The approximate compressible model is adopted to study the effects of strength and compressibility on the penetration by WHA long rod and copper jet into semi-infinite target in detail. For WHA rod penetrating PMMA at...The approximate compressible model is adopted to study the effects of strength and compressibility on the penetration by WHA long rod and copper jet into semi-infinite target in detail. For WHA rod penetrating PMMA at 2 km/s <V <5 km/s, the compressibility has a significant effect on the penetration efficiency. We clarify how compressibility affects the penetration efficiency by changing the stagnation pressures of the rod and target. For WHA rod penetrating 4340 Steel and 6061-T6 Al at 2 km/s < V < 10 km/s, the effect of strength is strong and the effect of compressibility is negligible at lower impact velocity, whilst the effect of strength is weak and the effect of compressibility becomes stronger at higher impact velocity. For the copper jet penetrating 4030 Steel, 6061-T6 Al and PMMA. the virtual origin model is adopted, and the compressibility and strength are implicitly considered by the linear relation between the penetration velocity and impact velocity. The effects of compressibility and target resistance on penetration efficiency are studied. The results show that the target resistance has a significant effect on the penetration efficiency. Howver PMMA is much more compressible than copper and the huge difference of compressibility has a significant effect on the penetration by hypervelocity copper jet into PMMA.展开更多
Present study focuses on the terminal penetration of tungsten heavy alloy(WHA) long rod penetrator impacted against armour steel at an impact velocity of 1600 m/s. The residual penetrator and armour steel target recov...Present study focuses on the terminal penetration of tungsten heavy alloy(WHA) long rod penetrator impacted against armour steel at an impact velocity of 1600 m/s. The residual penetrator and armour steel target recovered after the ballistic test have been characterized using optical microscope, scanning electron microscope(SEM) and electron probe micro analyzer(EPMA). Metallurgical changes in target steel and WHA remnant have been analysed. Large shear stresses and shear localization have resulted in local failure and formation of erosion products. Severe plastic deformation acts as precursor for formation of adiabatic shear band(ASB) induced cracks in target steel. Recovered WHA penetrator remnant also exhibits severe plastic deformation forming localized shear bands, ASB induced cracks and shock induced cracks.展开更多
A theoretical study is presented herein on the pen- etration of a semi-infinite target by a spherical-headed long rod for Yp 〉 S, where Yp is the penetrator strength and S is the static target resistance. For Yp 〉 S...A theoretical study is presented herein on the pen- etration of a semi-infinite target by a spherical-headed long rod for Yp 〉 S, where Yp is the penetrator strength and S is the static target resistance. For Yp 〉 S, depending upon initial impact velocity, there exist three types of penetration, namely, penetration by a rigid long rod, penetration by a deforming non-erosive long rod and penetration by an erosive long rod. If the impact velocity of the penetrator is higher than the hydrodynamic velocity (VH), it will penetrate the target in an erosive mode; if the impact velocity lies between the hydrodynamic velocity (VH) and the rigid body velocity (VR), it will penetrate the target in a deformable mode; if the impact velocity is less than the rigid body velocity (VR), it will penetrate the target in a rigid mode. The critical conditions for the transition among these three penetration modes are proposed. It is demonstrated that the present model predictions correlate well with the experimental observations in terms of depth of penetration (DOP) and the critical transition conditions.展开更多
A combined experimental and computational study was carried out to investigate ballistic performance of laterally preload compressed SiC tile against long rod impact. A 100 x 100 by 20 mm thick SiC tile was pushed int...A combined experimental and computational study was carried out to investigate ballistic performance of laterally preload compressed SiC tile against long rod impact. A 100 x 100 by 20 mm thick SiC tile was pushed into a 5 mm thick steel frame at high temperature of 430 ℃ so that after cool down to room temperature, the lateral preload compressive stress was developed in the SiC tiles. Depth of penetration tests of the SiC tiles with and without pre-stress were performed, where tungsten alloy long rods at a nominal velocity of 1240 m/s were launched to hit the SiC tiles backed by the steel blocks. Compared with the SiC tiles without any pre-stress, the pre-compressed SiC tiles were found to reduce significantly the residual penetration in the backing block. Simulations were carried out using the LS-dyna hydrocode,taking account of preload stress. The simulations showed that the lateral preload compression strengthened the intact SiC tiles and dwell occurred in the early penetration stage, eroding the striking long rod efficiently.展开更多
