Though Zn-air batteries(ZABs)are one of the most promising system for energy storage and conversion,challenge still persists in its commercial application due to the sluggish kinetics of oxygen reduction/evolution rea...Though Zn-air batteries(ZABs)are one of the most promising system for energy storage and conversion,challenge still persists in its commercial application due to the sluggish kinetics of oxygen reduction/evolution reaction(ORR/OER).Hereby,a polyvinylidene fluoride(PVDF)-assisted pyrolysis strategy is proposed to develop a novel corrugated plate-like bifunctional electrocatalyst using two-dimensional zeolitic imidazolate frameworks(2D ZIF-67)as the precursor.The employed PVDF plays an important role in inheriting the original 2D structure of ZIF-67 and modulating the composition of the final products.As a result,a corrugated plate-like electrocatalyst,high-density Co nanoparticles decorated 2D Co,N,and F tri-doped carbon nanosheets,can be obtained.The acquired electrocatalyst enables efficient active sites and rapid mass transfer simultaneously,thus showing appreciable electrocatalytic performance for rechargeable Zn-air batteries.Undoubtedly,our proposed strategy offers a new perspective to the design of advanced oxygen electrocatalysts.展开更多
A mathematical model was established for condensation on surfaces of verticalcorrugated plates based on the mechanism of heat transfer enhancement to thin down the liquid filmdue to surface tension effect between corr...A mathematical model was established for condensation on surfaces of verticalcorrugated plates based on the mechanism of heat transfer enhancement to thin down the liquid filmdue to surface tension effect between corrugated plate surfaces and liquid films. The relative heattransfer coefficients of condensation on corrugation plates were calculated in contrast withequivalent vertical plane ones. The heat transfer enhancement effects for the main geometricparameters such as pitch, height, corrugation angle, tilt angle, and fillet radii of corrugationswere analyzed to guide the optimization of corrugation structure for application. A two-scalecorrugation is suggested, which can compromise both the enhanced heat transfer effect and adequatecross section area for flows, and it makes the heat transfer coefficient 1 to 2 times more than thatof an equivalent plane one.展开更多
Droplet turbulence effect on gas-water separator with corrugated plates is explored using the Eulerian-Lagrangian two-way coupled multiphase approach of FLUENT. It is concluded that the inertial force is dominant in s...Droplet turbulence effect on gas-water separator with corrugated plates is explored using the Eulerian-Lagrangian two-way coupled multiphase approach of FLUENT. It is concluded that the inertial force is dominant in separating large droplets, while droplet turbulence dispersion plays a decisive role in separating fine droplets. Good agreement exists between calculations and air-water experiments. The numerical method developed provides a rea-sonable description of the droplet trajectories and separating efficiency, and it can be applied to predicting the performance of gas-water separator with corrugated plates.展开更多
A simple approach to reduce the governing equations for orthotropic corrugated core sandwich plates to a single equation containing only one displacement function is presented, and the exact solution of the natural fr...A simple approach to reduce the governing equations for orthotropic corrugated core sandwich plates to a single equation containing only one displacement function is presented, and the exact solution of the natural frequencies for rectangular corrugated-core sandwich plates with all edges simply-supported is obtained. Furthermore, two special cases of practical interests are discussed in details.展开更多
The nonlinear vibration of graphene platelets reinforced composite corrugated(GPRCC)rectangular plates with shallow trapezoidal corrugations is investigated.Since graphene platelets are prone to agglomeration,a multi-...The nonlinear vibration of graphene platelets reinforced composite corrugated(GPRCC)rectangular plates with shallow trapezoidal corrugations is investigated.Since graphene platelets are prone to agglomeration,a multi-layer distribution is adopted here to match the engineering requirements.Firstly,an equivalent composite plate model is obtained,and then nonlinear equations of motion are derived by the von Kármán nonlinear geometric relationship and Hamilton’s principle.Afterwards,the Galerkin method and harmonic balance method are used to obtain an approximate analytical solution.Results show that the unit cell half period,unit cell inclination angle,unit cell height,graphene platelet dispersion pattern and graphene platelet weight fraction and geometry play important roles in the nonlinear vibration of the GPRCC plates.展开更多
By using the simplified Reissner's equation of axisymmetric shells of revolution, the nonlinear bending of a corrugated annular plate with a large boundary corrugation and a nondeformable rigid body at the cente...By using the simplified Reissner's equation of axisymmetric shells of revolution, the nonlinear bending of a corrugated annular plate with a large boundary corrugation and a nondeformable rigid body at the center under compound load are investigated. The nonlinear boundary value problem of the corrugated diaphragm reduces to the nonlinear integral equations by applying the method of Green's function. To solve the integral equations, a so_called interpolated parameter important to prevent divergence is introduced into the iterative format. Computation shows that when loads are small, any value of interpolated parameter can assure the convergence of iteration. Interpolated parameter equal or almost equal to 1 yields a faster convergence rate; when loads are large, interpolated parameter cannot be taken too large in order to assure convergence. The characteristic curves of the corrugated diaphragm for different load combinations are given. The obtained characteristic curves are available for reference to design. It can be concluded that the deflection is larger when the diaphragm is acted by both uniform load and concentrated load than when it is acted only by uniform load. The solution method can be applied to corrugated shells of arbitrary diametral sections.展开更多
