Super-heavy oil is a significant unconventional energy source,and more than 30 years of research have shown that steam-assisted gravity drainage(SAGD)technology is suitable for thick super-heavy oil reservoirs.Recentl...Super-heavy oil is a significant unconventional energy source,and more than 30 years of research have shown that steam-assisted gravity drainage(SAGD)technology is suitable for thick super-heavy oil reservoirs.Recently,more and more thin-layer super-heavy oil reservoirs have been discovered in China,while their deep buried depth and serous heterogeneity make the existing SAGD technology difficult to apply,so it is urgent to improve the existing SAGD technology for the thin-layer super-heavy oil.To this end,this paper focuses on the enlightenment of field application in SAGD technology.Firstly,based on typical SAGD field projects,the development history of SAGD technology in the world was reviewed,and the influence of reservoir physical properties on the application of SAGD technology in thin-layer superheavy oil reservoirs was analyzed.Secondly,the well pattern,wellbore structure,pre-heating,artificial lift,and monitor technique of SAGD were detailed described,and their adjustment direction was expounded for the development of thin-layer super-heavy oil reservoirs.Lastly,the gas-and solventassistant SAGD were comprehensively evaluated,and their application potential in thin-layer superheavy oil reservoirs was studied.The research results can provide theoretical guidance for the application of SAGD technology in thin-layer super-heavy oil reservoirs.展开更多
As the ultra-heavy oil reservoirs developed by steam assisted gravity drainage(SAGD)in the Fengcheng oilfield,Xinjiang have problems such as huge steam usage,long preheating period,low production,and inaccessible rese...As the ultra-heavy oil reservoirs developed by steam assisted gravity drainage(SAGD)in the Fengcheng oilfield,Xinjiang have problems such as huge steam usage,long preheating period,low production,and inaccessible reserve in local parts.Based on the rock mechanics and porosity/permeability characteristics of heavy oil reservoir and interlayer,a series of true triaxial experiments and CT tests considering the fracturing fluid injection rate,viscosity,perforation density and location of fracture initiation were conducted to disclose the propagation behavior of micro-and macro-fractures in the reservoirs and mudstone interlayers.These experiments show that fracturing in the heavy oil reservoirs only generates microfractures that cannot break the interlayer.In contrast,when fracturing in the interlayer,the higher the injection rate(greater than 0.6 m^3/min),the lower the viscosity,the easier it is to form macro-fractures in the interlayers,and the further the fractures will propagate into the reservoirs.Also,increasing perforation density tends to create complex macro-fracture network in the interbedded reservoirs and mudstone interlayers.The findings of this study can provide scientific guidance for the selection of fracturing layer and the optimization of parameters in the interlayer fracturing of heavy oil reservoirs.展开更多
基金financially supported by the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(Grant Nos.CUGGC09 and CUG200637)Opening Fund of Key Laboratory of Unconventional Oil&Gas Development(China University of Petroleum(East China)),Ministry of Education(Grant No.19CX05005A-201)the Sinopec Science and Technology Department(Grant Nos.P2006 and 33550000-21-ZC0611-0006)。
文摘Super-heavy oil is a significant unconventional energy source,and more than 30 years of research have shown that steam-assisted gravity drainage(SAGD)technology is suitable for thick super-heavy oil reservoirs.Recently,more and more thin-layer super-heavy oil reservoirs have been discovered in China,while their deep buried depth and serous heterogeneity make the existing SAGD technology difficult to apply,so it is urgent to improve the existing SAGD technology for the thin-layer super-heavy oil.To this end,this paper focuses on the enlightenment of field application in SAGD technology.Firstly,based on typical SAGD field projects,the development history of SAGD technology in the world was reviewed,and the influence of reservoir physical properties on the application of SAGD technology in thin-layer superheavy oil reservoirs was analyzed.Secondly,the well pattern,wellbore structure,pre-heating,artificial lift,and monitor technique of SAGD were detailed described,and their adjustment direction was expounded for the development of thin-layer super-heavy oil reservoirs.Lastly,the gas-and solventassistant SAGD were comprehensively evaluated,and their application potential in thin-layer superheavy oil reservoirs was studied.The research results can provide theoretical guidance for the application of SAGD technology in thin-layer super-heavy oil reservoirs.
基金Supported by the National Natural Science Foundation of China(51404281)
文摘As the ultra-heavy oil reservoirs developed by steam assisted gravity drainage(SAGD)in the Fengcheng oilfield,Xinjiang have problems such as huge steam usage,long preheating period,low production,and inaccessible reserve in local parts.Based on the rock mechanics and porosity/permeability characteristics of heavy oil reservoir and interlayer,a series of true triaxial experiments and CT tests considering the fracturing fluid injection rate,viscosity,perforation density and location of fracture initiation were conducted to disclose the propagation behavior of micro-and macro-fractures in the reservoirs and mudstone interlayers.These experiments show that fracturing in the heavy oil reservoirs only generates microfractures that cannot break the interlayer.In contrast,when fracturing in the interlayer,the higher the injection rate(greater than 0.6 m^3/min),the lower the viscosity,the easier it is to form macro-fractures in the interlayers,and the further the fractures will propagate into the reservoirs.Also,increasing perforation density tends to create complex macro-fracture network in the interbedded reservoirs and mudstone interlayers.The findings of this study can provide scientific guidance for the selection of fracturing layer and the optimization of parameters in the interlayer fracturing of heavy oil reservoirs.