Long-rod penetration in a wide range ol" velocity means that the initial impact velocity varies in a range from tens of meters per second to several kilometers per second.The long rods maintain rigid state when t...Long-rod penetration in a wide range ol" velocity means that the initial impact velocity varies in a range from tens of meters per second to several kilometers per second.The long rods maintain rigid state when the impact velocity is low,the nose of rod deforms and even is blunted when the velocity gets higher,and the nose erodes and fails to lead to the consumption of long projectile when the velocity is very high clue to instantaneous high pressure.That is,from low velocity to high velocity,the projectile undergoes rigid rods,deforming non-erosive rods,and erosive rods.Because of the complicated changes of the projectile,no well-established theoretical model and numerical simulation have been used to study the transition zone.Based on the analysis of penetration behavior in the transition zone,a phenomenological model to describe target resistance and a formula to calculate penetration depth in transition zone are proposed,and a method to obtain the boundary velocity of transition zone is determined.A combined theoretical analysis model for three response regions is built by analyzing the characteristics in these regions.The penetration depth predicted by this combined model is in good agreement with experimental result.展开更多
The Alekseevskii–Tate model is the most successful semi-hydrodynamic model applied to long-rod penetration into semi-infinite targets. However, due to the nonlinear nature of the equations, the rod(tail) velocity, pe...The Alekseevskii–Tate model is the most successful semi-hydrodynamic model applied to long-rod penetration into semi-infinite targets. However, due to the nonlinear nature of the equations, the rod(tail) velocity, penetration velocity, rod length, and penetration depth were obtained implicitly as a function of time and solved numerically By employing a linear approximation to the logarithmic relative rod length, we obtain two sets of explicit approximate algebraic solutions based on the implicit theoretica solution deduced from primitive equations. It is very convenient in the theoretical prediction of the Alekseevskii–Tate model to apply these simple algebraic solutions. In particular, approximate solution 1 shows good agreement with the theoretical(exact) solution, and the first-order perturbation solution obtained by Walters et al.(Int. J. Impac Eng. 33:837–846, 2006) can be deemed as a special form of approximate solution 1 in high-speed penetration. Meanwhile, with constant tail velocity and penetration velocity approximate solution 2 has very simple expressions, which is applicable for the qualitative analysis of long-rod penetration. Differences among these two approximate solutions and the theoretical(exact) solution and their respective scopes of application have been discussed, and the inferences with clear physical basis have been drawn. In addition, these two solutions and the first-order perturbation solution are applied to two cases with different initial impact velocity and different penetrator/target combinations to compare with the theoretical(exact) solution. Approximate solution 1 is much closer to the theoretical solution of the Alekseevskii–Tate model than the first-order perturbation solution in both cases, whilst approximate solution 2 brings us a more intuitive understanding of quasi-steady-state penetration.展开更多
A model for the tendency of fragmentation of a long rod projectile subjected to armour components in add-on armours such as reactive armour and active protection systems is presented. The model is based on studies of ...A model for the tendency of fragmentation of a long rod projectile subjected to armour components in add-on armours such as reactive armour and active protection systems is presented. The model is based on studies of the interaction between a cylindrical streamlined projectile and moving thin plates(backwards moving like the front plate in a reactive armour panel and forwards moving like the rear plate in a reactive armour panel).The assumption behind the model is that the sliding force, with velocity vslidebetween the projectile and the plate, gives rise to a transverse velocity vtransof the projectile segment it passes, which will deflect the projectile segment. This deflection is assumed to be a major reason for the fractures that can emerge along the projectile. The velocity, geometry and material of the projectile and the plate are of importance for the fragmentation of the projectile and the dimensionless parameterδ? = v trans vslideexpresses how these parameters influence the break-up tendency. Experiments and simulations have verified that the identifiedδ?-parameter predicts an increased amount of fragmentation of the projectile with increasing value of this parameter.展开更多