The surface quality of a corrugated plate directly determines the heat transfer property of the thermal power mechanical apparatus.Traditional detection methods are impractical for real-world production,being slow and...The surface quality of a corrugated plate directly determines the heat transfer property of the thermal power mechanical apparatus.Traditional detection methods are impractical for real-world production,being slow and destructive.In contrast,the point laser displacement sensor,employing the optical triangle method,emerges as a promising device for assessing parts with variable curvature and highly reflective surfaces.Despite its benefits,high-density sampling by an innate frequency introduces challenges such as data redundancy and a poor signal-to-noise ratio,potentially affecting the efficiency and precision of subsequent data processing.To address these challenges,adjustable frequency data sampling has been developed for this sensor,allowing adaptive sampling for corrugated plate digitization.The process begins with surface digitization to extract discrete points,which are transformed into intersection curves using the B-spline fitting technique.Subsequently,dominant points are identified,considering multigeometric constraints for curvature and arch height.Finally,the sampling signal is adjusted based on the distribution information of dominant points.Comparative results indicate that the proposed method effectively minimizes redundant sampling without compromising the accurate capture of essential geometric features.展开更多
The material removal rate and required work- piece surface quality of thin-walled structure milling are greatly limited due to its severe vibration, which is directly associated with the dynamic characteristics of the...The material removal rate and required work- piece surface quality of thin-walled structure milling are greatly limited due to its severe vibration, which is directly associated with the dynamic characteristics of the system. Therefore, the suppression of vibration is an unavoidable problem during milling. A novel partial surface damping method is proposed to modify the mode of the thin walled cantilever plate and to suppress vibration during milling. Based on classical plate theory, the design criterion is analyzed and configuration of the partial surface damper is introduced, in which viscoelastic plate and constraining plate are attached to the surface of the plate to increase the system's natural frequency and loss factor. In order to obtain the energy expression of the cutting system, the Ritz method is used to describe the unknown displacements. Then, with Lagrange's equation, the natural frequency and loss factor are calculated. In addition, the plate is divided into a finite number of square elements, and the regulation of treated position is studied based on theoretic and experimental analysis. The milling tests are conducted to verify its damping performance and the experimentalresults show that with treatment of partial surface damper, the deformation of the hare plate is reduced from 0.27 mm to 0.1 mm, while the vibration amplitude of the bare plate is reduced from 0.08 mm to 0.01 mm. The proposed research provides the instruction to design partial surface damper.展开更多
基金supported by the National Natural Science Foundation of China (No.21908049,52274298,and 51974114)Hunan Provincial Natural Science Foundation of China (No.2022JJ40035,2020JJ4175,2024JJ4022,2023JJ30277)+2 种基金Science and Technology Talents Lifting Project of Hunan Province (No.2022TJ-N16)Open Fund of State Key Laboratory of Advanced Metallurgy,University of Science and Technology Beijing (K1:24-09)Postdoctoral Fellowship Program (No.GZC20233205)。
文摘Though Zn-air batteries(ZABs)are one of the most promising system for energy storage and conversion,challenge still persists in its commercial application due to the sluggish kinetics of oxygen reduction/evolution reaction(ORR/OER).Hereby,a polyvinylidene fluoride(PVDF)-assisted pyrolysis strategy is proposed to develop a novel corrugated plate-like bifunctional electrocatalyst using two-dimensional zeolitic imidazolate frameworks(2D ZIF-67)as the precursor.The employed PVDF plays an important role in inheriting the original 2D structure of ZIF-67 and modulating the composition of the final products.As a result,a corrugated plate-like electrocatalyst,high-density Co nanoparticles decorated 2D Co,N,and F tri-doped carbon nanosheets,can be obtained.The acquired electrocatalyst enables efficient active sites and rapid mass transfer simultaneously,thus showing appreciable electrocatalytic performance for rechargeable Zn-air batteries.Undoubtedly,our proposed strategy offers a new perspective to the design of advanced oxygen electrocatalysts.
文摘A mathematical model was established for condensation on surfaces of verticalcorrugated plates based on the mechanism of heat transfer enhancement to thin down the liquid filmdue to surface tension effect between corrugated plate surfaces and liquid films. The relative heattransfer coefficients of condensation on corrugation plates were calculated in contrast withequivalent vertical plane ones. The heat transfer enhancement effects for the main geometricparameters such as pitch, height, corrugation angle, tilt angle, and fillet radii of corrugationswere analyzed to guide the optimization of corrugation structure for application. A two-scalecorrugation is suggested, which can compromise both the enhanced heat transfer effect and adequatecross section area for flows, and it makes the heat transfer coefficient 1 to 2 times more than thatof an equivalent plane one.
