期刊文献+
共找到31,766篇文章
< 1 2 250 >
每页显示 20 50 100
Development of Fixture Layout Optimization for Thin-Walled Parts:A Review
1
作者 Changhui Liu Jing Wang +3 位作者 Binghai Zhou Jianbo Yu Ying Zheng Jianfeng Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期15-39,共25页
An increasing number of researchers have researched fixture layout optimization for thin-walled part assembly during the past decades.However,few papers systematically review these researches.By analyzing existing lit... An increasing number of researchers have researched fixture layout optimization for thin-walled part assembly during the past decades.However,few papers systematically review these researches.By analyzing existing literature,this paper summarizes the process of fixture layout optimization and the methods applied.The process of optimization is made up of optimization objective setting,assembly variation/deformation modeling,and fixture layout optimization.This paper makes a review of the fixture layout for thin-walled parts according to these three steps.First,two different kinds of optimization objectives are introduced.Researchers usually consider in-plane variations or out-of-plane deformations when designing objectives.Then,modeling methods for assembly variation and deformation are divided into two categories:Mechanism-based and data-based methods.Several common methods are discussed respectively.After that,optimization algorithms are reviewed systematically.There are two kinds of optimization algorithms:Traditional nonlinear programming and heuristic algorithms.Finally,discussions on the current situation are provided.The research direction of fixture layout optimization in the future is discussed from three aspects:Objective setting,improving modeling accuracy and optimization algorithms.Also,a new research point for fixture layout optimization is discussed.This paper systematically reviews the research on fixture layout optimization for thin-walled parts,and provides a reference for future research in this field. 展开更多
关键词 thin-walled parts Assembly quality Fixture layout optimization Modeling methods Optimization algorithms
下载PDF
Meter-Scale Thin-Walled Structure with Lattice Infill for Fuel Tank Supporting Component of Satellite:Multiscale Design and Experimental Verification
2
作者 Xiaoyu Zhang Huizhong Zeng +6 位作者 Shaohui Zhang Yan Zhang Mi Xiao Liping Liu Hao Zhou Hongyou Chai Liang Gao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期201-220,共20页
Lightweight thin-walled structures with lattice infill are widely desired in satellite for their high stiffness-to-weight ratio and superior buckling strength resulting fromthe sandwich effect.Such structures can be f... Lightweight thin-walled structures with lattice infill are widely desired in satellite for their high stiffness-to-weight ratio and superior buckling strength resulting fromthe sandwich effect.Such structures can be fabricated bymetallic additive manufacturing technique,such as selective laser melting(SLM).However,the maximum dimensions of actual structures are usually in a sub-meter scale,which results in restrictions on their appliance in aerospace and other fields.In this work,a meter-scale thin-walled structure with lattice infill is designed for the fuel tank supporting component of the satellite by integrating a self-supporting lattice into the thickness optimization of the thin-wall.The designed structure is fabricated by SLM of AlSi10Mg and cold metal transfer welding technique.Quasi-static mechanical tests and vibration tests are both conducted to verify the mechanical strength of the designed large-scale lattice thin-walled structure.The experimental results indicate that themeter-scale thin-walled structure with lattice infill could meet the dimension and lightweight requirements of most spacecrafts. 展开更多
关键词 thin-walled structure lattice infill supporting component selective laser melting SATELLITE
下载PDF
Numerical Analysis of Cold-Formed Thin-Walled Steel Short Columns with Pitting Corrosion during Bridge Construction
3
作者 Hongzhang Wang Jing Guo +3 位作者 Shanjun Yang Chaoheng Cheng Jing Chen Zhihao Chen 《Structural Durability & Health Monitoring》 EI 2024年第2期181-196,共16页