A three-stage theoretical model is presented herein to predict the perforation of a thick metallic plate struck normally by a long rod at high velocities. The model is suggested on the basis of the assumption that the...A three-stage theoretical model is presented herein to predict the perforation of a thick metallic plate struck normally by a long rod at high velocities. The model is suggested on the basis of the assumption that the perforation of a thick metallic plate by a long rod can be divided into three stages:(1) initial penetration;(2) plug formation and (3) plug slipping and separation. Various analytical equations are derived which can be employed to predict the ballistic limit, residual velocity and residual length of the long rod. It is demonstrated that the present model predictions are in good agreement with available experimental results for the perforation of finite steel targets struck normally by steel as well as tungsten alloy long rods at high velocities. It is also demonstrated that the dynamic maximum shear stress of a plate material has strong effect on plug formation and plug thickness which, in turn, exerts considerable influence on the residual velocities and lengths of a long rod at impact velocities just above the ballistic limit.展开更多
Mass loss should be considered while calculating the penetration depth of concrete by eroding long-rod projectiles of high velocity.The penetration process is divided into two phases:eroding phase and rigid phase.Dur...Mass loss should be considered while calculating the penetration depth of concrete by eroding long-rod projectiles of high velocity.The penetration process is divided into two phases:eroding phase and rigid phase.During eroding phase,a model to predict the penetration depth is established on the assumption that there is a chipping region in the bottom of crater.During rigid phase,Forrestal formula is adopted to calculate the penetration depth.Using this model,the depth of concrete penetration by a tungsten alloy long-rod projectile is calculated.When the critical eroding velocity is between 950 m/s and 1 000 m/s,the result is in good agreement with the experimental data.展开更多
This paper analyses perturbations of Noether symmetry, Lie symmetry, and form invariance for super-long elastic slender rod systems. Criterion and structure equations of the symmetries after disturbance are proposed. ...This paper analyses perturbations of Noether symmetry, Lie symmetry, and form invariance for super-long elastic slender rod systems. Criterion and structure equations of the symmetries after disturbance are proposed. Considering perturbation of all infinitesimal generators, three types of adiabatic invariants induced by perturbation of symmetries for the system are obtained.展开更多
DNA is a nucleic acid molecule with double-helical structures that are special symmetrical structures attracting great attention of numerous researchers. The super-long elastic slender rod, an important structural mod...DNA is a nucleic acid molecule with double-helical structures that are special symmetrical structures attracting great attention of numerous researchers. The super-long elastic slender rod, an important structural model of DNA and other long-train molecules, is a useful tool in analysing the symmetrical properties and the stabilities of DNA. This paper studies the structural properties of a super-long elastic slender rod as a structural model of DNA by using Kirchhoff's analogue technique and presents the Noether symmetries of the model by using the method of infinitesimal transformation. Baaed on Kirchhoff's analogue it analyses the generalized Hamilton canonical equations. The infinitesimal transfornaationa with rcspect to the radial coordinnte, the gonarnlizod coordinates, and the Cluasi-momenta of 5he model are introduced. The Noether gymmetries and conserved qugntities of the model are obtained.展开更多
小型棒控压水堆舍弃了可溶硼,并高度依赖控制棒与可燃毒物棒控制堆芯的反应性。为研究控制棒对堆芯关键性能的影响,本文以核动力破冰船用KLT-40模型为对象,以轴向功率偏移、堆芯寿期、燃料利用率与径向功率峰因子为指标,开展长寿期小型...小型棒控压水堆舍弃了可溶硼,并高度依赖控制棒与可燃毒物棒控制堆芯的反应性。为研究控制棒对堆芯关键性能的影响,本文以核动力破冰船用KLT-40模型为对象,以轴向功率偏移、堆芯寿期、燃料利用率与径向功率峰因子为指标,开展长寿期小型棒控压水堆控制棒布置与动作策略设计分析。首先,基于OpenMC程序开发带棒燃耗程序;其次,比较堆芯带控制棒与无控制棒运行时的堆芯寿期等指标;最后,分析不同动作策略对轴向功率偏移等指标的影响。结果表明:控制棒将堆芯寿期从590 EFPDs(等效满功率天,Effective full power days)延长至650~698 EFPDs;低价值棒组优先动作策略使轴向功率偏移程度由−0.69与+0.80分别下降至−0.29与+0.52。因此,要准确计算长寿期压水堆寿期必须采用带控制棒燃耗计算策略,并且通过合理的动作策略能够有效减小控制棒带来的轴向功率偏移。展开更多
