期刊文献+
共找到121篇文章
< 1 2 7 >
每页显示 20 50 100
Development of Fixture Layout Optimization for Thin-Walled Parts:A Review
1
作者 Changhui Liu Jing Wang +3 位作者 Binghai Zhou Jianbo Yu Ying Zheng Jianfeng Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期15-39,共25页
An increasing number of researchers have researched fixture layout optimization for thin-walled part assembly during the past decades.However,few papers systematically review these researches.By analyzing existing lit... An increasing number of researchers have researched fixture layout optimization for thin-walled part assembly during the past decades.However,few papers systematically review these researches.By analyzing existing literature,this paper summarizes the process of fixture layout optimization and the methods applied.The process of optimization is made up of optimization objective setting,assembly variation/deformation modeling,and fixture layout optimization.This paper makes a review of the fixture layout for thin-walled parts according to these three steps.First,two different kinds of optimization objectives are introduced.Researchers usually consider in-plane variations or out-of-plane deformations when designing objectives.Then,modeling methods for assembly variation and deformation are divided into two categories:Mechanism-based and data-based methods.Several common methods are discussed respectively.After that,optimization algorithms are reviewed systematically.There are two kinds of optimization algorithms:Traditional nonlinear programming and heuristic algorithms.Finally,discussions on the current situation are provided.The research direction of fixture layout optimization in the future is discussed from three aspects:Objective setting,improving modeling accuracy and optimization algorithms.Also,a new research point for fixture layout optimization is discussed.This paper systematically reviews the research on fixture layout optimization for thin-walled parts,and provides a reference for future research in this field. 展开更多
关键词 thin-walled parts Assembly quality Fixture layout optimization Modeling methods Optimization algorithms
下载PDF
Machining Deformation Prediction of Thin-Walled Part Based on Finite Element Analysis 被引量:2
2
作者 Hongxiang Wang Yabin Tang +1 位作者 Zhanshan Liu Shi Gao 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2015年第4期47-54,共8页
For the problems of machining distortion and the low accepted product during milling process of aluminum alloy thin-walled part,this paper starts from the analysis of initial stress state in material preparation proce... For the problems of machining distortion and the low accepted product during milling process of aluminum alloy thin-walled part,this paper starts from the analysis of initial stress state in material preparation process,the change process of residual stress within aluminum alloy pre-stretching plate is researched,and the distribution law of residual stress is indirectly obtained by delamination measurement methods,so the effect of internal residual stress on machining distortion is considered before finite element simulation. Considering the coupling effects of residual stress,dynamic milling force and clamping force on machining distortion,a threedimensional dynamic finite element simulation model is established,and the whole cutting process is simulated from the blank material to finished product,a novel prediction method is proposed,which can availably predict the machining distortion accurately. The machining distortion state of the thin-walled part is achieved at different processing steps,the machining distortion of the thin-walled part is detected with three coordinate measuring machine tools,show that the simulation results are in good agreement with experimental data. 展开更多
关键词 thin-walled part machining deformation residual stress aluminum alloy finite element simulation
下载PDF
Optimization of material removal strategy in milling of thin-walled parts 被引量:1
3
作者 李继博 张定华 吴宝海 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第5期108-112,共5页
The optimal material removal strategy can improve a geometric accuracy and surface quality of thin-walled parts such as turbine blades and blisks in high-speed ball end milling.The dominant conception in the material ... The optimal material removal strategy can improve a geometric accuracy and surface quality of thin-walled parts such as turbine blades and blisks in high-speed ball end milling.The dominant conception in the material removal represents the persistence of the workpiece cutting stiffness in operation to advance the machining accuracy and machining efficiency.On the basis of theoretical models of cutting stiffness and deformation,finite element method (FEM) is applied to calculate the virtual displacements of the thin-walled part under given virtual loads at the nodes of the discrete surface.With the reference of deformation distribution of the thin-walled part,the milling material removal strategy is optimized to make the best of bracing ability of still uncut material.This material removal method is summarized as the lower stiffness region removed firstly and the higher stiffness region removed next.Analytical and experimental results show the availability,which has been verified by the blade machining test in this work,for thin-walled parts to reduce cutting deformation and meliorate machining quality. 展开更多