Pitting corrosion is harmful during bridge construction,which will lead to uneven roughness of steel surfaces and reduce the thickness of steel.Hence,the effect of pitting corrosion on the mechanical properties of col... Pitting corrosion is harmful during bridge construction,which will lead to uneven roughness of steel surfaces and reduce the thickness of steel.Hence,the effect of pitting corrosion on the mechanical properties of cold-formed thin-walled steel stub columns is studied,and the empirical formulas are established through regression fitting to predict the ultimate load of web and flange under pitting corrosion.In detail,the failure modes and load-displacement curves of specimens with different locations,area ratios,and depths are obtained through a large number of non-linear finite element analysis.As for the specimens with pitting corrosion on the web,all the specimens are subject to local buckling failure,and the failure mode will not change with pitting corrosion,but the failure location will change with pitting corrosion location;the size,location,and area ratio of pitting corrosion have little influence on the ultimate load of cold-formed thin-walled steel short columns,but the loss rate of pitting corrosion section area has a greater impact on the ultimate bearing capacity.As for the specimen with flange pitting corrosion,the location and area ratio of pitting corrosion have less influence on the ultimate load of cold-formed thin-walled steel short columns,and the section area loss rate has greater influence on the ultimate bearing capacity;the impact of web pitting corrosion on the ultimate load is greater than that of flange pitting corrosion under the same condition of pitting corrosion section area.The prediction formulas of limit load which are suitable for pitting corrosion of web and flange are established,which can provide a reference for performance evaluation of corroded cold-formed thin-walled steel. 展开更多
关键词 Pitting corrosion cold-formed thin-walled steel ultimate load prediction formula short columns
下载PDF
Boundary Element Analysis forModeⅢCrack Problems of Thin-Walled Structures from Micro-to Nano-Scales 被引量:1
4
作者 Bingrui Ju Wenzhen Qu Yan Gu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期2677-2690,共14页
This paper develops a new numerical framework for modeⅢcrack problems of thin-walled structures by integrating multiple advanced techniques in the boundary element literature.The details of special crack-tip elements... This paper develops a new numerical framework for modeⅢcrack problems of thin-walled structures by integrating multiple advanced techniques in the boundary element literature.The details of special crack-tip elements for displacement and stress are derived.An exponential transformation technique is introduced to accurately calculate the nearly singular integral,which is the key task of the boundary element simulation of thin-walled structures.Three numerical experiments with different types of cracks are provided to verify the performance of the present numerical framework.Numerical results demonstrate that the present scheme is valid for modeⅢcrack problems of thin-walled structures with the thickness-to-length ratio in the microscale,even nanoscale,regime. 展开更多
关键词 Boundary element nearly singular integral thin-walled structure mode III crack
下载PDF
Natural Frequency of Planetary Transmission with Thin-Walled Ring Gear on Elastic Supports 被引量:2
5
作者 李剑英 胡青春 +1 位作者 柴牧 彭响方 《Journal of Donghua University(English Edition)》 EI CAS 2017年第3期333-341,共9页
A lumped parameter-rigid elastic coupled dynamic model of two-stage planetary gears for a hybrid car is established through the inter-stage coupled method,in which the supports of the ring gear of planet set Ⅱ are re... A lumped parameter-rigid elastic coupled dynamic model of two-stage planetary gears for a hybrid car is established through the inter-stage coupled method,in which the supports of the ring gear of planet set Ⅱ are represented as an elastic foundation with radial and tangential uniform distributed stiffness,and the ring gear of planet set Ⅱ is modeled as an elastic continuum body. The natural frequencies based on the eigenvalue problem of dynamic model of planetary transmission are solved and the associated vibration modes are discussed. The rules are revealed which are the influences of the ring gear elastic supports stiffness and rim thickness on natural frequencies of planetary transmission. The theoretical analysis indicates that the vibration modes of planetary transmission with thin-walled ring gear on elastic supports are classified into seven types: Ⅰ/Ⅱ stage coupled rotational mode,Ⅰ stage translational mode,Ⅰ stage planet mode,Ⅱ stage translational mode,Ⅱ stage degenerate planet mode,Ⅱ stage distinct planet mode and purely ring gear mode. For each vibration mode, its properties are summarized. The numerical solutions show that the elastic supports stiffness and rim thickness of the ring gear of planet set Ⅱ have different influences on natural frequencies. 展开更多
关键词 natural frequency elastic supports thin-walled ring gear two-stage planetary gears
下载PDF
