Aspects of the general Vlasov theory are examined separately as applied to a thin-walled channel section cantilever beam under free-end end loading. In particular, the flexural bending and shear that arise under trans...Aspects of the general Vlasov theory are examined separately as applied to a thin-walled channel section cantilever beam under free-end end loading. In particular, the flexural bending and shear that arise under transverse shear and axial torsional loading are each considered theoretically. These analyses involve the location of the shear centre at which transverse shear forces when applied do not produce torsion. This centre, when taken to be coincident with the centre of twist implies an equivalent reciprocal behaviour. That is, an axial torsion applied concentric with the shear centre will twist but not bend the beam. The respective bending and shear stress conversions are derived for each action applied to three aluminium alloy extruded channel sections mounted as cantilevers with a horizontal principal axis of symmetry. Bending and shear are considered more generally for other thin-walled sections when the transverse loading axes at the shear centre are not parallel to the section = s centroidal axes of principal second moments of area. The fixing at one end of the cantilever modifies the St Venant free angular twist and the free warping displacement. It is shown from the Wagner-Kappus torsion theory how the end constrained warping generates an axial stress distribution that varies with the length and across the cross-section for an axial torsion applied to the shear centre. It should be mentioned here for wider applications and validation of the Vlasov theory that attendant papers are to consider in detail bending and torsional loadings applied to other axes through each of the centroid and the web centre. Therein, both bending and twisting arise from transverse shear and axial torsion applied to each position being displaced from the shear centre. Here, the influence of the axis position upon the net axial and shear stress distributions is to be established. That is, the net axial stress from axial torsional loading is identified with the sum of axial stress due to bending and axial stress arising from constrained warping displacements at the fixing. The net shear stress distribution overlays the distributions from axial torsion and that from flexural shear under transverse loading. Both arise when transverse forces are displaced from the shear centre.展开更多
This paper is to review the theory of thin-walled beam structures of the open cross-section. There is scant information on the performance of structures made from thin-walled beam elements, particularly those of open ...This paper is to review the theory of thin-walled beam structures of the open cross-section. There is scant information on the performance of structures made from thin-walled beam elements, particularly those of open sections, where the behavior is considerably complicated by the coupling of tensile, bending and torsional loading modes. In the combined loading theory of thin-walled structures, it is useful to mention that for a thin-walled beam, the value of direct stress at a point on the cross-section depends on its position, the geometrical properties of the cross-section and the applied loading. This applies whether the thin-walled section is closed or open but this study will be directed primarily at the latter. Theoretical analyses of structures are fairly well established, considered in multi-various applications by many scientists. However, due to the present interest in lightweight structures, it is necessary to specify where the present theory lies. It does not, for example, deal with compression and the consequent failure modes under global and local buckling. Indeed, with the inclusion of strut buckling failure and any other unforeseen collapse modes, the need was perceived for further research into the subject. Presently, a survey of the published works has shown in the following: 1) The assumptions used in deriving the underlying theory of thin-walled beams are not clearly stated or easily understood;2) The transformations of a load system from arbitrary axis to those at the relevant centre of rotation are incomplete. Thus, an incorrect stress distribution may result in;3) Several methods are found in the recent literature for analyzing the behaviour of thin-walled open section beams under combined loading. These reveal the need appears for further study upon their torsion/flexural behaviour when referred to any arbitrary axis, a common case found in practice. This review covers the following areas: 1) Refinement to existing theory to clarify those observations made in 1 - 3 above;2) Derivation of a general elastic stiffness matrix for combined loading;3) Calculation of the stress distribution on the cross-section of a thin-walled beam. A general transformation matrix that accounts for a load system applied at an arbitrary point on the cross-section will be published in a future paper.展开更多
Based on the theories of Timoshenko's beams and Vlasov's thin-walled members, a new spatial thin-walled beam element with an interior node is developed. By independently interpolating bending angles and warp, factor...Based on the theories of Timoshenko's beams and Vlasov's thin-walled members, a new spatial thin-walled beam element with an interior node is developed. By independently interpolating bending angles and warp, factors such as transverse shear deformation, torsional shear deformation and their Coupling, coupling of flexure and torsion, and second shear stress are considered. According to the generalized variational theory of Hellinger-Reissner, the element stiffness matrix is derived. Examples show that the developed model is accurate and can be applied in the finite element analysis of thinwalled structures.展开更多