关键词 surface stiffness distribution end milling thin-walled parts removal strategy cutting stiffness
下载PDF
Initial residual stress experiment and simulation of thin-walled parts for layer removal method
4
作者 刘宇男 Wang Min +2 位作者 Zan Tao Gao Xiangsheng Zhang Yanlin 《High Technology Letters》 EI CAS 2018年第1期75-81,共7页
Thin-walled parts have low stiffness characteristic. Initial residual stress of thin-walled blanks is an important influence factor on machining stability. The present work is to verify the feasibility of an initial r... Thin-walled parts have low stiffness characteristic. Initial residual stress of thin-walled blanks is an important influence factor on machining stability. The present work is to verify the feasibility of an initial residual stress measurement of layer removal method. According to initial residual stress experiment for casting ZL205 A aluminum alloy tapered thin-walled blank by a common method,namely hole-drilling method,three finite element models with initial residual stress are established to simulate the layer removal method in ABAQUS and ANSYS software. By analyzing the results of simulation and experiments,the cutting residual stress inlayer removal process has a significant effect on measurement results. Reducing cutting residual stress is helpful to improve accuracy of layer removal method. 展开更多
关键词 INITIAL RESIDUAL stress thin-walled PARTS layer.removal method FINITE element
下载PDF
Meter-Scale Thin-Walled Structure with Lattice Infill for Fuel Tank Supporting Component of Satellite:Multiscale Design and Experimental Verification
5
作者 Xiaoyu Zhang Huizhong Zeng +6 位作者 Shaohui Zhang Yan Zhang Mi Xiao Liping Liu Hao Zhou Hongyou Chai Liang Gao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期201-220,共20页
Lightweight thin-walled structures with lattice infill are widely desired in satellite for their high stiffness-to-weight ratio and superior buckling strength resulting fromthe sandwich effect.Such structures can be f... Lightweight thin-walled structures with lattice infill are widely desired in satellite for their high stiffness-to-weight ratio and superior buckling strength resulting fromthe sandwich effect.Such structures can be fabricated bymetallic additive manufacturing technique,such as selective laser melting(SLM).However,the maximum dimensions of actual structures are usually in a sub-meter scale,which results in restrictions on their appliance in aerospace and other fields.In this work,a meter-scale thin-walled structure with lattice infill is designed for the fuel tank supporting component of the satellite by integrating a self-supporting lattice into the thickness optimization of the thin-wall.The designed structure is fabricated by SLM of AlSi10Mg and cold metal transfer welding technique.Quasi-static mechanical tests and vibration tests are both conducted to verify the mechanical strength of the designed large-scale lattice thin-walled structure.The experimental results indicate that themeter-scale thin-walled structure with lattice infill could meet the dimension and lightweight requirements of most spacecrafts. 展开更多
关键词 thin-walled structure lattice infill supporting component selective laser melting SATELLITE
下载PDF
Numerical Analysis of Cold-Formed Thin-Walled Steel Short Columns with Pitting Corrosion during Bridge Construction
6
作者 Hongzhang Wang Jing Guo +3 位作者 Shanjun Yang Chaoheng Cheng Jing Chen Zhihao Chen 《Structural Durability & Health Monitoring》 EI 2024年第2期181-196,共16页
Pitting corrosion is harmful during bridge construction,which will lead to uneven roughness of steel surfaces and reduce the thickness of steel.Hence,the effect of pitting corrosion on the mechanical properties of col... Pitting corrosion is harmful during bridge construction,which will lead to uneven roughness of steel surfaces and reduce the thickness of steel.Hence,the effect of pitting corrosion on the mechanical properties of cold-formed thin-walled steel stub columns is studied,and the empirical formulas are established through regression fitting to predict the ultimate load of web and flange under pitting corrosion.In detail,the failure modes and load-displacement curves of specimens with different locations,area ratios,and depths are obtained through a large number of non-linear finite element analysis.As for the specimens with pitting corrosion on the web,all the specimens are subject to local buckling failure,and the failure mode will not change with pitting corrosion,but the failure location will change with pitting corrosion location;the size,location,and area ratio of pitting corrosion have little influence on the ultimate load of cold-formed thin-walled steel short columns,but the loss rate of pitting corrosion section area has a greater impact on the ultimate bearing capacity.As for the specimen with flange pitting corrosion,the location and area ratio of pitting corrosion have less influence on the ultimate load of cold-formed thin-walled steel short columns,and the section area loss rate has greater influence on the ultimate bearing capacity;the impact of web pitting corrosion on the ultimate load is greater than that of flange pitting corrosion under the same condition of pitting corrosion section area.The prediction formulas of limit load which are suitable for pitting corrosion of web and flange are established,which can provide a reference for performance evaluation of corroded cold-formed thin-walled steel. 展开更多