基金Supported by National Key Laboratory of Bubble Physics and Natural Circulation (2005)
文摘Droplet turbulence effect on gas-water separator with corrugated plates is explored using the Eulerian-Lagrangian two-way coupled multiphase approach of FLUENT. It is concluded that the inertial force is dominant in separating large droplets, while droplet turbulence dispersion plays a decisive role in separating fine droplets. Good agreement exists between calculations and air-water experiments. The numerical method developed provides a rea-sonable description of the droplet trajectories and separating efficiency, and it can be applied to predicting the performance of gas-water separator with corrugated plates.
文摘A simple approach to reduce the governing equations for orthotropic corrugated core sandwich plates to a single equation containing only one displacement function is presented, and the exact solution of the natural frequencies for rectangular corrugated-core sandwich plates with all edges simply-supported is obtained. Furthermore, two special cases of practical interests are discussed in details.
基金Project(11972204) supported by the National Natural Science Foundation of China。
文摘The nonlinear vibration of graphene platelets reinforced composite corrugated(GPRCC)rectangular plates with shallow trapezoidal corrugations is investigated.Since graphene platelets are prone to agglomeration,a multi-layer distribution is adopted here to match the engineering requirements.Firstly,an equivalent composite plate model is obtained,and then nonlinear equations of motion are derived by the von Kármán nonlinear geometric relationship and Hamilton’s principle.Afterwards,the Galerkin method and harmonic balance method are used to obtain an approximate analytical solution.Results show that the unit cell half period,unit cell inclination angle,unit cell height,graphene platelet dispersion pattern and graphene platelet weight fraction and geometry play important roles in the nonlinear vibration of the GPRCC plates.
文摘By using the simplified Reissner's equation of axisymmetric shells of revolution, the nonlinear bending of a corrugated annular plate with a large boundary corrugation and a nondeformable rigid body at the center under compound load are investigated. The nonlinear boundary value problem of the corrugated diaphragm reduces to the nonlinear integral equations by applying the method of Green's function. To solve the integral equations, a so_called interpolated parameter important to prevent divergence is introduced into the iterative format. Computation shows that when loads are small, any value of interpolated parameter can assure the convergence of iteration. Interpolated parameter equal or almost equal to 1 yields a faster convergence rate; when loads are large, interpolated parameter cannot be taken too large in order to assure convergence. The characteristic curves of the corrugated diaphragm for different load combinations are given. The obtained characteristic curves are available for reference to design. It can be concluded that the deflection is larger when the diaphragm is acted by both uniform load and concentrated load than when it is acted only by uniform load. The solution method can be applied to corrugated shells of arbitrary diametral sections.
基金supported by the National Natural Science Foundation of China(Grant Nos.52305535,52122512,and 52188102)the Natural Science Foundation of Hubei Province(Grant No.2021CFA075)。
文摘The surface quality of a corrugated plate directly determines the heat transfer property of the thermal power mechanical apparatus.Traditional detection methods are impractical for real-world production,being slow and destructive.In contrast,the point laser displacement sensor,employing the optical triangle method,emerges as a promising device for assessing parts with variable curvature and highly reflective surfaces.Despite its benefits,high-density sampling by an innate frequency introduces challenges such as data redundancy and a poor signal-to-noise ratio,potentially affecting the efficiency and precision of subsequent data processing.To address these challenges,adjustable frequency data sampling has been developed for this sensor,allowing adaptive sampling for corrugated plate digitization.The process begins with surface digitization to extract discrete points,which are transformed into intersection curves using the B-spline fitting technique.Subsequently,dominant points are identified,considering multigeometric constraints for curvature and arch height.Finally,the sampling signal is adjusted based on the distribution information of dominant points.Comparative results indicate that the proposed method effectively minimizes redundant sampling without compromising the accurate capture of essential geometric features.
基金Supported by National Natural Science Foundation of China(Grant No.51575319)Young Scholars Program of Shandong University(Grant No.2015WLJH31)+1 种基金Major National Science and Technology Project of China(Grant No.2014ZX04012-014)Tai Shan Scholar Foundation,China(Grant No.TS20130922)
文摘The material removal rate and required work- piece surface quality of thin-walled structure milling are greatly limited due to its severe vibration, which is directly associated with the dynamic characteristics of the system. Therefore, the suppression of vibration is an unavoidable problem during milling. A novel partial surface damping method is proposed to modify the mode of the thin walled cantilever plate and to suppress vibration during milling. Based on classical plate theory, the design criterion is analyzed and configuration of the partial surface damper is introduced, in which viscoelastic plate and constraining plate are attached to the surface of the plate to increase the system's natural frequency and loss factor. In order to obtain the energy expression of the cutting system, the Ritz method is used to describe the unknown displacements. Then, with Lagrange's equation, the natural frequency and loss factor are calculated. In addition, the plate is divided into a finite number of square elements, and the regulation of treated position is studied based on theoretic and experimental analysis. The milling tests are conducted to verify its damping performance and the experimentalresults show that with treatment of partial surface damper, the deformation of the hare plate is reduced from 0.27 mm to 0.1 mm, while the vibration amplitude of the bare plate is reduced from 0.08 mm to 0.01 mm. The proposed research provides the instruction to design partial surface damper.