Sheet Bulk Forming of Thin-Walled Components with External Gearing through Upsetting Using Controllable Deformation Zone Method 被引量:1
6
作者 Xincun Zhuang Meile Liang +2 位作者 Shengfa Zhu Yin Zhu Zhen Zhao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第5期282-295,共14页
Sheet-bulk metal forming(SBMF)is a promising process for manufacturing complex sheet components with functional elements.In this study,the entire forming process for a typical thin-walled component with external geari... Sheet-bulk metal forming(SBMF)is a promising process for manufacturing complex sheet components with functional elements.In this study,the entire forming process for a typical thin-walled component with external gearing is investigated,including sheet forming and bulk forming processes.Deep drawn cups are prepared during sheet forming;subsequently,upsetting is performed on the sidewall to form external gearing.The upsetting method performed is known as upsetting with a controllable deformation zone(U-CDZ).Compared with the conventional upsetting method,a floating counter punch with a counter force is used in the U-CDZ method such that the forming mechanism is changed into the accumulation of the deformation zone instead of deformation throughout the entire sidewall.The effects of the counter force and material flow are investigated to understand the mechanism.The forming quality,i.e.,the formfilling and effective strain distribution,improved,whereas a high forming load is avoided.In addition,a punch with a lock bead is used to prevent folding at the inner corner during the experiment. 展开更多
关键词 Sheet-bulk metal forming thin-walled components External gearing Controllable deformation zone
下载PDF
Geometric Accuracy and Energy Absorption Characteristics of 3D Printed Continuous Ramie Fiber Reinforced Thin-Walled Composite Structures
7
作者 Kui Wang Hao Lin +5 位作者 Antoine Le Duigou Ruijun Cai Yangyu Huang Ping Cheng Honghao Zhang Yong Peng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第6期147-158,共12页
The application of continuous natural fibers as reinforcement in composite thin-walled structures offers a feasible approach to achieve light weight and high strength while remaining environmentally friendly.In additi... The application of continuous natural fibers as reinforcement in composite thin-walled structures offers a feasible approach to achieve light weight and high strength while remaining environmentally friendly.In addition,additive manufacturing technology provides a favorable process foundation for its realization.In this study,the printability and energy absorption properties of 3D printed continuous fiber reinforced thin-walled structures with different configurations were investigated.The results suggested that a low printing speed and a proper layer thickness would mitigate the printing defects within the structures.The printing geometry accuracy of the structures could be further improved by rounding the sharp corners with appropriate radii.This study successfully fabricated structures with vari-ous configurations characterized by high geometric accuracy through printing parameters optimization and path smoothing.Moreover,the compressive property and energy absorption characteristics of the structures under quasi-static axial compression were evaluated and compared.It was found that all studied thin-walled structures exhibited progressive folding deformation patterns during compression.In particular,energy absorption process was achieved through the combined damage modes of plastic deformation,fiber pullout and delamination.Furthermore,the com-parison results showed that the hexagonal structure exhibited the best energy absorption performance.The study revealed the structure-mechanical property relationship of 3D printed continuous fiber reinforced composite thin-walled structures through the analysis of multiscale failure characteristics and load response,which is valuable for broadening their applications. 展开更多
关键词 Additive manufacturing Continuous fiber BIOCOMPOSITE thin-walled structure Geometric accuracy Energy absorption
下载PDF
Experimental Study on Entropy Features in Machining Vibrations of A Thin-Walled Tubular Workpiece
8
作者 Kaibo Lu Xin Wang +2 位作者 Xun Chen Xinyu Pang Fengshou Gu 《Journal of Dynamics, Monitoring and Diagnostics》 2023年第1期61-68,共8页