关键词 Pitting corrosion cold-formed thin-walled steel ultimate load prediction formula short columns
下载PDF
Boundary Element Analysis forModeⅢCrack Problems of Thin-Walled Structures from Micro-to Nano-Scales 被引量:1
7
作者 Bingrui Ju Wenzhen Qu Yan Gu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期2677-2690,共14页
This paper develops a new numerical framework for modeⅢcrack problems of thin-walled structures by integrating multiple advanced techniques in the boundary element literature.The details of special crack-tip elements... This paper develops a new numerical framework for modeⅢcrack problems of thin-walled structures by integrating multiple advanced techniques in the boundary element literature.The details of special crack-tip elements for displacement and stress are derived.An exponential transformation technique is introduced to accurately calculate the nearly singular integral,which is the key task of the boundary element simulation of thin-walled structures.Three numerical experiments with different types of cracks are provided to verify the performance of the present numerical framework.Numerical results demonstrate that the present scheme is valid for modeⅢcrack problems of thin-walled structures with the thickness-to-length ratio in the microscale,even nanoscale,regime. 展开更多
关键词 Boundary element nearly singular integral thin-walled structure mode III crack
下载PDF
Geometric Accuracy and Energy Absorption Characteristics of 3D Printed Continuous Ramie Fiber Reinforced Thin-Walled Composite Structures
8
作者 Kui Wang Hao Lin +5 位作者 Antoine Le Duigou Ruijun Cai Yangyu Huang Ping Cheng Honghao Zhang Yong Peng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第6期147-158,共12页
The application of continuous natural fibers as reinforcement in composite thin-walled structures offers a feasible approach to achieve light weight and high strength while remaining environmentally friendly.In additi... The application of continuous natural fibers as reinforcement in composite thin-walled structures offers a feasible approach to achieve light weight and high strength while remaining environmentally friendly.In addition,additive manufacturing technology provides a favorable process foundation for its realization.In this study,the printability and energy absorption properties of 3D printed continuous fiber reinforced thin-walled structures with different configurations were investigated.The results suggested that a low printing speed and a proper layer thickness would mitigate the printing defects within the structures.The printing geometry accuracy of the structures could be further improved by rounding the sharp corners with appropriate radii.This study successfully fabricated structures with vari-ous configurations characterized by high geometric accuracy through printing parameters optimization and path smoothing.Moreover,the compressive property and energy absorption characteristics of the structures under quasi-static axial compression were evaluated and compared.It was found that all studied thin-walled structures exhibited progressive folding deformation patterns during compression.In particular,energy absorption process was achieved through the combined damage modes of plastic deformation,fiber pullout and delamination.Furthermore,the com-parison results showed that the hexagonal structure exhibited the best energy absorption performance.The study revealed the structure-mechanical property relationship of 3D printed continuous fiber reinforced composite thin-walled structures through the analysis of multiscale failure characteristics and load response,which is valuable for broadening their applications. 展开更多
关键词 Additive manufacturing Continuous fiber BIOCOMPOSITE thin-walled structure Geometric accuracy Energy absorption
下载PDF
Experimental Study on Entropy Features in Machining Vibrations of A Thin-Walled Tubular Workpiece
9
作者 Kaibo Lu Xin Wang +2 位作者 Xun Chen Xinyu Pang Fengshou Gu 《Journal of Dynamics, Monitoring and Diagnostics》 2023年第1期61-68,共8页
