An in-depth analysis of propagation characteristics ofelasto-plastic combined stress waves in circular thin-walled tubeshas been made. In obtaining the simple-wave solution, however, mostresearches have ignored the in...An in-depth analysis of propagation characteristics ofelasto-plastic combined stress waves in circular thin-walled tubeshas been made. In obtaining the simple-wave solution, however, mostresearches have ignored the influence of the circumferential stressrelated to the radial inertial ef- fect in the tubes. In this paperthe incremental elasto-plastic constitutive relations which areconve- nient for dynamic numerical analysis are adopted, and thefinite-difference method is used to study the evolution adpropagation of elasto-plastic combined stress waves in a thin-walledtube with the radial inertial effect of the tube considered. Thecalculation results are compared with those obtained when the radialinertial effect is not considered. The calculation results show thatthe radial inertial effect of a tube has a fairly great influence onthe propagation of elasto-plastic combined stress waves.展开更多
Tests of 4 simply supported unbonded prestressed truss concrete composite beams encased with circular steel tube were carried out. It is found that the ratio of the stress increment of the unbonded tendon to that of t...Tests of 4 simply supported unbonded prestressed truss concrete composite beams encased with circular steel tube were carried out. It is found that the ratio of the stress increment of the unbonded tendon to that of the tensile steel tube is 0.252 during the using stage,and the average crack space of beams depends on the ratio of the sum of the bottom chord steel tube's outside diameter and the secondary bottom chord steel tube's section area to the effective tensile concrete area. The coefficient of uneven crack distribution is 1.68 and the formula for the calculation of crack width is established. Test results indicate that the ultimate stress increment of unbonded tendon in the beams decreases in linearity with the increase of the composite reinforcement index β0. The pure bending region of beams accords with the plane section assumption from loading to failure. The calculation formula of ultimate stress increment of the unbonded tendon and the method to calculate the bearing capacity of normal section of beams have been presented. Besides,the method to calculate the stiffness of this sort of beams is brought forward as well.展开更多
Pyrotechnic devices are widely used in the aerospace and defense industries.However,these devices generate high-frequency and high-amplitude shock responses during their use,compromising safe operation of the system.I...Pyrotechnic devices are widely used in the aerospace and defense industries.However,these devices generate high-frequency and high-amplitude shock responses during their use,compromising safe operation of the system.In this paper,the application of a thin-walled circular tube as the energy absorber in pyrotechnic devices is investigated.To accurately predict the shock load and the buffer performance of the thin-walled circular tube,a coupled model connecting the energetic material combustion and finite element simulation is established.The validity of the coupled model is verified by comparing with experiments.Then,the collapse mechanism of the thin-walled circular tube is studied,and the influence of multiple structural parameters on its buffer performance is analyzed.The results show that the thin-walled circular tube effectively reduces the shock overload.The maximum shock overload reduced from 572612g to 11204g in the studied case.The structural parameters of the thin-walled circular tube mainly affect the deformation process and the maximum shock overload.The order of importance of structural parameters to the maximum shock overload is determined,among which the wall thickness has the most significant effect.展开更多
文摘An in-depth analysis of propagation characteristics ofelasto-plastic combined stress waves in circular thin-walled tubeshas been made. In obtaining the simple-wave solution, however, mostresearches have ignored the influence of the circumferential stressrelated to the radial inertial ef- fect in the tubes. In this paperthe incremental elasto-plastic constitutive relations which areconve- nient for dynamic numerical analysis are adopted, and thefinite-difference method is used to study the evolution adpropagation of elasto-plastic combined stress waves in a thin-walledtube with the radial inertial effect of the tube considered. Thecalculation results are compared with those obtained when the radialinertial effect is not considered. The calculation results show thatthe radial inertial effect of a tube has a fairly great influence onthe propagation of elasto-plastic combined stress waves.
文摘Tests of 4 simply supported unbonded prestressed truss concrete composite beams encased with circular steel tube were carried out. It is found that the ratio of the stress increment of the unbonded tendon to that of the tensile steel tube is 0.252 during the using stage,and the average crack space of beams depends on the ratio of the sum of the bottom chord steel tube's outside diameter and the secondary bottom chord steel tube's section area to the effective tensile concrete area. The coefficient of uneven crack distribution is 1.68 and the formula for the calculation of crack width is established. Test results indicate that the ultimate stress increment of unbonded tendon in the beams decreases in linearity with the increase of the composite reinforcement index β0. The pure bending region of beams accords with the plane section assumption from loading to failure. The calculation formula of ultimate stress increment of the unbonded tendon and the method to calculate the bearing capacity of normal section of beams have been presented. Besides,the method to calculate the stiffness of this sort of beams is brought forward as well.
文摘Pyrotechnic devices are widely used in the aerospace and defense industries.However,these devices generate high-frequency and high-amplitude shock responses during their use,compromising safe operation of the system.In this paper,the application of a thin-walled circular tube as the energy absorber in pyrotechnic devices is investigated.To accurately predict the shock load and the buffer performance of the thin-walled circular tube,a coupled model connecting the energetic material combustion and finite element simulation is established.The validity of the coupled model is verified by comparing with experiments.Then,the collapse mechanism of the thin-walled circular tube is studied,and the influence of multiple structural parameters on its buffer performance is analyzed.The results show that the thin-walled circular tube effectively reduces the shock overload.The maximum shock overload reduced from 572612g to 11204g in the studied case.The structural parameters of the thin-walled circular tube mainly affect the deformation process and the maximum shock overload.The order of importance of structural parameters to the maximum shock overload is determined,among which the wall thickness has the most significant effect.