期刊文献+
共找到68篇文章
< 1 2 4 >
每页显示 20 50 100
Whole petroleum system and ordered distribution pattern of conventional and unconventional oil and gas reservoirs 被引量:10
1
作者 Cheng-Zao Jia Xiong-Qi Pang Yan Song 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期1-19,共19页
The classical source-to-trap petroleum system concept only considers the migration and accumulation of conventional oil and gas in traps driven dominantly by buoyance in a basin,although revised and improved,even some... The classical source-to-trap petroleum system concept only considers the migration and accumulation of conventional oil and gas in traps driven dominantly by buoyance in a basin,although revised and improved,even some new concepts as composite petroleum system,total petroleum system,total composite petroleum system,were proposed,but they do not account for the vast unconventional oil and gas reservoirs within the system,which is not formed and distributed in traps dominantly by buoyancedriven.Therefore,the petroleum system concept is no longer adequate in dealing with all the oil and gas accumulations in a basin where significant amount of the unconventional oil and gas resources are present in addition to the conventional oil and gas accumulations.This paper looked into and analyzed the distribution characteristics of conventional and unconventional oil/gas reservoirs and their differences and correlations in petroliferous basins in China and North America,and then proposed whole petroleum system(WPS)concept,the WPS is defined as a natural system that encompasses all the conventional and unconventional oil and gas,reservoirs and resources originated from organic matter in source rocks,the geological elements and processes involving the formation,evolution,and distribution of these oil and gas,reservoirs and resources.It is found in the WPS that there are three kinds of hydrocarbons dynamic fields,three kinds of original hydrocarbons,three kinds of reservoir rocks,and the coupling of these three essential elements lead to the basic ordered distribution model of shale oil/gas reservoirs contacting or interbeded with tight oil/gas reservoirs and separated conventional oil/gas reservoirs from source rocks upward,which is expressed as“S\T-C”.Abnormal conditions lead to other three special ordered distribution models:The first is that with shale oil/gas reservoirs separated from tight oil/gas reservoirs.The second is that with two direction ordered distributions from source upward and downward.The third is with lateral distribution from source outside. 展开更多
关键词 Conventional and unconventional oil and gas Petroleum system Whole petroleum system Hydrocarbon reservoirs ordered distribution model Fossil energy
下载PDF
Geological characteristics of unconventional tight oil reservoir (10^(9) t): A case study of Upper Cretaceous Qingshankou Formation, northern Songliao Basin, NE China
2
作者 Li-zhi Shi Zhuo-zhuo Wang +4 位作者 Zhan-tao Xing Shan Meng Shuai Guo Si-miao Wu Li-yan Luo 《China Geology》 CAS CSCD 2024年第1期51-62,共12页
The Daqing exploration area in the northern Songliao Basin has great potential for unconventional oil and gas resources,among which the total resources of tight oil alone exceed 109 t and is regarded as an important r... The Daqing exploration area in the northern Songliao Basin has great potential for unconventional oil and gas resources,among which the total resources of tight oil alone exceed 109 t and is regarded as an important resource base of Daqing oilfield.After years of exploration in the Qijia area,Songliao Basin,NE China,tight oil has been found in the Upper Cretaceous Qingshankou Formation.To work out tight oil’s geological characteristics,taking tight oil in Gaotaizi oil layers of the Upper Cretaceous Qingshankou Formation in northern Songliao Basin as an example,this paper systematically analyzed the geological characteristics of unconventional tight oil in Gao3 and Gao4 layers of the Qijia area,based on the data of the geological survey,well drilling journey,well logging,and test.It is that three sets of hydrocarbon source rocks(K2qn1,K2qn2+3,and K2n1)develop in the examined area,and exhibit excellent type I and II kerogens,high organic matter abundance,and moderate maturity.The reservoir is generally composed of thin-bedded mudstone,siltstone,and sandstone,and presents poor porosity(average 8.5 vol.%)and air permeability(average 4 mD).The main reservoir space primarily includes intergranular pores,secondary soluble pores,and intergranular soluble pores.Three types of orifice throats were identified,namely fine throat,extra-fine throat,and micro-fine throat.The siltstone is generally oil-bearing,the reservoirs with slime and calcium become worse oil-bearing,and the mudstone has no obvious oil-bearing characteristics.The brittleness indices of the sandstone in the tight oil reservoir range from 40%to 60%,and those of the mudstone range from 40%to 45%,indicating a better brittleness of the tight oil reservoir.Based on the study of typical core hole data,this paper gives a comprehensive evaluation of the properties of the tight oil and establishes a tight oil single well composite bar chart as well as the initial evaluation system with the core of properties in the tight oil reservoir.This study has theoretical guiding significance and practical application value for tight oil exploration and evaluation in the Qijia area. 展开更多