In machining processes,chatter vibrations are always regarded as one of the major limitations for production quality and efficiency.Accurate and timely monitoring of chatter is helpful to maintain stable machining ope... In machining processes,chatter vibrations are always regarded as one of the major limitations for production quality and efficiency.Accurate and timely monitoring of chatter is helpful to maintain stable machining operations.At present,most chatter monitoring methods are based on the energy level at specified chatter frequencies or frequency bands.However,the spectral features of chatter could change during machining operations due to complexity and time-varying dynamics of the physical machining process.The purpose of this paper is to investigate the time-varying chatter features in turning of thin-walled tubular workpieces from the perspective of entropy.The airborne acoustics was selected as the source of information for machining condition monitoring.First,corresponding to the distinguishing surface topographies relevant to machining conditions,the features of the sound signal emitted during turning of the thin-walled cylindrical workpieces were extracted using the spectral analysis and wavelet packet transform,respectively.It was shown that the dominant vibration frequency as well as the energy distribution could shift with the transition of the machining status.After that,two relative entropy indicators based on the spectrum and the wavelet packet energy were constructed to identify chattering events in turning of the thin-walled tubes.The experimental results demonstrate that the proposed indicators could accurately reflect the transition of machining conditions with high sensitivity and robustness in comparison with the traditional FFT-based methods.The achievement of this study lays the foundations of the online chatter monitoring and control technique for turning of the thin-walled tubular workpieces. 展开更多
关键词 MACHINING chatter relative entropy thin-walled work pieces
下载PDF
Plastic wrinkling prediction in thin-walled part forming process: A review 被引量:5
10
作者 Liu Nan Yang He +1 位作者 Li Heng Yan Siliang 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第1期1-14,共14页
The precision forming of thin-walled components has been urgently needed in aviation and aerospace field. However, the wrinkling induced by the compressive instability is one of the major defects in thin-walled part f... The precision forming of thin-walled components has been urgently needed in aviation and aerospace field. However, the wrinkling induced by the compressive instability is one of the major defects in thin-walled part forming. The initiation and growth of the wrinkles are interac- tively affected by many factors such as stress states, mechanical properties of the material, geometry of the workpiece and boundary conditions. Especially when the forming process involves compli- cated boundary conditions such as multi-dies constrains, the perturbation of clearances between workpiece and dies and the contact conditions changing in time and space, etc., the predication of the wrinkling is further complicated. In this paper, the cu.rent prediction methods were summa- rized including the static equilibrium method, the energy method, the initial imperfection method, the eigenvalue buckling analysis method, the static-implicit finite element method and the dynamic- explicit finite element method. Then, a systematical comparison and summary of these methods in terms of their advantages and limitations are presented. By using a combination of explicit FE method, initial imperfection and energy conservation, a hybrid method is recommended to predict plastic wrinkling in thin-walled part forming. Finally, considering the urgent requirements of com- plex thin-walled structures' part in aviation and aerospace field, the trends and challenges in wrin- kling prediction under complicated boundary conditions are presented. 展开更多
关键词 Explicit algorithm Hybrid method IMPERFECTIONS Implicit algorithm thin-walled part forming WRINKLING
原文传递
Fixturing technology and system for thin-walled parts machining:a review
11
作者 Haibo LIU Chengxin WANG +3 位作者 Te LI Qile BO Kuo LIU Yongqing WANG 《Frontiers of Mechanical Engineering》 SCIE CSCD 2022年第4期1-32,共32页
During the overall processing of thin-walled parts(TWPs),the guaranteed capability of the machining process and quality is determined by fixtures.Therefore,reliable fixtures suitable for the structure and machining pr... During the overall processing of thin-walled parts(TWPs),the guaranteed capability of the machining process and quality is determined by fixtures.Therefore,reliable fixtures suitable for the structure and machining process of TWP are essential.In this review,the key role of fixtures in the manufacturing system is initially discussed.The main problems in machining and workholding due to the characteristics of TWP are then analyzed in detail.Afterward,the definition of TWP fixtures is reinterpreted from narrow and broad perspectives.Fixture functions corresponding to the issues of machining and workholding are then clearly stated.Fixture categories are classified systematically according to previous research achievements,and the operation mode,functional characteristics,and structure of each fixture are comprehensively described.The function and execution mode of TWP fixtures are then systematically summarized and analyzed,and the functions of various TWP fixtures are evaluated.Some directions for future research on TWP fixtures technology are also proposed.The main purpose of this review is to provide some reference and guidance for scholars to examine TWP fixtures. 展开更多
关键词 thin-walled part(TWP) FIXTURE MACHINING fixture categories fixture function
原文传递
Fundamentals and Processes of Fluid Pressure Forming Technology for Complex Thin-Walled Components 被引量:13
12