基金supported by the National Outstanding Young Scientist Foundation of China(11225213)the Key Subject “Computational solid mechanics” of China Academy of Engineering Physics
文摘The approximate compressible model is adopted to study the effects of strength and compressibility on the penetration by WHA long rod and copper jet into semi-infinite target in detail. For WHA rod penetrating PMMA at 2 km/s <V <5 km/s, the compressibility has a significant effect on the penetration efficiency. We clarify how compressibility affects the penetration efficiency by changing the stagnation pressures of the rod and target. For WHA rod penetrating 4340 Steel and 6061-T6 Al at 2 km/s < V < 10 km/s, the effect of strength is strong and the effect of compressibility is negligible at lower impact velocity, whilst the effect of strength is weak and the effect of compressibility becomes stronger at higher impact velocity. For the copper jet penetrating 4030 Steel, 6061-T6 Al and PMMA. the virtual origin model is adopted, and the compressibility and strength are implicitly considered by the linear relation between the penetration velocity and impact velocity. The effects of compressibility and target resistance on penetration efficiency are studied. The results show that the target resistance has a significant effect on the penetration efficiency. Howver PMMA is much more compressible than copper and the huge difference of compressibility has a significant effect on the penetration by hypervelocity copper jet into PMMA.
基金Defence Research Development Organization(DRDO)for financial support to carry out this work at Defence Metallurgical Research Laboratory
文摘Present study focuses on the terminal penetration of tungsten heavy alloy(WHA) long rod penetrator impacted against armour steel at an impact velocity of 1600 m/s. The residual penetrator and armour steel target recovered after the ballistic test have been characterized using optical microscope, scanning electron microscope(SEM) and electron probe micro analyzer(EPMA). Metallurgical changes in target steel and WHA remnant have been analysed. Large shear stresses and shear localization have resulted in local failure and formation of erosion products. Severe plastic deformation acts as precursor for formation of adiabatic shear band(ASB) induced cracks in target steel. Recovered WHA penetrator remnant also exhibits severe plastic deformation forming localized shear bands, ASB induced cracks and shock induced cracks.
基金supported by the National Natural Science Foundation of China (10872195)
文摘A theoretical study is presented herein on the pen- etration of a semi-infinite target by a spherical-headed long rod for Yp 〉 S, where Yp is the penetrator strength and S is the static target resistance. For Yp 〉 S, depending upon initial impact velocity, there exist three types of penetration, namely, penetration by a rigid long rod, penetration by a deforming non-erosive long rod and penetration by an erosive long rod. If the impact velocity of the penetrator is higher than the hydrodynamic velocity (VH), it will penetrate the target in an erosive mode; if the impact velocity lies between the hydrodynamic velocity (VH) and the rigid body velocity (VR), it will penetrate the target in a deformable mode; if the impact velocity is less than the rigid body velocity (VR), it will penetrate the target in a rigid mode. The critical conditions for the transition among these three penetration modes are proposed. It is demonstrated that the present model predictions correlate well with the experimental observations in terms of depth of penetration (DOP) and the critical transition conditions.
文摘A combined experimental and computational study was carried out to investigate ballistic performance of laterally preload compressed SiC tile against long rod impact. A 100 x 100 by 20 mm thick SiC tile was pushed into a 5 mm thick steel frame at high temperature of 430 ℃ so that after cool down to room temperature, the lateral preload compressive stress was developed in the SiC tiles. Depth of penetration tests of the SiC tiles with and without pre-stress were performed, where tungsten alloy long rods at a nominal velocity of 1240 m/s were launched to hit the SiC tiles backed by the steel blocks. Compared with the SiC tiles without any pre-stress, the pre-compressed SiC tiles were found to reduce significantly the residual penetration in the backing block. Simulations were carried out using the LS-dyna hydrocode,taking account of preload stress. The simulations showed that the lateral preload compression strengthened the intact SiC tiles and dwell occurred in the early penetration stage, eroding the striking long rod efficiently.