关键词 Unconventional oil and gas Tight oil Thin-bedded mudstone-siltstone-sandstone reservoir Qijia area Qingshankou Formation oil and gas exploration engineering Songliao Basin Daqing oilfield
下载PDF
Optimization of operational strategies for rich gas enhanced oil recovery based on a pilot test in the Bakken tight oil reservoir
3
作者 Xincheng Wan Lu Jin +4 位作者 Nicholas A.Azzolina Jin Zhao Xue Yu Steven A.Smith James A.Sorensen 《Petroleum Science》 SCIE EI CSCD 2023年第5期2921-2938,共18页
Horizontal well drilling and multistage hydraulic fracturing have been demonstrated as effective approaches for stimulating oil production in the Bakken tight oil reservoir.However,after multiple years of production,p... Horizontal well drilling and multistage hydraulic fracturing have been demonstrated as effective approaches for stimulating oil production in the Bakken tight oil reservoir.However,after multiple years of production,primary oil recovery in the Bakken is generally less than 10%of the estimated original oil in place.Gas huff‘n’puff(HnP)has been tested in the Bakken Formation as an enhanced oil recovery(EOR)method;however,most field pilot test results showed no significant incremental oil production.One of the factors affecting HnP EOR performance is premature gas breakthrough,which is one of the most critical issues observed in the field because of the presence of interwell fractures.Consequently,injected gas rapidly reaches adjacent production wells without contacting reservoir rock and increasing oil recovery.Proper conformance control is therefore needed to avoid early gas breakthrough and improve EOR performance.In this study,a rich gas EOR pilot in the Bakken was carefully analyzed to collect the essential reservoir and operational data.A simulation model with 16 wells was then developed to reproduce the production history and predict the EOR performance with and without conformance control.EOR operational strategies,including single-and multiple-well HnP,with different gas injection constraints were investigated.The simulation results of single-well HnP without conformance control showed that a rich gas injection rate of at least 10 MMscfd was needed to yield meaningful incremental oil production.The strategy of conformance control via water injection could significantly improve oil production in the HnP well,but injecting an excessive amount of water also leads to water breakthrough and loss of oil production in the offset wells.By analyzing the production performance of the wells individually,the arrangement of wells was optimized for multiple-well HnP EOR.The multiwell results showed that rich gas EOR could improve oil production up to 7.4%by employing conformance control strategies.Furthermore,replacing rich gas with propane as the injection gas could result in 14%of incremental oil production. 展开更多
关键词 Rich gas injection Bakken tight oil reservoir EOR strategies Conformance control Embedded discrete fracture model
下载PDF
Proppant transport in rough fractures of unconventional oil and gas reservoirs
4
作者 YIN Bangtang ZHANG Chao +7 位作者 WANG Zhiyuan SUN Baojiang GAO Yonghai WANG Xiaopeng BI Chuang ZHANG Qilong WANG Jintang SHI Juntai 《Petroleum Exploration and Development》 SCIE 2023年第3期712-721,共10页
A method to generate fractures with rough surfaces was proposed according to the fractal interpolation theory.Considering the particle-particle,particle-wall and particle-fluid interactions,a proppant-fracturing fluid... A method to generate fractures with rough surfaces was proposed according to the fractal interpolation theory.Considering the particle-particle,particle-wall and particle-fluid interactions,a proppant-fracturing fluid two-phase flow model based on computational fluid dynamics(CFD)-discrete element method(DEM)coupling was established.The simulation results were verified with relevant experimental data.It was proved that the model can match transport and accumulation of proppants in rough fractures well.Several cases of numerical simulations were carried out.Compared with proppant transport in smooth flat fractures,bulge on the rough fracture wall affects transport and settlement of proppants significantly in proppant transportation in rough fractures.The higher the roughness of fracture,the faster the settlement of proppant particles near the fracture inlet,the shorter the horizontal transport distance,and the more likely to accumulate near the fracture inlet to form a sand plugging in a short time.Fracture wall roughness could control the migration path of fracturing fluid to a certain degree and change the path of proppant filling in the fracture.On the one hand,the rough wall bulge raises the proppant transport path and the proppants flow out of the fracture,reducing the proppant sweep area.On the other hand,the sand-carrying fluid is prone to change flow direction near the contact point of bulge,thus expanding the proppant sweep area. 展开更多
关键词 unconventional oil and gas reservoir fracturing stimulation rough fracture fractal interpolation CFD-DEM coupling proppant transport
下载PDF
Crude oil cracking in deep reservoirs:A review of the controlling factors and estimation methods 被引量:1
5
作者 Yu Qi Chun-Fang Cai +2 位作者 Peng Sun Dao-Wei Wang Hong-Jian Zhu 《Petroleum Science》 SCIE EI CAS CSCD 2023年第4期1978-1997,共20页
