Lightweight thin-walled structures with lattice infill are widely desired in satellite for their high stiffness-to-weight ratio and superior buckling strength resulting fromthe sandwich effect.Such structures can be f...Lightweight thin-walled structures with lattice infill are widely desired in satellite for their high stiffness-to-weight ratio and superior buckling strength resulting fromthe sandwich effect.Such structures can be fabricated bymetallic additive manufacturing technique,such as selective laser melting(SLM).However,the maximum dimensions of actual structures are usually in a sub-meter scale,which results in restrictions on their appliance in aerospace and other fields.In this work,a meter-scale thin-walled structure with lattice infill is designed for the fuel tank supporting component of the satellite by integrating a self-supporting lattice into the thickness optimization of the thin-wall.The designed structure is fabricated by SLM of AlSi10Mg and cold metal transfer welding technique.Quasi-static mechanical tests and vibration tests are both conducted to verify the mechanical strength of the designed large-scale lattice thin-walled structure.The experimental results indicate that themeter-scale thin-walled structure with lattice infill could meet the dimension and lightweight requirements of most spacecrafts.展开更多
To investigate the vibration principle in machining thin-walled components, a dynamic model for end milling of flexible structures is built based on considering the variations in the dynamic chip thickness and the dif...To investigate the vibration principle in machining thin-walled components, a dynamic model for end milling of flexible structures is built based on considering the variations in the dynamic chip thickness and the differences between up-milling and down-milling. Two milling experiments verify the model. Experimental results show that the model can predict the milling force and displacements simultaneously in the dynamic milling process.展开更多
Pitting corrosion is harmful during bridge construction,which will lead to uneven roughness of steel surfaces and reduce the thickness of steel.Hence,the effect of pitting corrosion on the mechanical properties of col...Pitting corrosion is harmful during bridge construction,which will lead to uneven roughness of steel surfaces and reduce the thickness of steel.Hence,the effect of pitting corrosion on the mechanical properties of cold-formed thin-walled steel stub columns is studied,and the empirical formulas are established through regression fitting to predict the ultimate load of web and flange under pitting corrosion.In detail,the failure modes and load-displacement curves of specimens with different locations,area ratios,and depths are obtained through a large number of non-linear finite element analysis.As for the specimens with pitting corrosion on the web,all the specimens are subject to local buckling failure,and the failure mode will not change with pitting corrosion,but the failure location will change with pitting corrosion location;the size,location,and area ratio of pitting corrosion have little influence on the ultimate load of cold-formed thin-walled steel short columns,but the loss rate of pitting corrosion section area has a greater impact on the ultimate bearing capacity.As for the specimen with flange pitting corrosion,the location and area ratio of pitting corrosion have less influence on the ultimate load of cold-formed thin-walled steel short columns,and the section area loss rate has greater influence on the ultimate bearing capacity;the impact of web pitting corrosion on the ultimate load is greater than that of flange pitting corrosion under the same condition of pitting corrosion section area.The prediction formulas of limit load which are suitable for pitting corrosion of web and flange are established,which can provide a reference for performance evaluation of corroded cold-formed thin-walled steel.展开更多
A new generation of fluid pressure forming technology has been developed for the three typical structures of tubes,sheets,and shells,and hard-to-deform material components that are urgently needed for aerospace,aircra...A new generation of fluid pressure forming technology has been developed for the three typical structures of tubes,sheets,and shells,and hard-to-deform material components that are urgently needed for aerospace,aircraft,automobile,and high-speed train industries.in this paper,an over all review is introduced on the state of the art in fundamentals and processes for lower-pressure hydroforming of tubular components,double-sided pressure hydroforming of sheet components,die-less hydroforming of ellipsoidai shells,and dual hardening hot medium forming af hard-to-deform materiais Particular attention is paid to deformation behavior,stress state adjustment,defect prevention,and typical applications.In addition,future development directions of fluid pressure forming technology are discussed,including hyper lower-loading forming for ultra-large non-uniform components,precision for ming for intermetallic compound and high-entropy alloy components,intelligent process and equipment,and precise finite element simulation of inhomogeneous and strong anisotropic thin shells.展开更多