In machining processes,chatter vibrations are always regarded as one of the major limitations for production quality and efficiency.Accurate and timely monitoring of chatter is helpful to maintain stable machining ope... In machining processes,chatter vibrations are always regarded as one of the major limitations for production quality and efficiency.Accurate and timely monitoring of chatter is helpful to maintain stable machining operations.At present,most chatter monitoring methods are based on the energy level at specified chatter frequencies or frequency bands.However,the spectral features of chatter could change during machining operations due to complexity and time-varying dynamics of the physical machining process.The purpose of this paper is to investigate the time-varying chatter features in turning of thin-walled tubular workpieces from the perspective of entropy.The airborne acoustics was selected as the source of information for machining condition monitoring.First,corresponding to the distinguishing surface topographies relevant to machining conditions,the features of the sound signal emitted during turning of the thin-walled cylindrical workpieces were extracted using the spectral analysis and wavelet packet transform,respectively.It was shown that the dominant vibration frequency as well as the energy distribution could shift with the transition of the machining status.After that,two relative entropy indicators based on the spectrum and the wavelet packet energy were constructed to identify chattering events in turning of the thin-walled tubes.The experimental results demonstrate that the proposed indicators could accurately reflect the transition of machining conditions with high sensitivity and robustness in comparison with the traditional FFT-based methods.The achievement of this study lays the foundations of the online chatter monitoring and control technique for turning of the thin-walled tubular workpieces. 展开更多
关键词 MACHINING chatter relative entropy thin-walled work pieces
下载PDF
Three Dimensional Numerical Simulation of Cup-Shaped Thin-Walled Inner Gear Spin-Forming 被引量:1
9
作者 SUN Ling-yan YE Bang-yan HAO Shao-hua XIA Qin-xiang 《Computer Aided Drafting,Design and Manufacturing》 2009年第2期21-26,共6页
关键词 inner gear spin-forming numerical simulation forming defect spinning force
下载PDF
Research on Cavitation Characteristics and Influencing Factors of Herringbone Gear Pump
10
作者 Jinlong Yang Kwang-Hee Lee Chul-Hee Lee 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2917-2946,共30页
Cavitation is a common issue in pumps,causing a decrease in pump head,a fall in volumetric efficiency,and an intensification of outlet flow pulsation.It is one of the main hazards that affect the regular operation of ... Cavitation is a common issue in pumps,causing a decrease in pump head,a fall in volumetric efficiency,and an intensification of outlet flow pulsation.It is one of the main hazards that affect the regular operation of the pump.Research on pump cavitation mainly focuses on mixed flow pumps,jet pumps,external spur gear pumps,etc.However,there are few cavitation studies on external herringbone gear pumps.In addition,pumps with different working principles significantly differ in the flow and complexity of the internal flow field.Therefore,it is urgent to study the cavitation characteristics of external herringbone gear pumps.Compared with experimentalmethods,visual research and cavitation area identification are achieved through computation fluid dynamic(CFD),and changing the boundary conditions and shape of the gear rotor is easier.The simulation yields a head error of only 0.003%under different grid numbers,and the deviation between experimental and simulation results is less than 5%.The study revealed that cavitation causes flow pulsation at the outlet,and the cavitation serious area is mainly distributed in the meshing gap and meshing area.Cavitation can be inhibited by reducing the speed,increasing the inlet pressure,and changing the helix angle can be achieved.For example,when the inlet pressure is 5 bar,the maximumgas volume fraction in themeshing area is less than 50%.These results provide a reference for optimizing the design and finding the optimal design parameters to reduce or eliminate cavitation. 展开更多
关键词 Herringbone gear pump CAVITATION rotating speed inlet pressure helix angle TwinMesh
下载PDF
Contact Stress Reliability Analysis Model for Cylindrical Gear with Circular Arc Tooth Trace Based on an Improved Metamodel
11
作者 Qi Zhang Zhixin Chen +5 位作者 Yang Wu Guoqi Xiang Guang Wen Xuegang Zhang Yongchun Xie Guangchun Yang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期593-619,共27页