The natural cracking of crude oils in deep reservoirs has gained great interest due to continuously increasing depth of petroleum exploration and exploitation.Complex oil compositions and surroundings as well as compl... The natural cracking of crude oils in deep reservoirs has gained great interest due to continuously increasing depth of petroleum exploration and exploitation.Complex oil compositions and surroundings as well as complicated geological evolutions make oil cracking in nature much more complex than industrial pyrolysis.So far,numerous studies,focused on this topic,have made considerable progress although there still exist some drawbacks.However,a comprehensive review on crude oil cracking is yet to be conducted.This article systematically reviews the controlling factors of oil cracking from six aspects,namely,oil compositions,temperature and time,pressure,water,minerals and solid organic matter.We compare previous experimental and modelling results and present new field cases.In the following,we evaluate the prevailing estimation methods for the extent of oil cracking,and elucidate other factors that may interfere with the application of these estimation methods.This review will be helpful for further investigations of crude oil cracking and provides a guide for estimation of the cracking extent of crude oils. 展开更多
关键词 oil cracking Deep reservoir Controlling factor gas to oil ratio Diamondoid
下载PDF
Shale oil and gas exploitation in China:Technical comparison with US and development suggestions
6
作者 LEI Qun WENG Dingwei +5 位作者 GUAN Baoshan SHI Junfeng CAI Bo HE Chunming SUN Qiang HUANG Rui 《Petroleum Exploration and Development》 SCIE 2023年第4期944-954,共11页
The shale oil and gas exploitation in China is technically benchmarked with the United States in terms of development philosophy,reservoir stimulation treatment,fracturing parameters,fracturing equipment and materials... The shale oil and gas exploitation in China is technically benchmarked with the United States in terms of development philosophy,reservoir stimulation treatment,fracturing parameters,fracturing equipment and materials,oil/gas production technology,and data/achievements sharing.It is recognized that the shale oil and gas exploitation in China is weak in seven aspects:understanding of flow regimes,producing of oil/gas reserves,monitoring of complex fractures,repeated stimulation technology,oil/gas production technology,casing deformation prevention technology,and wellbore maintenance technology.Combined with the geological and engineering factors of shale oil and gas in China,the development suggestions of four projects are proposed from the macro-and micro-perspective,namely,basic innovation project,exploitation technology project,oil/gas production stabilization project,and supporting efficiency-improvement project,so as to promote the rapid,efficient,stable,green and extensive development of shale oil and gas industry chain and innovation chain and ultimately achieve the goal of“oil volume stabilizing and gas volume increasing”. 展开更多
关键词 shale oil and gas reservoir stimulation oil/gas production technology oil/gas development philosophy reservoir stimulation treatment flow regime
下载PDF
Evaluation of reservoir environment by chemical properties of reservoir water‒A case study of Chang 6 reservoir in Ansai oilfield,Ordos Basin,China
7
作者 Zhi-bo Zhang Ying Xu +4 位作者 Di-fei Zhao Hao-ming Liu Wei-cheng Jiang Dan-ling Chen Teng-rui Jin 《China Geology》 CAS CSCD 2023年第3期443-454,共12页
The Ordos Basin is the largest continental multi-energy mineral basin in China,which is rich in coal,oil and gas,and uranium resources.The exploitation of mineral resources is closely related to reservoir water.The ch... The Ordos Basin is the largest continental multi-energy mineral basin in China,which is rich in coal,oil and gas,and uranium resources.The exploitation of mineral resources is closely related to reservoir water.The chemical properties of reservoir water are very important for reservoir evaluation and are significant indicators of the sealing of reservoir oil and gas resources.Therefore,the caprock of the Chang 6 reservoir in the Yanchang Formation was evaluated.The authors tested and analyzed the chemical characteristics of water samples selected from 30 wells in the Chang 6 reservoir of Ansai Oilfield in the Ordos Basin.The results show that the Chang 6 reservoir water in Ansai Oilfield is dominated by calcium-chloride water type with a sodium chloride coefficient of generally less than 0.5.The chloride magnesium coefficients are between 33.7 and 925.5,most of which are greater than 200.The desulfurization coefficients range from 0.21 to 13.4,with an average of 2.227.The carbonate balance coefficients are mainly concentrated below 0.01,with an average of 0.008.The calcium and magnesium coefficients are between 0.08 and 0.003,with an average of 0.01.Combined with the characteristics of the four-corner layout of the reservoir water,the above results show that the graphics are basically consistent.The study indicates that the Chang 6 reservoir in Ansai Oilfield in the Ordos Basin is a favorable block for oil and gas storage with good sealing properties,great preservation conditions of oil and gas,and high pore connectivity. 展开更多