Fixture locating layout has a direct and influential impact on aeronautical thin-walled component(ATWC)manufacturing quality.The purpose is to develop a topological optimization method for ATWC fixture locating layout...Fixture locating layout has a direct and influential impact on aeronautical thin-walled component(ATWC)manufacturing quality.The purpose is to develop a topological optimization method for ATWC fixture locating layout to minimize the manufacturing deformation.Firstly,a topological optimization model that takes the stiffness of ATWC as the objective function and the volume of the locating structure as the constraint is established.Secondly,ATWC and the locating structure are regarded as an integrated entity,and the variable-density method based topological optimization approach is adopted for the optimization of the locating structure using ABAQUS topology optimization module(ATOM).Thirdly,through a subsequent model reconstruction referring to the obtained topological structure,the optimal fixture locating layout is achieved.Finally,a case study is conducted to verify the proposed method and the comparison results with firefly algorithm(FA)coupled with finite element analysis(FEA)indicate that the number and positions of the locators for ATWC can be optimized simultaneously and successfully by the proposed topological optimization model.展开更多
Complex thin-walled titanium alloy components play a key role in the aircraft,aerospace and marine industries,offering the advantages of reduced weight and increased thermal resistance.The geometrical complexity,dimen...Complex thin-walled titanium alloy components play a key role in the aircraft,aerospace and marine industries,offering the advantages of reduced weight and increased thermal resistance.The geometrical complexity,dimensional accuracy and in-service properties are essential to fulfill the high-performance standards required in new transportation systems,which brings new challenges to titanium alloy forming technologies.Traditional forming processes,such as superplastic forming or hot pressing,cannot meet all demands of modern applications due to their limited properties,low productivity and high cost.This has encouraged industry and research groups to develop novel high-efficiency forming processes.Hot gas pressure forming and hot stamping-quenching technologies have been developed for the manufacture of tubular and panel components,and are believed to be the cut-edge processes guaranteeing dimensional accuracy,microstructure and mechanical properties.This article intends to provide a critical review of high-efficiency titanium alloy forming processes,concentrating on latest investigations of controlling dimensional accuracy,microstructure and properties.The advantages and limitations of individual forming process are comprehensively analyzed,through which,future research trends of high-efficiency forming are identified including trends in process integration,processing window design,full cycle and multi-objective optimization.This review aims to provide a guide for researchers and process designers on the manufacture of thin-walled titanium alloy components whilst achieving high dimensional accuracy and satisfying performance properties with high efficiency and low cost.展开更多
Sheet-bulk metal forming(SBMF)is a promising process for manufacturing complex sheet components with functional elements.In this study,the entire forming process for a typical thin-walled component with external geari...Sheet-bulk metal forming(SBMF)is a promising process for manufacturing complex sheet components with functional elements.In this study,the entire forming process for a typical thin-walled component with external gearing is investigated,including sheet forming and bulk forming processes.Deep drawn cups are prepared during sheet forming;subsequently,upsetting is performed on the sidewall to form external gearing.The upsetting method performed is known as upsetting with a controllable deformation zone(U-CDZ).Compared with the conventional upsetting method,a floating counter punch with a counter force is used in the U-CDZ method such that the forming mechanism is changed into the accumulation of the deformation zone instead of deformation throughout the entire sidewall.The effects of the counter force and material flow are investigated to understand the mechanism.The forming quality,i.e.,the formfilling and effective strain distribution,improved,whereas a high forming load is avoided.In addition,a punch with a lock bead is used to prevent folding at the inner corner during the experiment.展开更多