基金supported by the National Natural Science Foundation of China(No.11302031,11371069,11372053)
文摘Long-rod penetration in a wide range ol" velocity means that the initial impact velocity varies in a range from tens of meters per second to several kilometers per second.The long rods maintain rigid state when the impact velocity is low,the nose of rod deforms and even is blunted when the velocity gets higher,and the nose erodes and fails to lead to the consumption of long projectile when the velocity is very high clue to instantaneous high pressure.That is,from low velocity to high velocity,the projectile undergoes rigid rods,deforming non-erosive rods,and erosive rods.Because of the complicated changes of the projectile,no well-established theoretical model and numerical simulation have been used to study the transition zone.Based on the analysis of penetration behavior in the transition zone,a phenomenological model to describe target resistance and a formula to calculate penetration depth in transition zone are proposed,and a method to obtain the boundary velocity of transition zone is determined.A combined theoretical analysis model for three response regions is built by analyzing the characteristics in these regions.The penetration depth predicted by this combined model is in good agreement with experimental result.
基金supported by the National Outstanding Young Scientist Foundation of China (Grant 11225213)the Key Subject "Computational Solid Mechanics" of China Academy of Engineering Physics
文摘The Alekseevskii–Tate model is the most successful semi-hydrodynamic model applied to long-rod penetration into semi-infinite targets. However, due to the nonlinear nature of the equations, the rod(tail) velocity, penetration velocity, rod length, and penetration depth were obtained implicitly as a function of time and solved numerically By employing a linear approximation to the logarithmic relative rod length, we obtain two sets of explicit approximate algebraic solutions based on the implicit theoretica solution deduced from primitive equations. It is very convenient in the theoretical prediction of the Alekseevskii–Tate model to apply these simple algebraic solutions. In particular, approximate solution 1 shows good agreement with the theoretical(exact) solution, and the first-order perturbation solution obtained by Walters et al.(Int. J. Impac Eng. 33:837–846, 2006) can be deemed as a special form of approximate solution 1 in high-speed penetration. Meanwhile, with constant tail velocity and penetration velocity approximate solution 2 has very simple expressions, which is applicable for the qualitative analysis of long-rod penetration. Differences among these two approximate solutions and the theoretical(exact) solution and their respective scopes of application have been discussed, and the inferences with clear physical basis have been drawn. In addition, these two solutions and the first-order perturbation solution are applied to two cases with different initial impact velocity and different penetrator/target combinations to compare with the theoretical(exact) solution. Approximate solution 1 is much closer to the theoretical solution of the Alekseevskii–Tate model than the first-order perturbation solution in both cases, whilst approximate solution 2 brings us a more intuitive understanding of quasi-steady-state penetration.
基金the Swedish Armed Forces for the research fund that has financed this work
文摘A model for the tendency of fragmentation of a long rod projectile subjected to armour components in add-on armours such as reactive armour and active protection systems is presented. The model is based on studies of the interaction between a cylindrical streamlined projectile and moving thin plates(backwards moving like the front plate in a reactive armour panel and forwards moving like the rear plate in a reactive armour panel).The assumption behind the model is that the sliding force, with velocity vslidebetween the projectile and the plate, gives rise to a transverse velocity vtransof the projectile segment it passes, which will deflect the projectile segment. This deflection is assumed to be a major reason for the fractures that can emerge along the projectile. The velocity, geometry and material of the projectile and the plate are of importance for the fragmentation of the projectile and the dimensionless parameterδ? = v trans vslideexpresses how these parameters influence the break-up tendency. Experiments and simulations have verified that the identifiedδ?-parameter predicts an increased amount of fragmentation of the projectile with increasing value of this parameter.