Although there is currently no unified standard theoretical formula for calculating the contact stress of cylindrical gears with a circular arc tooth trace(referred to as CATT gear),a mathematical model for determinin... Although there is currently no unified standard theoretical formula for calculating the contact stress of cylindrical gears with a circular arc tooth trace(referred to as CATT gear),a mathematical model for determining the contact stress of CATT gear is essential for studying how parameters affect its contact stress and building the contact stress limit state equation for contact stress reliability analysis.In this study,a mathematical relationship between design parameters and contact stress is formulated using the KrigingMetamodel.To enhance the model’s accuracy,we propose a new hybrid algorithm that merges the genetic algorithm with the Quantum Particle Swarm optimization algorithm,leveraging the strengths of each.Additionally,the“parental inheritance+self-learning”optimization model is used to fine-tune the KrigingMetamodel’s parameters.Following this,amathematicalmodel for calculating the contact stress of Variable Hyperbolic Circular-Arc-Tooth-Trace(VH-CATT)gears using the optimized Kriging model was developed.We then examined how different gear parameters affect the VH-CATT gears’contact stress.Our simulation results show:(1)Improvements in R2,RMSE,and RMAE.R2 rose from0.9852 to 0.9974(a 1.22%increase),nearing 1,suggesting the optimized Kriging Metamodel’s global error is minimized.Meanwhile,RMSE dropped from3.9210 to 1.6492,a decline of 57.94%.The global error of the GA-IQPSO-Kriging algorithm was also reduced,with RMAE decreasing by 58.69%from 0.1823 to 0.0753,showing the algorithm’s enhanced precision.In a comparison of ten experimental groups selected randomly,the GA-IQPSO-Kriging and FEM-based contact analysis methods were used to measure contact stress.Results revealed a maximum error of 12.11667 MPA,which represents 2.85%of the real value.(2)Several factors,including the pressure angle,tooth width,modulus,and tooth line radius,are inversely related to contact stress.The descending order of their impact on the contact stress is:tooth line radius>modulus>pressure angle>tooth width.(3)Complex interactions are noted among various parameters.Specifically,when the tooth line radius interacts with parameters such as pressure angle,tooth width,and modulus,the resulting stress contour is nonlinear,showcasing amultifaceted contour plane.However,when tooth width,modulus,and pressure angle interact,the stress contour is nearly linear,and the contour plane is simpler,indicating a weaker coupling among these factors. 展开更多
关键词 CATT gear contact stress finite element method METAMODEL hybrid algorithm influencing factors
下载PDF
Application of Isogeometric Analysis Method in Three-Dimensional Gear Contact Analysis
12
作者 Long Chen Yan Yu +2 位作者 Yanpeng Shang Zhonghou Wang Jing Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期817-846,共30页
Gears are pivotal in mechanical drives,and gear contact analysis is a typically difficult problem to solve.Emerging isogeometric analysis(IGA)methods have developed new ideas to solve this problem.In this paper,a thre... Gears are pivotal in mechanical drives,and gear contact analysis is a typically difficult problem to solve.Emerging isogeometric analysis(IGA)methods have developed new ideas to solve this problem.In this paper,a threedimensional body parametric gear model of IGA is established,and a theoretical formula is derived to realize single-tooth contact analysis.Results were benchmarked against those obtained from commercial software utilizing the finite element analysis(FEA)method to validate the accuracy of our approach.Our findings indicate that the IGA-based contact algorithmsuccessfullymet theHertz contact test.When juxtaposed with the FEA approach,the IGAmethod demonstrated fewer node degrees of freedomand reduced computational units,all whilemaintaining comparable accuracy.Notably,the IGA method appeared to exhibit consistency in analysis accuracy irrespective of computational unit density,and also significantlymitigated non-physical oscillations in contact stress across the tooth width.This underscores the prowess of IGA in contact analysis.In conclusion,IGA emerges as a potent tool for addressing contact analysis challenges and holds significant promise for 3D gear modeling,simulation,and optimization of various mechanical components. 展开更多
关键词 Contact analysis involute gear isogeometric analysis finite element analysis
下载PDF
Stability Analysis of Nonlinear Models of Nose Landing Gear Shimmy
13
作者 Jiacai Zhou Yanying Zhao +1 位作者 Qiqi Li Longhua Zhou 《World Journal of Engineering and Technology》 2024年第1期103-116,共14页
