon film thickness is obtained, indicating a minimum vertical breakdown voltage that should be avoided when an SOI device is designed. 2D simulated results and some experimental results are in good agreement with analytical results.
基金Project supported by the State Key Development Program for Basic Research of China(Grant No.2006CB202601)the Natural Science Research Program of the Education Bureau of Henan Province of China(Grant No.2009A140007)
文摘The structural un-uniformity of microcrystalline silicon, thin film, amorphous incubation layerc-Si:H films prepared using very high frequency plasma-enhanced chemical vapour deposition method has been investigated by Raman spectroscopy, spectroscopic ellipsometer and atomic force mi- croscopy. It was found that the formation of amorphous incubation layer was caused by the back diffusion of SiH4 and the amorphous induction of glass surface during the initial ignition process, and growth of the incubation layer can be suppressed and uniform μc-Si:H phase is generated by the application of delayed initial SiH4 density and silane profiling methods.
文摘This work involves an investigation of nanostructures, microelectronic properties and domain engineering of nanoparticles thin layers of Pb(Zn1/ 3Nb2/3)O3-PbTiO3 (PZN-PT) ferroelectric single crystals deposited on nanostructured silicon substrate. In this study, devices made from PZN-4.5PT nanoparticles thin films successfully deposited on silicon substrate have been studied and discussed. SEM images show the formation of local black circles and hexagonal shapes probably due to the nucleation of a new Si-gel component or phase induced by annealing. Micro Xray Fluorescence mapping shows that the high values of Si and B atoms (≅7 and 4 normalized unit respectively) can be explained by the fact that the substrate is p-type silicon. The most interesting result of optical measurements is the very good absorption for all the thin films in UV, Visible and NIR regions with values from 70% to 90% in UV, from 75% to 93% in Visible and NIR. Tauc plots present particularities (rarely encountered behavior) with different segments or absorption changes showing the presence of multiple band gaps coming from the heterogeneity of the thin films (nanowires, gel and nanoparticles). Their values are 1.9 and 2.8 eV for DKRN-Gel, 2.1 and 3.1 eV for DKRN-UD and 2.1 and 3.2 eV for DKRN-D) corresponding respectively to the band gap of nanowires and that of the gel while the last ones correspond to the undoped and doped nanoparticles (3.1 and 3.2 eV respectively).
文摘Thin p + layers with good electrical properties were fabricated by RTA (rapid thermal annealing) with post FA (furance annealing) of Si +/B + dual implanted silicon wafers. The electrical and structural characteristics of thin p + layers have been measured by FPP (four point probe), SRP (spreading resistance probe), RBS/channelling. Optimizing the implantation and annealing processes, especially using the thermal cycle of RTA followed by FA, shallow p +n junctions can be fabricated, which shows excellent I V characteristics with revers bias leakage current densities of 1.8?nA/cm 2 at -1.4?V.
基金The national high technology research and development program of China(863 project)(2011AA050507)the national natural science foundation of China(61006050,61076051)+1 种基金the natural science foundation of Beijing(2151004)the fundamental research funds for central universities(13ZD05)