Thin-walled structures have been widely used in the aerospace industry.The dynamic interaction between the milling cutter and thin-walled workpiece can easily lead to vibration.This paper investigates the vibration ca...Thin-walled structures have been widely used in the aerospace industry.The dynamic interaction between the milling cutter and thin-walled workpiece can easily lead to vibration.This paper investigates the vibration caused during milling the thin-walled workpiece on the NC machining center,presents a theoretical milling vibration model of thin-walled beam.The model was verified by using milling experiments and numerical simulations.Some valuable conclusions are derived,this will be references to scientific research and guides to the vibration-free milling of thin-walled structures at different cutting speeds.展开更多
The spinning technique has been widely used in the manufacture of aerospace thin-walled axisymmetric components because of its excellent formability. Damage and fracture,as the important defects that often occur and m...The spinning technique has been widely used in the manufacture of aerospace thin-walled axisymmetric components because of its excellent formability. Damage and fracture,as the important defects that often occur and must be avoided in the forming and service stages of components,have attracted much attention of researchers. In this paper,the fracture behavior and laws of spinning components such as conical parts,tubular parts,and components with inner ribs are summarized,the typical coupled and uncoupled ductile fracture models are introduced,and their applications in spinning are analyzed. Meanwhile,the recent developments on the modified ductile fracture model in analyzing damage and fracture mechanisms of spinning are emphatically introduced. The results could provide guidance for the selection and establishment of appropriate ductile fracture models in the finite element simulation for the accurate prediction and analysis of fracture moment,location,form,damage mechanism,and evolution law,and help the development of precision spinning techniques for high-performance thin-walled complex components.展开更多
A new solution called component modification in-process was introduced to the difficult grinding of air quenching steel slag by a series of experiments. The results show that the fly ash added into the molten steel sl...A new solution called component modification in-process was introduced to the difficult grinding of air quenching steel slag by a series of experiments. The results show that the fly ash added into the molten steel slag before air quenching can more effectively improve the slag's grindability than milltailings, which is the other modification agent tested under the same conditions. The role of fly ash is strengthened as its proportion increases, although the degree of promotion is gradually reduced. As a result of the reaction between fly ash and steel slag at high temperature, some new mineral phases and vitreous bodies with fine grindability promote the slag grinding easily. This work is helpful to making a comprehensive utilization of steel slag and maximize its economic efficiency in China.展开更多
The microstructures and mechanical properties of 550 MPa grade lightweight high strength thin-walled H-beam steel were experimentally studied. The experimental results show that the microstructure of the air-cooled H-...The microstructures and mechanical properties of 550 MPa grade lightweight high strength thin-walled H-beam steel were experimentally studied. The experimental results show that the microstructure of the air-cooled H-beam steel sample is consisted of ferrite, pearlite and a small amount of granular bainites as well as fine and dispersive V(C,N) precipitates. The microstructure of the water-cooled steel sample is consisted of ferrite and bainite as well as a small amount of fine pearlites. The microstructure of the water-cooled sample is finer than that of the air-cooled sample with the average intercept size of the surface grains reaching to 3.5 gna. The finish rolling temperature of the thin-walled high strength H-beam steel is in the range of 750 ~C-850 ~C. The lower the finish rolling temperature and the faster the cooling rate, the finer the ferrite grains, the volume fraction of bainite is increased through water cooling process. Grain refinement strengthening and precipitation strengthening are used as major strengthening means to develop 550 MPa grade lightweight high strength thin- walled H-beam steel. Vanadium partially soluted in the matrix and contributes to the solution strengthening. The 550 MPa grade high-strength thin-walled H-beam steel could be developed by direct air cooling after hot rolling to fully meet the requirements of the target properties.展开更多