作者 Shijian Yuan 《Engineering》 SCIE EI 2021年第3期358-366,共9页
A new generation of fluid pressure forming technology has been developed for the three typical structures of tubes,sheets,and shells,and hard-to-deform material components that are urgently needed for aerospace,aircra... A new generation of fluid pressure forming technology has been developed for the three typical structures of tubes,sheets,and shells,and hard-to-deform material components that are urgently needed for aerospace,aircraft,automobile,and high-speed train industries.in this paper,an over all review is introduced on the state of the art in fundamentals and processes for lower-pressure hydroforming of tubular components,double-sided pressure hydroforming of sheet components,die-less hydroforming of ellipsoidai shells,and dual hardening hot medium forming af hard-to-deform materiais Particular attention is paid to deformation behavior,stress state adjustment,defect prevention,and typical applications.In addition,future development directions of fluid pressure forming technology are discussed,including hyper lower-loading forming for ultra-large non-uniform components,precision for ming for intermetallic compound and high-entropy alloy components,intelligent process and equipment,and precise finite element simulation of inhomogeneous and strong anisotropic thin shells. 展开更多
关键词 Fluid pressure forming HYDROFORMING Hot medium pressure forming thin-walled components Stress state
下载PDF
GEOMETRICALLY NONLINEAR FINITE ELEMENT MODEL OF SPATIAL THIN-WALLED BEAMS WITH GENERAL OPEN CROSS SECTION 被引量:11
13
作者 Xiaofeng Wang Qingshan Yang 《Acta Mechanica Solida Sinica》 SCIE EI 2009年第1期64-72,共9页
Based on the theory of Timoshenko and thin-walled beams, a new finite element model of spatial thin-walled beams with general open cross sections is presented in the paper, in which several factors are included such a... Based on the theory of Timoshenko and thin-walled beams, a new finite element model of spatial thin-walled beams with general open cross sections is presented in the paper, in which several factors are included such as lateral shear deformation, warp generated by nonuni- form torsion and second-order shear stress, coupling of flexure and torsion, and large displacement with small strain. With an additional internal node in the element, the element stiffness matrix is deduced by incremental virtual work in updated Lagrangian (UL) formulation. Numerical examples demonstrate that the presented model well describes the geometrically nonlinear property of spatial thin-walled beams. 展开更多
关键词 spatial beams thin-walled structures geometrically nonlinear finite element stiffness matrix
下载PDF
Optimizing the Qusai-static Folding and Deploying of Thin-Walled Tube Flexure Hinges with Double Slots 被引量:6
14
作者 YANG Hui DENG Zongquan +2 位作者 LIU Rongqiang WANG Yan GUO Hongwei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第2期279-286,共8页
The thin-walled tube flexure(TWTF) hinges have important potential application value in the deployment mechanisms of satellite and solar array, but the optimal design of the TWTF hinges haven't been completely solv... The thin-walled tube flexure(TWTF) hinges have important potential application value in the deployment mechanisms of satellite and solar array, but the optimal design of the TWTF hinges haven't been completely solved, which restricts their applications. An optimal design method for the qusai-static folding and deploying of TWTF hinges with double slots is presented based on the response surface theory. Firstly, the full factorial method is employed to design of the experiments. Then, the finite element models of the TWTF hinges with double slots are constructed to simulate the qusai-static folding and deploying non-linear analysis. What's more, the mathematical model of the TWTF flexure hinge quasi-static folding and deploying properties are derived by the response surface method. Considering of small mass and high stability, the peak moment of quasi-static folding and deploying as well as the lightless are set as the objectives to get the optimal performances. The relative errors of the objectives between the optimal design results and the FE analysis results are less than 7%, which demonstrates the precision of the surrogate models. Lastly, the parameter study shows that both the slots length and the slots width both have significant effects to the peak moment of quasi-static folding and deploying of TWTF hinges with double slots. However, the maximum Mises stress of quasi-static folding is more sensitive to the slots length than the slots width. The proposed research can be applied to optimize other thin-walled flexure hinges under quasi-static folding and deploying, which is of great importance to design of flexure hinges with high stability and low stress. 展开更多
关键词 design optimization quasi-static folding and deploying flexure hinges thin-walled tube response surface method numerical simulation
下载PDF
Physical Simulation of Mold-Filling Processing of Thin-Walled Castings under Traveling Magnetic Field 被引量:6
15
作者 YanqingSU TiejunZHANG +4 位作者 JingjieGUO HongshengDING WeishengBI JunJIA HengzhiFU 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第1期27-30,共4页