关键词 oil and gas reservoir water SALINITY Calcium-chloride water Carbonate balance coefficient oil-bearing reservoir prediction GEOCHEMISTRY Chang 6 reservoir oil-gas exploration engineering Ansai oilfield Ordos Basin
下载PDF
Downhole Microseismic Source Location Based on a Multi-Dimensional DIRECT Algorithm for Unconventional Oil and Gas Reservoir Exploration 被引量:1
8
作者 YIN Qifeng TAO Pengfei +3 位作者 ZHENG Shuo HE Qing AN Yanfei GUO Quanshi 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2019年第3期718-730,共13页
Downhole microseismic data has the significant advantages of high signal-to-noise ratio and well-developed P and S waves and the core component of microseismic monitoring is microseismic event location associated with... Downhole microseismic data has the significant advantages of high signal-to-noise ratio and well-developed P and S waves and the core component of microseismic monitoring is microseismic event location associated with hydraulic fracturing in a relatively high confidence level and accuracy.In this study,we present a multidimensional DIRECT inversion method for microseismic locations and applicability tests over modeling data based on a downhole microseismic monitoring system.Synthetic tests inidcate that the objective function of locations can be defined as a multi-dimensional matrix space by employing the global optimization DIRECT algorithm,because it can be run without the initial value and objective function derivation,and the discretely scattered objective points lead to an expeditious contraction of objective functions in each dimension.This study shows that the DIRECT algorithm can be extensively applied in real downhole microseismic monitoring data from hydraulic fracturing completions.Therefore,the methodology,based on a multidimensional DIRECT algorithm,can provide significant high accuracy and convergent efficiency as well as robust computation for interpretable spatiotemporal microseismic evolution,which is more suitable for real-time processing of a large amount of downhole microseismic monitoring data. 展开更多
关键词 UNCONVENTIONAL oil and gas reservoir DOWNHOLE microseismic monitoring source LOCATION DIRECT algorithm
下载PDF
Prediction of Sedimentary Microfacies Distribution by Coupling Stochastic Modeling Method in Oil and Gas Energy Resource Exploitation
9
作者 Huan Wang Yingwei Di Yunfei Feng 《Energy and Power Engineering》 CAS 2023年第3期180-189,共10页
In view of the problem that a single modeling method cannot predict the distribution of microfacies, a new idea of coupling modeling method to comprehensively predict the distribution of sedimentary microfacies was pr... In view of the problem that a single modeling method cannot predict the distribution of microfacies, a new idea of coupling modeling method to comprehensively predict the distribution of sedimentary microfacies was proposed, breaking the tradition that different sedimentary microfacies used the same modeling method in the past. Because different sedimentary microfacies have different distribution characteristics and geometric shapes, it is more accurate to select different simulation methods for prediction. In this paper, the coupling modeling method was to establish the distribution of sedimentary microfacies with simple geometry through the point indicating process simulation, and then predict the microfacies with complex spatial distribution through the sequential indicator simulation method. Taking the DC block of Bohai basin as an example, a high-precision reservoir sedimentary microfacies model was established by the above coupling modeling method, and the model verification results showed that the sedimentary microfacies model had a high consistency with the underground. The coupling microfacies modeling method had higher accuracy and reliability than the traditional modeling method, which provided a new idea for the prediction of sedimentary microfacies. 展开更多
关键词 Coupling Modeling oil and gas Energy Resource Sedimentary Microfacies Seological Model reservoir Prediction
下载PDF
Formation conditions and exploration direction of large natural gas reservoirs in the oil-prone Bohai Bay Basin, East China 被引量:1
10
作者 XUE Yong’an WANG Deying 《Petroleum Exploration and Development》 2020年第2期280-291,共12页
The Bohai Bay Basin is a typical oil-prone basin, in which natural gas geological reserves have a small proportion. In this basin, the gas source rock is largely medium-deep lake mudstone with oil-prone type Ⅱ2-Ⅱ1 k... The Bohai Bay Basin is a typical oil-prone basin, in which natural gas geological reserves have a small proportion. In this basin, the gas source rock is largely medium-deep lake mudstone with oil-prone type Ⅱ2-Ⅱ1 kerogens, and natural gas preservation conditions are poor due to active late tectonic movements. The formation conditions of large natural gas fields in the Bohai Bay Basin have been elusive. Based on the exploration results of Bohai Bay Basin and comparison with large gas fields in China and abroad, the formation conditions of conventional large-scale natural gas reservoirs in the Bohai Bay Basin were examined from accumulation dynamics, structure and sedimentation. The results show that the formation conditions of conventional large natural gas reservoirs in Bohai Bay Basin mainly include one core element and two key elements. The core factor is the strong sealing of Paleogene "quilt-like" overpressure mudstone. The two key factors include the rapid maturation and high-intensity gas generation of source rock in the late stage and large scale reservoir. On this basis, large-scale nature gas accumulation models in the Bohai Bay Basin have been worked out, including regional overpressure mudstone enriching model, local overpressure mudstone depleting model, sand-rich sedimentary subsag depleting model and late strongly-developed fault depleting model. It is found that Bozhong sag, northern Liaozhong sag and Banqiao sag have favorable conditions for the formation of large-scale natural gas reservoirs, and are worth exploring. The study results have important guidance for exploration of large scale natural gas reservoirs in the Bohai Bay Basin. 展开更多
