This article mainly deals with the preparation and properties of PZTthin films. A new type of Metal-Me tal Oxide composite target was developed. Relating factors have been discussed. The electrical and optical propert...This article mainly deals with the preparation and properties of PZTthin films. A new type of Metal-Me tal Oxide composite target was developed. Relating factors have been discussed. The electrical and optical properties of PZT thin films have also been studied.展开更多
Proton acceleration experiments were carried out by a 1.2× 1018 W/cm2 ultra-short laser interaction with solid foil targets. The peak proton energy observed from an optimum target thickness of 7 μm in our experi...Proton acceleration experiments were carried out by a 1.2× 1018 W/cm2 ultra-short laser interaction with solid foil targets. The peak proton energy observed from an optimum target thickness of 7 μm in our experiments was 2.1 MeV. Peak proton energy and proton yield were investigated for different foil target thicknesses. It was shown that proton energy and conversion efficiency increased as the target became thinner, on one condition that the preplasma generated by the laser prepulse did not have enough shock energy and time to influence or destroy the target rear-surface. The existence of optimum foil thickness is due to the effect of the prepulse and hot electron transportation behavior on the foil target.展开更多
文摘This article mainly deals with the preparation and properties of PZTthin films. A new type of Metal-Me tal Oxide composite target was developed. Relating factors have been discussed. The electrical and optical properties of PZT thin films have also been studied.
基金supported by the Key Project of Chinese National Programs for Fundamental Research(973 Program)(No.2011CB808104)National Natural Science Foundation of China(Nos.11335013,11375276,11105234)
文摘Proton acceleration experiments were carried out by a 1.2× 1018 W/cm2 ultra-short laser interaction with solid foil targets. The peak proton energy observed from an optimum target thickness of 7 μm in our experiments was 2.1 MeV. Peak proton energy and proton yield were investigated for different foil target thicknesses. It was shown that proton energy and conversion efficiency increased as the target became thinner, on one condition that the preplasma generated by the laser prepulse did not have enough shock energy and time to influence or destroy the target rear-surface. The existence of optimum foil thickness is due to the effect of the prepulse and hot electron transportation behavior on the foil target.