The introduction of surface engineering is expected to be an effective strategy against fretting damage. A large number of studies show that the low gas multi-component (such as carbon, nitrogen, sulphur and oxygen, ...The introduction of surface engineering is expected to be an effective strategy against fretting damage. A large number of studies show that the low gas multi-component (such as carbon, nitrogen, sulphur and oxygen, etc) thermo-chemical treatment(LTGMTT) can overcome the brittleness of nitriding process, and upgrade the surface hardness and improve the wear resistance and fatigue properties of the work-pieces significantly. However, there are few reports on the anti-fretting properties of the LTGMTT modified layer up to now, which limits the applications of fretting. So this paper discusses the fretting wear behavior of modified layer on the surface of LZ50 (0.48%C) steel prepared by low temperature gas multi-component thermo-chemical treatment (LTGMTT) technology. The fretting wear tests of the modified layer flat specimens and its substrate (LZ50 steel) against 52100 steel balls with diameter of 40 mm are carried out under normal load of 150 N and displacement amplitudes varied from 2 μm to 40 μm. Characterization of the modified layer and dynamic analyses in combination with microscopic examinations were performed through the means of scanning electron microscope(SEM), optical microscope(OM), X-ray diffraction(XRD) and surface profilometer. The experimental results showed that the modified layer with a total thickness of 60 μm was consisted of three parts, i.e., loose layer, compound layer and diffusion layer. Compared with the substrate, the range of the mixed fretting regime(MFR) of the LTGMTT modified layer diminished, and the slip regime(SR) of the modified layer shifted to the direction of smaller displacement amplitude. The coefficient of friction(COF) of the modified layer was lower than that of the substrate in the initial stage. For the modified layer, the damage in partial slip regime(PSR) was very slight. The fretting wear mechanism of the modified layer both in MFR and SR was abrasive wear and delamination. The modified layer presented better wear resistance than the substrate in PSR and MFR; however, in SR, the wear resistance of the modified layer decreased with the increase of the displacement amplitudes. The experimental results can provide some experimental bases for promoting industrial application of LTGMTT modified layer in anti-fretting wear.展开更多
A nonlinear explicit dynamic finite element formulation based on the generalized beam theory(GBT)is proposed and developed to simulate the dynamic responses of prismatic thin-walled steel members under transverse impu...A nonlinear explicit dynamic finite element formulation based on the generalized beam theory(GBT)is proposed and developed to simulate the dynamic responses of prismatic thin-walled steel members under transverse impulsive loads.Considering the rate strengthening and thermal softening effects on member impact behavior,a modified Cowper-Symonds model for constructional steels is utilized.The element displacement field is built upon the superposition of GBT cross-section deformation modes,so arbitrary deformations such as cross-section distortions,local buckling and warping shear can all be involved by the proposed model.The amplitude function of each cross-section deformation mode is approximated by the cubic non-uniform B-spline basis functions.The Kirchhoff s thin-plate assumption is utilized in the construction of the bending related displacements.The Green-Lagrange strain tensor and the second Piola-Kirchhoff(PK2)stress tensor are employed to measure deformations and stresses at any material point,where stresses are assumed to be in plane-stress state.In order to verify the effectiveness of the proposed GBT model,three numerical cases involving impulsive loading of the thin-walled parts are given.The GBT results are compared with those of the Ls-Dyna shell finite element.It is shown that the proposed model and the shell finite element analysis has equivalent accuracy in displacement and stress.Moreover,the proposed model is much more computationally efficient and structurally clearer than the shell finite elements.展开更多
This paper introduces CBFEM (component-based finite element model) which is a new method to analyze and design connections of steel structures. Design focused CM (component model) is compared to FEM (finite eleme...This paper introduces CBFEM (component-based finite element model) which is a new method to analyze and design connections of steel structures. Design focused CM (component model) is compared to FEM (finite elements models). Procedure for composition of a model based on usual production process is used in CBFEM. Its results are compared to those obtained by component method for portal frame eaves moment connection with good agreement. Design of moment resistant column base is demonstrated by a case loaded by two directional bending moments and normal force. Interaction of several connections in one complex joint is explained in the last example. This paper aims to provide structural engineers with a new tool to effectively analyze and design various joints of steel structures.展开更多