关键词 Bohai Bay Basin oil type lacustrine basin large nature gas pool Bozhong 19-6 regional"quilt-like"overpressure mudstone rapid and high-intensity gas generation in late period large scale reservoir
下载PDF
Terahertz-dependent identification of simulated hole shapes in oil gas reservoirs
11
作者 宝日玛 詹洪磊 +5 位作者 苗昕扬 赵昆 冯程静 董晨 李羿璋 肖立志 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第10期30-34,共5页
Detecting holes in oil–gas reservoirs is vital to the evaluation of reservoir potential. The main objective of this study is to demonstrate the feasibility of identifying general micro-hole shapes, including triangul... Detecting holes in oil–gas reservoirs is vital to the evaluation of reservoir potential. The main objective of this study is to demonstrate the feasibility of identifying general micro-hole shapes, including triangular, circular, and square shapes, in oil–gas reservoirs by adopting terahertz time-domain spectroscopy(THz-TDS). We evaluate the THz absorption responses of punched silicon(Si) wafers having micro-holes with sizes of 20 μm–500 μm. Principal component analysis(PCA) is used to establish a model between THz absorbance and hole shapes. The positions of samples in three-dimensional spaces for three principal components are used to determine the differences among diverse hole shapes and the homogeneity of similar shapes. In addition, a new Si wafer with the unknown hole shapes, including triangular, circular, and square, can be qualitatively identified by combining THz-TDS and PCA. Therefore, the combination of THz-TDS with mathematical statistical methods can serve as an effective approach to the rapid identification of micro-hole shapes in oil–gas reservoirs. 展开更多
关键词 hole shapes oilgas reservoirs THZ-TDS PCA
下载PDF
Paleo-oil reservoir pyrolysis and gas release in the Yangtze Block imply an alternative mechanism for the Late Permian Crisis
12
作者 Chengyu Yang Meijun Li +4 位作者 Zhiyong Ni Tieguan Wang Nansheng Qiu Ronghui Fang Long Wen 《Geoscience Frontiers》 SCIE CAS CSCD 2022年第2期125-138,共14页
The causes of the global mass extinction that occurred around the Permian-Triassic boundary have been widely studied through the geological record and in various locations.The results show that volcanic activity was a... The causes of the global mass extinction that occurred around the Permian-Triassic boundary have been widely studied through the geological record and in various locations.The results show that volcanic activity was a key factor in initiating the crisis during the Late Permian.Compared to other thermal events triggered by volcanic activity,pyrolysis of petroleum in Pre-Permian reservoirs has rarely been suggested as a significant source of the greenhouse gases that caused the mass extinction.In this study,geochemical analysis is carried out of a huge paleo-oil reservoir in the Yangtze Block(YB),South China.The detection of mineral inclusions and pyrobitumens is evidence of rapid pyrolysis of accumulated oil in the Ediacaran reservoir.New evidence from hydrothermal minerals and the presence of domain mesophase in the pyrobitumen suggest that the pyrolysis process occurred abruptly and that greenhouse gases were rapidly released through venting pipes.The dating of such a complex geological event in this old and deeply buried reservoir is inevitably difficult and potentially unreliable.However,cross-validation of the multiple evidence sources,including hydrothermal minerals and domain mesophase,indicates that the rapid oil pyrolysis must have been driven by a major thermal event.Reconstruction of burial and thermal histories suggests that the thermal event was most likely to have been triggered by the Emeishan Large Igneous Province(ELIP),which was in a period of significant volcanic activity during the Late Permian.Massive volumes of gases,including methane,carbon dioxide,and possibly hydrogen sulfide,were released,causing a significant increase in greenhouse gases that may have contributed to global warming and the resulting mass extinction during the Late Permian Crisis(LPC). 展开更多
关键词 oil reservoir pyrolysis Hydrothermal fluid Emeishan Large Igneous Province gas release Mass extinction
下载PDF
Integrated Reservoir Prediction and Oil-Gas Evaluation in the Maoshan Area
13
作者 HAO Peidong CUI Xiuqin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2000年第3期697-700,共4页