This paper transforms combined loads, applied at an arbitrary point of a thin-walled open section beam, to the shear centre of the cross-section of the beam. Therein, a generalized transformation matrix for loads with...This paper transforms combined loads, applied at an arbitrary point of a thin-walled open section beam, to the shear centre of the cross-section of the beam. Therein, a generalized transformation matrix for loads with respect to the shear centre is derived, this accounting for the bimoments that develop due to the way the combined loads are applied. This and the authors’ earlier paper (World Journal of Mechanics 2021, 11, 205-236) provide a full solution to the theory of thin-walled, open-section structures bearing combined loading. The earlier work identified arbitrary loading with the section’s area properties that are necessary to axial and shear stress calculations within the structure’s thin walls. In the previous paper attention is paid to the relevant axes of loading and to the transformations of loading required between axes for stress calculations arising from tension/compression, bending, torsion and shear. The derivation of the general transformation matrix applies to all types of loadings including, axial tensile and compression forces, transverse shear, longitudinal bending. One application, representing all these load cases, is given of a simple channel cantilever with an eccentrically located end load.展开更多
Based on the theories of Bernoulli-Euler beams and Vlasov's thin-walled members,a new geometrical and physical nonlinear beam element model is developed by applying an interior node in the element and independent ...Based on the theories of Bernoulli-Euler beams and Vlasov's thin-walled members,a new geometrical and physical nonlinear beam element model is developed by applying an interior node in the element and independent interpolations on bending angles and warp,in which factors such as traverse shear deformation,torsional shear deformation and their coupling,coupling of flexure and torsion,and second shear stress are all considered.Thereafter,geometrical nonlinear strain in total Lagarange(TL) and the corresponding stiffness matrix are formulated.Ideal plastic model is applied to physical nonlinearity to comply with the yield rule of Von Mises and incremental relationship of Prandtle-Reuss.Elastoplastic stiffness matrix is derived by numerical integration on the basis of the finite segment method.Examples show that the developed model is feasible in analysis of thin-walled structures with high accuracy.展开更多
Based on Timoshenko's beam theory and Vlasov's thin-walled member theory, a new model of spatial thin-walled beam element is developed for analyzing geometrical and physical nonlinearity, which incorporates an inter...Based on Timoshenko's beam theory and Vlasov's thin-walled member theory, a new model of spatial thin-walled beam element is developed for analyzing geometrical and physical nonlinearity, which incorporates an interior node and independent interpolations of bending angles and warp and takes diversified factors into consideration, such as traverse shear deformation, torsional shear deformation and their coupling, coupling of flexure and torsion, and the second shear stress. The geometrical nonlinear strain is formulated in updated Lagarange (UL) and the corresponding stiffness matrix is derived. The perfectly plastic model is used to account for physical nonlinearity, and the yield rule of von Mises and incremental relationship of Prandtle-Reuss are adopted. Elastoplastic stiffness matrix is obtained by numerical integration based on the finite segment method, and a finite element program is compiled. Numerical examples manifest that the proposed model is accurate and feasible in the analysis of thin-walled structures.展开更多
文摘Aspects of the general Vlasov theory are examined separately as applied to a thin-walled channel section cantilever beam under free-end end loading. In particular, the flexural bending and shear that arise under transverse shear and axial torsional loading are each considered theoretically. These analyses involve the location of the shear centre at which transverse shear forces when applied do not produce torsion. This centre, when taken to be coincident with the centre of twist implies an equivalent reciprocal behaviour. That is, an axial torsion applied concentric with the shear centre will twist but not bend the beam. The respective bending and shear stress conversions are derived for each action applied to three aluminium alloy extruded channel sections mounted as cantilevers with a horizontal principal axis of symmetry. Bending and shear are considered more generally for other thin-walled sections when the transverse loading axes at the shear centre are not parallel to the section = s centroidal axes of principal second moments of area. The fixing at one end of the cantilever modifies the St Venant free angular twist and the free warping displacement. It is shown from the Wagner-Kappus torsion theory how the end constrained warping generates an axial stress distribution that varies with the length and across the cross-section for an axial torsion applied to the shear centre. It should be mentioned here for wider applications and validation of the Vlasov theory that attendant papers are to consider in detail bending and torsional loadings applied to other axes through each of the centroid and the web centre. Therein, both bending and twisting arise from transverse shear and axial torsion applied to each position being displaced from the shear centre. Here, the influence of the axis position upon the net axial and shear stress distributions is to be established. That is, the net axial stress from axial torsional loading is identified with the sum of axial stress due to bending and axial stress arising from constrained warping displacements at the fixing. The net shear stress distribution overlays the distributions from axial torsion and that from flexural shear under transverse loading. Both arise when transverse forces are displaced from the shear centre.