Shimmy can reduce the service life of the nose landing gear, affect ride comfort, and even cause fuselage damage leading to aircraft crashes. Taking a light aircraft as the research object, the torsional freedom of la... Shimmy can reduce the service life of the nose landing gear, affect ride comfort, and even cause fuselage damage leading to aircraft crashes. Taking a light aircraft as the research object, the torsional freedom of landing gear around strut axis and lateral deformation of tire are considered. Since the landing gear shimmy is a nonlinear system, a nonlinear mechanical model of the front landing gear shimmy is established. Sobol index method is proposed to analyze the influence of structural parameters on the stability region of the nose landing gear, and Routh-Huritz criterion is used to verify the reliability of the analysis results of Sobol index method. We analyse the effect of torsional stiffness of strut, caster length, rated initial tire inflation pressure, rake angle, and vertical force on the stability region of theront landing gear. And the research shows that the optimization of the torsional stiffness of the strut and the caster length of the nose landing gear should be emphasized, and the influence of vertical force on the stability region of the nose landing gear should be paid attention to. 展开更多
关键词 Nose Landing gear Shimmy Oscillations STABILITY Sobol Index Method
下载PDF
Research on Instantaneous Angular Speed Signal Separation Method for Planetary Gear Fault Diagnosis
14
作者 Xinkai Song Yibao Zhang Shuo Zhang 《Modern Mechanical Engineering》 2024年第2期39-50,共12页
Planetary gear train is a critical transmission component in large equipment such as helicopters and wind turbines. Conducting damage perception of planetary gear trains is of great significance for the safe operation... Planetary gear train is a critical transmission component in large equipment such as helicopters and wind turbines. Conducting damage perception of planetary gear trains is of great significance for the safe operation of equipment. Existing methods for damage perception of planetary gear trains mainly rely on linear vibration analysis. However, these methods based on linear vibration signal analysis face challenges such as rich vibration sources, complex signal coupling and modulation mechanisms, significant influence of transmission paths, and difficulties in separating damage information. This paper proposes a method for separating instantaneous angular speed (IAS) signals for planetary gear fault diagnosis. Firstly, this method obtains encoder pulse signals through a built-in encoder. Based on this, it calculates the IAS signals using the Hilbert transform, and obtains the time-domain synchronous average signal of the IAS of the planetary gear through time-domain synchronous averaging technology, thus realizing the fault diagnosis of the planetary gear train. Experimental results validate the effectiveness of the calculated IAS signals, demonstrating that the time-domain synchronous averaging technology can highlight impact characteristics, effectively separate and extract fault impacts, greatly reduce the testing cost of experiments, and provide an effective tool for the fault diagnosis of planetary gear trains. 展开更多
关键词 Planetary gear Train Encoder Signal Instantaneous Angular Speed Signal Time-Domain Synchronous Averaging Fault Diagnosis
下载PDF
GEOMETRICALLY NONLINEAR FINITE ELEMENT MODEL OF SPATIAL THIN-WALLED BEAMS WITH GENERAL OPEN CROSS SECTION 被引量:11
15
作者 Xiaofeng Wang Qingshan Yang 《Acta Mechanica Solida Sinica》 SCIE EI 2009年第1期64-72,共9页
Based on the theory of Timoshenko and thin-walled beams, a new finite element model of spatial thin-walled beams with general open cross sections is presented in the paper, in which several factors are included such a... Based on the theory of Timoshenko and thin-walled beams, a new finite element model of spatial thin-walled beams with general open cross sections is presented in the paper, in which several factors are included such as lateral shear deformation, warp generated by nonuni- form torsion and second-order shear stress, coupling of flexure and torsion, and large displacement with small strain. With an additional internal node in the element, the element stiffness matrix is deduced by incremental virtual work in updated Lagrangian (UL) formulation. Numerical examples demonstrate that the presented model well describes the geometrically nonlinear property of spatial thin-walled beams. 展开更多
关键词 spatial beams thin-walled structures geometrically nonlinear finite element stiffness matrix
下载PDF
Fundamentals and Processes of Fluid Pressure Forming Technology for Complex Thin-Walled Components 被引量:16
16
作者 Shijian Yuan 《Engineering》 SCIE EI 2021年第3期358-366,共9页