The Maoshan area is an area with well-developed igneous rocks and complex structures. The thickness of the reservoirs is generally small. The study of the reservoirs is based on seismic data, logging data and geologic... The Maoshan area is an area with well-developed igneous rocks and complex structures. The thickness of the reservoirs is generally small. The study of the reservoirs is based on seismic data, logging data and geological data. Using techniques and software such as Voxelgeo, BCI, RM, DFM and AP, the authors have made a comprehensive analysis of the lateral variation of reservoir parameters in the Upper Shazu bed of the third member of the Palaeogene Funing Formation, and compiled the thickness map of the Shazu bed. Also, with the data from ANN, BCI and the abstracting method for seismic characteristic parameters in combination with the structural factors, the authors have tried the multi-parameter and multi-method prediction of petroleum, delineated the potential oil and gas areas and proposed two well sites. The prediction of oil and gas for Well JB2 turns out to be quite successful. 展开更多
关键词 integrated reservoir prediction oil and gas evaluation Maoshan area Northern Jiangsu basin
下载PDF
Progress and development directions of stimulation techniques for ultra-deep oil and gas reservoirs
14
作者 LEI Qun XU Yun +7 位作者 YANG Zhanwei CAI Bo WANG Xin ZHOU Lang LIU Huifeng XU Minjie WANG Liwei Li Shuai 《Petroleum Exploration and Development》 CSCD 2021年第1期221-231,共11页
By reviewing the development history of stimulation techniques for deep/ultra-deep oil and gas reservoirs,the new progress in this field in China and abroad has been summed up,including deeper understanding on formati... By reviewing the development history of stimulation techniques for deep/ultra-deep oil and gas reservoirs,the new progress in this field in China and abroad has been summed up,including deeper understanding on formation mechanisms of fracture network in deep/ultra-deep oil and gas reservoir,performance improvement of fracturing fluid materials,fine stratification of ultra-deep vertical wells,and mature staged multi-cluster fracturing technique for ultra-deep and highly deviated wells/horizontal wells.In light of the exploration and development trend of ultra-deep oil and gas reservoirs in China,the requirements and technical difficulties in ultra-deep oil and gas reservoir stimulation are discussed:(1)The research and application of integrated geological engineering technology is difficult.(2)The requirements on fracturing materials for stimulation are high.(3)It is difficult to further improve the production in vertical profile of the ultra-deep and hugely thick reservoirs.(4)The requirements on tools and supporting high-pressure equipment on the ground for stimulation are high.(5)It is difficult to achieve efficient stimulation of ultra-deep,high-temperature and high-pressure wells.(6)It is difficult to monitor directly the reservoir stimulation and evaluate the stimulation effect accurately after stimulation.In line with the complex geological characteristics of ultra-deep oil and gas reservoirs in China,seven technical development directions are proposed:(1)To establish systematic new techniques for basic research and evaluation experiments;(2)to strengthen geological research and improve the operational mechanism of integrating geological research and engineering operation;(3)to develop high-efficiency fracturing materials for ultra-deep reservoirs;(4)to research separated layer fracturing technology for ultra-deep and hugely thick reservoirs;(5)to explore fracture-control stimulation technology for ultra-deep horizontal well;(6)to develop direct monitoring technology for hydraulic fractures in ultra-deep oil and gas reservoirs;(7)to develop downhole fracturing tools with high temperature and high pressure tolerance and supporting wellhead equipment able to withstand high pressure. 展开更多
关键词 ultra-deep oil and gas reservoir high temperature and high pressure reservoir stimulation technical status technical difficulties development direction
下载PDF
Remaining Oil Distribution Law and Potential Tapping Strategy of Horizontal Well Pattern in Narrow Oil Rim Reservoir with Gas Cap and Edge Water
15
作者 Xiaolin Zhu Zongbin Liu +2 位作者 Xinran Wang Zhiqiang Meng Qin Zhu 《World Journal of Engineering and Technology》 2019年第3期355-364,共10页
For thin oil rim reservoir with gas cap and edge water, it is helpful to improve the development effect to find out the distribution law of remaining oil in this kind of reservoirs. For this reason, taking the narrow ... For thin oil rim reservoir with gas cap and edge water, it is helpful to improve the development effect to find out the distribution law of remaining oil in this kind of reservoirs. For this reason, taking the narrow oil rim reservoir with gas cap and edge water of Oilfield A in Bohai Sea as a case, the main controlling factors, including reservoir structure, fault, gas cap energy, edge water energy and well pattern, affecting the distribution of residual oil in this kind of reservoir were analyzed by using the data of core, logging, paleogeomorphology and production. Then, the distribution law of remaining oil was summarized. Generally, the remaining oil distribution is mainly potato-shaped or strip-shaped in plane. Vertically, it depends on the energy of gas cap and edge water. For the reservoir with big gas gap and weak edge water, the remaining oil mainly lies in the bottom of oil column. And for the reservoir with small gas gap and strong edge water, the remaining oil