Mold-filling process of thin-walled castings under the condition of traveling magnetic field has been studied by physical simulation method using gallium melt and fast speed photography. Flow morphology and its format... Mold-filling process of thin-walled castings under the condition of traveling magnetic field has been studied by physical simulation method using gallium melt and fast speed photography. Flow morphology and its formation mechanism were obtained and discussed for thin-walled casting. The influences of magnetic field density on the filling ability, filling velocity and mold filling time have been studied. The differences in filling capability between gravity casting and casting under the traveling magnetic field have been compared. The results indicate that the mold filling ability of the gallium melt increases greatly under the condition of traveling magnetic field; the filling time is shortened from 18 s under gravity field to 3 s under the traveling magnetic field and average flow rate of the melt increases from 1.6 to 8.68 cm3/s; the change law of the cross-section morphology of the gallium melt during the mold filling is that at first, the cross-section area does not change, then it decreases gradually. When the front of the melt reaches the end of the mold cavity, the front melt will backfill the mold; the wider the width of mold cavity, the better the mold filling ability. The mold filling ability of gallium melt in mold with upper magnetic conductor is better than that without upper magnetic conductor. 展开更多
关键词 Traveling magnetic field Mould-filling thin-walled casting Physical simulation
下载PDF
Deformation Calculation of Cross-section Based on Virtual Force in Thin-walled Tube Bending Process 被引量:5
16
作者 LIU Jingyao TANG Chengtong NING Ruxin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第5期696-701,共6页
Cross-section deformation is one of important factors affecting the quality of tube formation, and the tube's capability of transporting liquid and gas will be reduced because of the cross-section ellipse deformation... Cross-section deformation is one of important factors affecting the quality of tube formation, and the tube's capability of transporting liquid and gas will be reduced because of the cross-section ellipse deformation due to the effect of shear load in plastic bending process. When the tube is bent, the extrados-wall bears the tension stress and the intrados-wall bears the compression stress, synchronously the cross-section is affected by the circumferential stress. According to the above, the distribution function and curve of tangential stress can be obtained according to force balance differential equations on circumferential direction and Trasca rule. Subsequently the real state and virtual state moment equations were established, a new method was presented adopting the virtual principle of deformation system to calculate the x-axis and y-axis displacement of arbitrary point on cross-section. So the major and minor axes of deformed cross-section can be calculated according to the displacements of each point, and the variety value of major and minor axes will be obtained further. Finally the theoretical calculating result is compared with NC tube rotary-bending experiment results to verify the rationality of theoretical analysis, and the cross-section deformation rule of thin-walled tube can be received. 展开更多
关键词 thin-walled tube stress analysis major and minor axes cross-section deformation virtual force
下载PDF
Modeling and Free Vibration Behavior of Rotating Composite Thin-walled Closed-section Beams with SMA Fibers 被引量:4
17
作者 REN Yongsheng YANG Shulian DU Xianghong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第5期1029-1043,共15页
Smart structure with active materials embedded in a rotating composite thin-walled beam is a class of typical structure which is using in study of vibration control of helicopter blades and wind turbine blades. The dy... Smart structure with active materials embedded in a rotating composite thin-walled beam is a class of typical structure which is using in study of vibration control of helicopter blades and wind turbine blades. The dynamic behavior investigation of these structures has significance in theory and practice. However, so far dynamic study on the above-mentioned structures is limited only the rotating composite beams with piezoelectric actuation. The free vibration of the rotating composite thin-walled beams with shape memory alloy(SMA) fiber actuation is studied. SMA fiber actuators are embedded into the walls of the composite beam. The equations of motion are derived based on Hamilton's principle and the asymptotically correct constitutive relation of single-cell cross-section accounting for SMA fiber actuation. The partial differential equations of motion are reduced to the ordinary differential equations of motion by using the Galerkin's method. The formulation for free vibration analysis includes anisotropy, pitch and precone angle, centrifugal force and SMA actuation effect. Numerical results of natural frequency are obtained for two configuration composite beams. It is shown that natural frequencies of the composite thin-walled beam decrease as SMA fiber volume and initial strain increase and the decrease in natural frequency becomes more significant as SMA fiber volume increases. The actuation performance of SMA fibers is found to be closely related to the rotational speeds and ply-angle. In addition, the effect of the pitch angle appears to be more significant for the lower-bending mode ones. Finally, in all cases, the precone angle appears to have marginal effect on free vibration frequencies. The developed model can be capable of describing natural vibration behaviors of rotating composite thin-walled beam with active SMA fiber actuation. The present work extends the previous analysis done for modeling passive rotating composite thin-walled beam. 