A new generation of fluid pressure forming technology has been developed for the three typical structures of tubes,sheets,and shells,and hard-to-deform material components that are urgently needed for aerospace,aircra... A new generation of fluid pressure forming technology has been developed for the three typical structures of tubes,sheets,and shells,and hard-to-deform material components that are urgently needed for aerospace,aircraft,automobile,and high-speed train industries.in this paper,an over all review is introduced on the state of the art in fundamentals and processes for lower-pressure hydroforming of tubular components,double-sided pressure hydroforming of sheet components,die-less hydroforming of ellipsoidai shells,and dual hardening hot medium forming af hard-to-deform materiais Particular attention is paid to deformation behavior,stress state adjustment,defect prevention,and typical applications.In addition,future development directions of fluid pressure forming technology are discussed,including hyper lower-loading forming for ultra-large non-uniform components,precision for ming for intermetallic compound and high-entropy alloy components,intelligent process and equipment,and precise finite element simulation of inhomogeneous and strong anisotropic thin shells. 展开更多
关键词 Fluid pressure forming HYDROFORMING Hot medium pressure forming thin-walled components Stress state
下载PDF
Physical Simulation of Mold-Filling Processing of Thin-Walled Castings under Traveling Magnetic Field 被引量:7
17
作者 YanqingSU TiejunZHANG +4 位作者 JingjieGUO HongshengDING WeishengBI JunJIA HengzhiFU 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第1期27-30,共4页
Mold-filling process of thin-walled castings under the condition of traveling magnetic field has been studied by physical simulation method using gallium melt and fast speed photography. Flow morphology and its format... Mold-filling process of thin-walled castings under the condition of traveling magnetic field has been studied by physical simulation method using gallium melt and fast speed photography. Flow morphology and its formation mechanism were obtained and discussed for thin-walled casting. The influences of magnetic field density on the filling ability, filling velocity and mold filling time have been studied. The differences in filling capability between gravity casting and casting under the traveling magnetic field have been compared. The results indicate that the mold filling ability of the gallium melt increases greatly under the condition of traveling magnetic field; the filling time is shortened from 18 s under gravity field to 3 s under the traveling magnetic field and average flow rate of the melt increases from 1.6 to 8.68 cm3/s; the change law of the cross-section morphology of the gallium melt during the mold filling is that at first, the cross-section area does not change, then it decreases gradually. When the front of the melt reaches the end of the mold cavity, the front melt will backfill the mold; the wider the width of mold cavity, the better the mold filling ability. The mold filling ability of gallium melt in mold with upper magnetic conductor is better than that without upper magnetic conductor. 展开更多
关键词 Traveling magnetic field Mould-filling thin-walled casting Physical simulation
下载PDF
Study on buffering performance of thin-walled metal tube with different angles 被引量:3
18
作者 Qun Liu Wen-tao Wang Wen-feng Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2018年第6期702-708,共7页
High frequency shock load is often generated during pyrotechnic device working, which is detrimental to spacecraft structures and electric devices. Therefore, it is valuable to reduce the shock load in pyrotechnic dev... High frequency shock load is often generated during pyrotechnic device working, which is detrimental to spacecraft structures and electric devices. Therefore, it is valuable to reduce the shock load in pyrotechnic device design. Actually, there are several ways to decrease pyroshock loads, such as reduction of powder,installation of buffering structure, insulation of damageable devices, and so on. Considered assuring the function of pyrotechnic device and minimum of structure modification, shock absorbing structure is more propitious to be introduced in pyrotechnic device. In this paper, based on the method of thinwalled metal tube diameter-expanding, a thin-walled tube shock buffering structure was designed on a separate bolt. Built on the simplified structure of a separate bolt, the model of cone piston impacting thin-walled tube absorber was established, and the thin-walled tube shock absorbing characteristics and the relation between cone angles and absorber performance were analyzed. The results showed that the change of buffering force of thin-walled tube could be divided into four phases, and each phase was correspondent to the cone piston structure. In addition, as the cone angle increases, the max shock acceleration changes in the style of decrease-increase-decrease-increase, which is the result of coupled effects of cone piston max enter depth, buffering force and energy loss. In short, these results could establish the relationships between thin-walled tube absorbing performance and its structure, which is of significance to develop low-shock pyrotechnic device. 展开更多