mainly locates at the top of oil column. Aiming at different distribution modes of remaining oil, the corresponding potential tapping strategies of horizontal wells are put forward: in the late stage of development, for the reservoir with big gas gap and weak edge water, the remaining oil concentrates at the bottom of the oil column, and the position of horizontal well should be placed at the lower 1/3 to the lower 1/5 of the oil column;for the reservoir with small gas cap and strong edge water, the remaining oil locates at the top of the oil column, and the position of horizontal well should be put at the upper 1/5 to the upper 1/3 of the oil column height, vertically. Based on the study on remaining oil of Oilfield A, a potential tapping strategy of well pattern thickening and vertical position optimization of horizontal well was proposed. This strategy guided the efficient implementation of the comprehensive adjustment plan of the oilfield. Moreover, 18 infill development wells were implemented in Oilfield A, and the average production of the infill wells is 2.1 times that of the surrounding old wells. It is estimated that the ultimate recovery factor of the oilfield will reach 33.9%, which is 2.3% higher than that before infilling wells. This study can be used for reference in the development of similar reservoirs. 展开更多
关键词 Thin oil RIM reservoir with gas Cap and Edge Water Horizontal WELL PATTERN Remaining oil Vertical Position Optimization WELL PATTERN THICKENING
下载PDF
Prolific Oil and Gas Reservoirs Discovered in Extremely Shallow Sea in Dagang
16
《China Oil & Gas》 CAS 1999年第4期226-226,共1页
ProlificoilandgasflowswereobtainedfromWellGangshen78intheextremelyshallowseaareaonNovember22.Adailyoilproductionof542.58m3andadailygasproductionof90500m3wererecordedona12.7mmchoke.Itisreportedthattheproducingformation... ProlificoilandgasflowswereobtainedfromWellGangshen78intheextremelyshallowseaareaonNovember22.Adailyoilproductionof542.58m3andadailygasproductionof90500m3wererecordedona12.7mmchoke.ItisreportedthattheproducingformationinWellGangshen78doesnotbelongtoth... 展开更多
关键词 Prolific oil and gas reservoirs Discovered in Extremely Shallow Sea in Dagang
下载PDF
Theoretical Progress and Key Technologies of Onshore Ultra-Deep Oil/Gas Exploration 被引量:16
17
作者 Xusheng Guo Dongfeng Hu +5 位作者 Yuping Li Jinbao Duan Xuefeng Zhang Xiaojun Fan Hua Duan Wencheng Li 《Engineering》 SCIE EI 2019年第3期458-470,共13页
Oil/gas exploration around the world has extended into deep and ultra-deep strata because it is increasingly difficult to find new large-scale oil/gas reservoirs in shallow–middle buried strata. In recent years, Chin... Oil/gas exploration around the world has extended into deep and ultra-deep strata because it is increasingly difficult to find new large-scale oil/gas reservoirs in shallow–middle buried strata. In recent years, China has made remarkable achievements in oil/gas exploration in ultra-deep areas including carbonate and clastic reservoirs. Some (ultra) large-scale oil and gas fields have been discovered. The oil/gas accumulation mechanisms and key technologies of oil/gas reservoir exploration and development are summarized in this study in order to share China’s experiences. Ultra-deep oil/gas originates from numerous sources of hydrocarbons and multiphase charging. Liquid hydrocarbons can form in ultradeep layers due to low geothermal gradients or overpressures, and the natural gas composition in ultra-deep areas is complicated by the reactions between deep hydrocarbons, water, and rock or by the addition of mantle- or crust-sourced gases. These oils/gases are mainly stored in the original highenergy reef/shoal complexes or in sand body sediments. They usually have high original porosity. Secondary pores are often developed by dissolution, dolomitization, and fracturing in the late stage. The early pores have been preserved by retentive diageneses such as the early charging of hydrocarbons. Oil/gas accumulation in ultra-deep areas generally has the characteristics of near-source accumulation and sustained preservation. The effective exploration and development of ultra-deep oil/gas reservoirs depend on the support of key technologies. Use of the latest technologies such as seismic signal acquisition and processing, low porosity and permeability zone prediction, and gas–water identification has enabled the discovery of ultra-deep oil/gas resources. In addition, advanced technologies for drilling, completion, and oil/gas testing have ensured the effective development of these fields. 展开更多
关键词 oil/gas EXPLORATION Ultra-deep sources reservoir Petroleum accumulation EXPLORATION and EXPLOITATION technologies
下载PDF
Advances in enhanced oil recovery technologies for low permeability reservoirs 被引量:4
18
作者 Wan-Li Kang Bo-Bo Zhou +1 位作者 Miras Issakhov Marabek Gabdullin 《Petroleum Science》 SCIE CAS CSCD 2022年第4期1622-1640,共19页