文摘This paper is to review the theory of thin-walled beam structures of the open cross-section. There is scant information on the performance of structures made from thin-walled beam elements, particularly those of open sections, where the behavior is considerably complicated by the coupling of tensile, bending and torsional loading modes. In the combined loading theory of thin-walled structures, it is useful to mention that for a thin-walled beam, the value of direct stress at a point on the cross-section depends on its position, the geometrical properties of the cross-section and the applied loading. This applies whether the thin-walled section is closed or open but this study will be directed primarily at the latter. Theoretical analyses of structures are fairly well established, considered in multi-various applications by many scientists. However, due to the present interest in lightweight structures, it is necessary to specify where the present theory lies. It does not, for example, deal with compression and the consequent failure modes under global and local buckling. Indeed, with the inclusion of strut buckling failure and any other unforeseen collapse modes, the need was perceived for further research into the subject. Presently, a survey of the published works has shown in the following: 1) The assumptions used in deriving the underlying theory of thin-walled beams are not clearly stated or easily understood;2) The transformations of a load system from arbitrary axis to those at the relevant centre of rotation are incomplete. Thus, an incorrect stress distribution may result in;3) Several methods are found in the recent literature for analyzing the behaviour of thin-walled open section beams under combined loading. These reveal the need appears for further study upon their torsion/flexural behaviour when referred to any arbitrary axis, a common case found in practice. This review covers the following areas: 1) Refinement to existing theory to clarify those observations made in 1 - 3 above;2) Derivation of a general elastic stiffness matrix for combined loading;3) Calculation of the stress distribution on the cross-section of a thin-walled beam. A general transformation matrix that accounts for a load system applied at an arbitrary point on the cross-section will be published in a future paper.
基金Project supported by the National Natural Science Foundation of China(No.50725826)the National Science and Technology Support Program(No.2008BAJ08B06)+1 种基金the National Technology Research and Development Program(No.2009AA04Z420)the Shanghai Postdoctoral fund (No.I0R21416200)
文摘Based on the theories of Timoshenko's beams and Vlasov's thin-walled members, a new spatial thin-walled beam element with an interior node is developed. By independently interpolating bending angles and warp, factors such as transverse shear deformation, torsional shear deformation and their Coupling, coupling of flexure and torsion, and second shear stress are considered. According to the generalized variational theory of Hellinger-Reissner, the element stiffness matrix is derived. Examples show that the developed model is accurate and can be applied in the finite element analysis of thinwalled structures.
文摘This paper transforms combined loads, applied at an arbitrary point of a thin-walled open section beam, to the shear centre of the cross-section of the beam. Therein, a generalized transformation matrix for loads with respect to the shear centre is derived, this accounting for the bimoments that develop due to the way the combined loads are applied. This and the authors’ earlier paper (World Journal of Mechanics 2021, 11, 205-236) provide a full solution to the theory of thin-walled, open-section structures bearing combined loading. The earlier work identified arbitrary loading with the section’s area properties that are necessary to axial and shear stress calculations within the structure’s thin walls. In the previous paper attention is paid to the relevant axes of loading and to the transformations of loading required between axes for stress calculations arising from tension/compression, bending, torsion and shear. The derivation of the general transformation matrix applies to all types of loadings including, axial tensile and compression forces, transverse shear, longitudinal bending. One application, representing all these load cases, is given of a simple channel cantilever with an eccentrically located end load.
基金supported by the National Natural Science Foundation of China(Grant No.50725826)
文摘Based on the theories of Bernoulli-Euler beams and Vlasov's thin-walled members,a new geometrical and physical nonlinear beam element model is developed by applying an interior node in the element and independent interpolations on bending angles and warp,in which factors such as traverse shear deformation,torsional shear deformation and their coupling,coupling of flexure and torsion,and second shear stress are all considered.Thereafter,geometrical nonlinear strain in total Lagarange(TL) and the corresponding stiffness matrix are formulated.Ideal plastic model is applied to physical nonlinearity to comply with the yield rule of Von Mises and incremental relationship of Prandtle-Reuss.Elastoplastic stiffness matrix is derived by numerical integration on the basis of the finite segment method.Examples show that the developed model is feasible in analysis of thin-walled structures with high accuracy.
基金supported by the National Natural Science Foundation of China (50725826)Specific Research on Cable-reinforced Membranes with Super Span and Complex Single-shell Structures of Expo Axis (08dz0580303)Shanghai Postdoctoral Fund (10R21416200)
文摘Based on Timoshenko's beam theory and Vlasov's thin-walled member theory, a new model of spatial thin-walled beam element is developed for analyzing geometrical and physical nonlinearity, which incorporates an interior node and independent interpolations of bending angles and warp and takes diversified factors into consideration, such as traverse shear deformation, torsional shear deformation and their coupling, coupling of flexure and torsion, and the second shear stress. The geometrical nonlinear strain is formulated in updated Lagarange (UL) and the corresponding stiffness matrix is derived. The perfectly plastic model is used to account for physical nonlinearity, and the yield rule of von Mises and incremental relationship of Prandtle-Reuss are adopted. Elastoplastic stiffness matrix is obtained by numerical integration based on the finite segment method, and a finite element program is compiled. Numerical examples manifest that the proposed model is accurate and feasible in the analysis of thin-walled structures.