展开更多
关键词 free vibration thin-walled composite beams shape memory alloy rotating beams pich angle precone angle
下载PDF
Recent progress in flexible supporting technology for aerospace thin-walled parts:A review 被引量:4
18
作者 Yan BAO Bin WANG +2 位作者 Zengxu HE Renke KANG Jiang GUO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第3期10-26,共17页
Thin-walled parts are widely used in the aerospace industry owing to their light weight and high specific strength.However,due to the low rigidity of thin-walled parts,elastic deformation and chatter easily occur,whic... Thin-walled parts are widely used in the aerospace industry owing to their light weight and high specific strength.However,due to the low rigidity of thin-walled parts,elastic deformation and chatter easily occur,which seriously affect the machining accuracy and workpiece surface quality.To solve this problem,several supporting technologies have been reported in recent years.This paper reviews the recent research progress of flexible supporting technologies in the aerospace field by classifying them based on different principles and characteristics.The principle,progress,advantages,and limitations of the technologies are expounded by systematic comparison and summarized.Finally,the challenges and future development trends of flexible supporting technology,which will provide guidelines for further research,are discussed. 展开更多
关键词 AEROSPACE Chatter DEFORMATION Flexible support Low rigidity thin-walled
原文传递
A Numerical-analytic Method for Quickly Predicting Springback of Numerical Control Bending of Thin-walled Tube 被引量:3
19
作者 Mei ZHAN He YANG Liang HUANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2006年第5期713-720,共8页
Springback is one of important factors influencing the forming quality of numerical control (NC) bending of thin-walled tube. In this paper, a numerical-analytic method for springback angle prediction of the process... Springback is one of important factors influencing the forming quality of numerical control (NC) bending of thin-walled tube. In this paper, a numerical-analytic method for springback angle prediction of the process was put forward. The method is based on springback angle model derived using analytic method and simulation results from three-dimensional (3D) rigid-plastic finite element method (FEM). The method is validated through comparison with experimental results. The features of the method are as follows: (1) The method is high in efficiency because it combines advantages of rigid-plastic FEM and analytic method. (2) The method is satisfactory in accuracy, since the field variables used in the model is resulting from 3D rigid-plastic FEM solution, and the effects both of axial force and strain neutral axis shift have been included. (3) Research on multi-factor effects can be carried out using the method due to its advantage inheriting from rigid-plastic FEM. The method described here is also of general significance to other bending processes. 展开更多
关键词 thin-walled tube Numerical control bending SPRINGBACK Numerical-analytic method 3D rigid-plastic FEM
下载PDF
Combined stress waves with phase transition in thin-walled tubes 被引量:3
20
作者 宋卿争 唐志平 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第3期285-296,共12页
The incremental constitutive relation and governing equations with combined stresses for phase transition wave propagation in a thin-walled tube are established based on the phase transition criterion considering both... The incremental constitutive relation and governing equations with combined stresses for phase transition wave propagation in a thin-walled tube are established based on the phase transition criterion considering both the hydrostatic pressure and the deviatoric stress. It is found that the centers of the initial and subsequent phase transition ellipses are shifted along the sigma-axis in the sigma tau-plane due to the tension-compression asymmetry induced by the hydrostatic pressure. The wave solution offers the 'fast' and 'slow' phase transition waves under combined longitudinal and torsional stresses in the phase transition region. The results show some new stress paths and wave structures in a thin-walled tube with phase transition, differing from those of conventional elastic-plastic materials. 展开更多
关键词 combined stress phase transition wave thin-walled tube shape memory alloy(SMA)
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部