Low permeability oil and gas resources are rich and have great potential all over the world, which has gradually become the main goal of oil and gas development. However, after traditional primary and secondary exploi... Low permeability oil and gas resources are rich and have great potential all over the world, which has gradually become the main goal of oil and gas development. However, after traditional primary and secondary exploitation, there is still a large amount of remaining oil that has not been recovered.Therefore, in recent years, enhanced oil recovery(EOR) technologies for low permeability reservoirs have been greatly developed to further improve crude oil production. This study presents a comprehensive review of EOR technologies in low permeability reservoirs with an emphasis on gas flooding, surfactant flooding, nanofluid flooding and imbibition EOR technologies. In addition, two kinds of gel systems are introduced for conformance control in low permeability reservoirs with channeling problems. Finally,the technical challenges, directions and outlooks of EOR in low permeability reservoirs are addressed. 展开更多
关键词 Enhanced oil recovery Low permeability reservoir gas flooding Surfactant flooding Nanofluid flooding IMBIBITION Conformance control
下载PDF
Enrichment Mechanism and Prospects of Deep Oil and Gas 被引量:3
19
作者 HAO Fang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2022年第3期742-756,共15页
With the deepening of oil and gas exploration,the importance of depth is increasingly highlighted.The risk of preservation of storage space in deep reservoirs is greater than that in shallow and medium layers.Deep lay... With the deepening of oil and gas exploration,the importance of depth is increasingly highlighted.The risk of preservation of storage space in deep reservoirs is greater than that in shallow and medium layers.Deep layers mean older strata,more complex structural evolution and more complex hydrocarbon accumulation processes,and even adjustment and transformation of oil and gas reservoirs.This paper systematically investigates the current status and research progress of deep oil and gas exploration around the world and looks forward to the future research focus of deep oil and gas.In the deep,especially the ultra-deep layers,carbonate reservoirs play a more important role than clastic rocks.Karst,fault-karst and dolomite reservoirs are the main types of deep and ultra-deep reservoirs.The common feature of most deep large and medium-sized oil and gas reservoirs is that they formed in the early with shallow depth.Fault activity and evolution of trap highs are the main ways to cause physical adjustment of oil and gas reservoirs.Crude oil cracking and thermochemical sulfate reduction(TSR)are the main chemical modification effects in the reservoir.Large-scale high-quality dolomite reservoirs is the main direction of deep oil and gas exploration.Accurate identification of oil and gas charging,adjustment and reformation processes is the key to understanding deep oil and gas distribution.High-precision detection technology and high-precision dating technology are an important guarantee for deep oil and gas research. 展开更多
关键词 deep oil and gas carbonate reservoir main accumulation period reservoir adjustment and reconstruction enrichment mechanism
下载PDF
Laboratory to field scale assessment for EOR applicability in tight oil reservoirs 被引量:2
20
作者 Fahad Iqbal Syed Amirmasoud Kalantari Dahaghi Temoor Muther 《Petroleum Science》 SCIE CAS CSCD 2022年第5期2131-2149,共19页
Tight oil reservoirs are contributing a major role to fulfill the overall crude oil needs,especially in the US.However,the dilemma is their ultra-tight permeability and an uneconomically short-lived primary recovery f... Tight oil reservoirs are contributing a major role to fulfill the overall crude oil needs,especially in the US.However,the dilemma is their ultra-tight permeability and an uneconomically short-lived primary recovery factor.Therefore,the application of EOR in the early reservoir development phase is considered effective for fast-paced and economical tight oil recovery.To achieve these objectives,it is imperative to determine the optimum EOR potential and the best-suited EOR application for every individual tight oil reservoir to maximize its ultimate recovery factor.Since most of the tight oil reservoirs are found in wide spatial source rock with complex and compacted pores and poor geophysical properties yet they hold high saturation of good quality oil and therefore,every single percent increase in oil recovery from such huge reservoirs potentially provide an additional million barrels of oil.Hence,the EOR application in such reservoirs is quite essential.However,the physical understanding of EOR applications in different circumstances from laboratory to field scale is the key to success and similarly,the fundamental physical concepts of fluid flow-dynamics under confinement conditions play an important role.This paper presents a detailed discussion on laboratory-based experimental achievements at micro-scale including fundamental concepts under confinement environment,physics-based numerical studies,and recent actual field piloting experiences based on the U.S.unconventional plays.The objective of this paper is to discuss all the critical reservoir rock and fluid properties and their contribution to reservoir development through massive multi-staged hydraulic fracture networks and the EOR applications.Especially the CO_(2)and produced hydrocarbon gas injection through single well-based huff-n-puff operational constraints are discussed in detail both at micro and macro scale. 展开更多
关键词 UEOR UEOR pilots Shale oil Tight oil reservoir gas injection Hydraulic fracture Huff-n-puff
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部