关键词 Pyroshock Shock absorbing thin-walled METAL TUBE
下载PDF
Deformation Calculation of Cross-section Based on Virtual Force in Thin-walled Tube Bending Process 被引量:5
19
作者 LIU Jingyao TANG Chengtong NING Ruxin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第5期696-701,共6页
Cross-section deformation is one of important factors affecting the quality of tube formation, and the tube's capability of transporting liquid and gas will be reduced because of the cross-section ellipse deformation... Cross-section deformation is one of important factors affecting the quality of tube formation, and the tube's capability of transporting liquid and gas will be reduced because of the cross-section ellipse deformation due to the effect of shear load in plastic bending process. When the tube is bent, the extrados-wall bears the tension stress and the intrados-wall bears the compression stress, synchronously the cross-section is affected by the circumferential stress. According to the above, the distribution function and curve of tangential stress can be obtained according to force balance differential equations on circumferential direction and Trasca rule. Subsequently the real state and virtual state moment equations were established, a new method was presented adopting the virtual principle of deformation system to calculate the x-axis and y-axis displacement of arbitrary point on cross-section. So the major and minor axes of deformed cross-section can be calculated according to the displacements of each point, and the variety value of major and minor axes will be obtained further. Finally the theoretical calculating result is compared with NC tube rotary-bending experiment results to verify the rationality of theoretical analysis, and the cross-section deformation rule of thin-walled tube can be received. 展开更多
关键词 thin-walled tube stress analysis major and minor axes cross-section deformation virtual force
下载PDF
Optimizing the Qusai-static Folding and Deploying of Thin-Walled Tube Flexure Hinges with Double Slots 被引量:6
20
作者 YANG Hui DENG Zongquan +2 位作者 LIU Rongqiang WANG Yan GUO Hongwei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第2期279-286,共8页
The thin-walled tube flexure(TWTF) hinges have important potential application value in the deployment mechanisms of satellite and solar array, but the optimal design of the TWTF hinges haven't been completely solv... The thin-walled tube flexure(TWTF) hinges have important potential application value in the deployment mechanisms of satellite and solar array, but the optimal design of the TWTF hinges haven't been completely solved, which restricts their applications. An optimal design method for the qusai-static folding and deploying of TWTF hinges with double slots is presented based on the response surface theory. Firstly, the full factorial method is employed to design of the experiments. Then, the finite element models of the TWTF hinges with double slots are constructed to simulate the qusai-static folding and deploying non-linear analysis. What's more, the mathematical model of the TWTF flexure hinge quasi-static folding and deploying properties are derived by the response surface method. Considering of small mass and high stability, the peak moment of quasi-static folding and deploying as well as the lightless are set as the objectives to get the optimal performances. The relative errors of the objectives between the optimal design results and the FE analysis results are less than 7%, which demonstrates the precision of the surrogate models. Lastly, the parameter study shows that both the slots length and the slots width both have significant effects to the peak moment of quasi-static folding and deploying of TWTF hinges with double slots. However, the maximum Mises stress of quasi-static folding is more sensitive to the slots length than the slots width. The proposed research can be applied to optimize other thin-walled flexure hinges under quasi-static folding and deploying, which is of great importance to design of flexure hinges with high stability and low stress. 展开更多
关键词 design optimization quasi-static folding and deploying flexure hinges thin-walled tube response surface method numerical simulation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部