文摘A three-stage theoretical model is presented herein to predict the perforation of a thick metallic plate struck normally by a long rod at high velocities. The model is suggested on the basis of the assumption that the perforation of a thick metallic plate by a long rod can be divided into three stages:(1) initial penetration;(2) plug formation and (3) plug slipping and separation. Various analytical equations are derived which can be employed to predict the ballistic limit, residual velocity and residual length of the long rod. It is demonstrated that the present model predictions are in good agreement with available experimental results for the perforation of finite steel targets struck normally by steel as well as tungsten alloy long rods at high velocities. It is also demonstrated that the dynamic maximum shear stress of a plate material has strong effect on plug formation and plug thickness which, in turn, exerts considerable influence on the residual velocities and lengths of a long rod at impact velocities just above the ballistic limit.
基金Sponsored by State Key Laboratory of Explosion Science and Technology Foundation(ZDKT08-04,YBKT09-03)
文摘Mass loss should be considered while calculating the penetration depth of concrete by eroding long-rod projectiles of high velocity.The penetration process is divided into two phases:eroding phase and rigid phase.During eroding phase,a model to predict the penetration depth is established on the assumption that there is a chipping region in the bottom of crater.During rigid phase,Forrestal formula is adopted to calculate the penetration depth.Using this model,the depth of concrete penetration by a tungsten alloy long-rod projectile is calculated.When the critical eroding velocity is between 950 m/s and 1 000 m/s,the result is in good agreement with the experimental data.
基金Project supported by the Natural Science Foundation of Shandong Province of China (Grant No. ZR2009AQ011)Science Foundation of Binzhou University,China (Grant No. BZXYG0903)
文摘This paper analyses perturbations of Noether symmetry, Lie symmetry, and form invariance for super-long elastic slender rod systems. Criterion and structure equations of the symmetries after disturbance are proposed. Considering perturbation of all infinitesimal generators, three types of adiabatic invariants induced by perturbation of symmetries for the system are obtained.
基金supported by the National Natural Science Foundation of China (Grant Nos 10672143 and 60575055)the State Key Laboratory of Scientific and Engineering ComputingChinese Academy of Sciences and the Natural Science Foundation of Henan Province Government of China (Grant No 0511022200)
文摘DNA is a nucleic acid molecule with double-helical structures that are special symmetrical structures attracting great attention of numerous researchers. The super-long elastic slender rod, an important structural model of DNA and other long-train molecules, is a useful tool in analysing the symmetrical properties and the stabilities of DNA. This paper studies the structural properties of a super-long elastic slender rod as a structural model of DNA by using Kirchhoff's analogue technique and presents the Noether symmetries of the model by using the method of infinitesimal transformation. Baaed on Kirchhoff's analogue it analyses the generalized Hamilton canonical equations. The infinitesimal transfornaationa with rcspect to the radial coordinnte, the gonarnlizod coordinates, and the Cluasi-momenta of 5he model are introduced. The Noether gymmetries and conserved qugntities of the model are obtained.
文摘小型棒控压水堆舍弃了可溶硼,并高度依赖控制棒与可燃毒物棒控制堆芯的反应性。为研究控制棒对堆芯关键性能的影响,本文以核动力破冰船用KLT-40模型为对象,以轴向功率偏移、堆芯寿期、燃料利用率与径向功率峰因子为指标,开展长寿期小型棒控压水堆控制棒布置与动作策略设计分析。首先,基于OpenMC程序开发带棒燃耗程序;其次,比较堆芯带控制棒与无控制棒运行时的堆芯寿期等指标;最后,分析不同动作策略对轴向功率偏移等指标的影响。结果表明:控制棒将堆芯寿期从590 EFPDs(等效满功率天,Effective full power days)延长至650~698 EFPDs;低价值棒组优先动作策略使轴向功率偏移程度由−0.69与+0.80分别下降至−0.29与+0.52。因此,要准确计算长寿期压水堆寿期必须采用带控制棒燃耗计算策略,并且通过合理的动作策略能够有效减小控制棒带来的轴向功率偏移。