Presently,the service performance of new-generation high-tech equipment is directly affected by the manufacturing quality of complex thin-walled components.A high-efficiency and quality manufacturing of these complex ...Presently,the service performance of new-generation high-tech equipment is directly affected by the manufacturing quality of complex thin-walled components.A high-efficiency and quality manufacturing of these complex thin-walled components creates a bottleneck that needs to be solved urgently in machinery manufacturing.To address this problem,the collaborative manufacturing of structure shape and surface integrity has emerged as a new process that can shorten processing cycles,improve machining qualities,and reduce costs.This paper summarises the research status on the material removal mechanism,precision control of structure shape,machined surface integrity control and intelligent process control technology of complex thin-walled components.Numerous solutions and technical approaches are then put forward to solve the critical problems in the high-performance manufacturing of complex thin-wall components.The development status,challenge and tendency of collaborative manufacturing technologies in the high-efficiency and quality manufacturing of complex thin-wall components is also discussed.展开更多
Machining performance of thin-walled components made by aeronautical difficult-toprocess materials is a significant issue in the aviation manufacturing industry.Although wire electric discharge machining-low speed(WED...Machining performance of thin-walled components made by aeronautical difficult-toprocess materials is a significant issue in the aviation manufacturing industry.Although wire electric discharge machining-low speed(WEDM-LS)is one of typical non-contact machining processes without macro cutting force,which does well in removing hardness and brittleness materials via pulsed discharge at high temperature,but few researchers have studied the thermal distortion behavior leading to a considerable geometric error in the WEDM-LS of thin-walled components.In this paper,a transverse magnetic field assisted method is applied for affecting the uniformity of discharge point distribution so as to reduce the distortion in WEDM-LS processing thin-wall component.First,the generation mechanism of this new distortion behavior and the impact mechanism of transverse magnetic field(TMF)on distortion are demonstrated by theoretical analysis.In order to further figure out the distortion behavior in the TMF-WEDM process,a new thermophysical model considering the discharge point distribution is established to simulate temperature field,residual stress field and distortion profiles.Then a large number of Taguchi experiments are carried out to investigate the influences of process parameters including pulse discharge energy(pulse on time,pulse off time,and current)and magnetic field strength on distortion in WEDM-LS.To comparatively analyze simulated and experimental results,the accuracy of established thermophysical model is verified within a relative error of 18.38%in distortion.Moreover,it can be revealed that transverse magnetic field contribute to significantly improve the longitudinal distribution uniformity with maximum increase of 12.32%at magnetic field strength:0.15 T,leading to significant reductions of 32.77%in distortion and 22.68%in recast layer.Eventually,we also presented the variation of residual stress and recast layer along thickness direction under different distortion behavior,which are in good agreement with that of distortion behavior.展开更多
The steel-bamboo composite structure is a newly developed structure,combining phyllostachys pubescens(also called Moso bamboo)plywood and cold-formed thin-walled steel with structural adhesive.The reliability of steel...The steel-bamboo composite structure is a newly developed structure,combining phyllostachys pubescens(also called Moso bamboo)plywood and cold-formed thin-walled steel with structural adhesive.The reliability of steelbamboo interface is the premise of composite effect.13 specimens were prepared to investigate the failure modes and mechanism of the steel-bamboo interface on the basis of push-out test,and the strain difference analysis method was proposed to study the distribution of shear stress.The results show that the main failure modes of steel-bamboo interface are adhesion failure and splitting of bamboo plywood.The shear stress is not evenly distributed along the longitudinal direction of the interface,showing a shape of“larger at two ends and smaller in the middle”.The lower end of the interface is the initial location of the interface failure and the shear stress concentration degree is positively correlated with the thickness of the externally bonded bamboo plate.The shear resistance of steel-bamboo interface can be enhanced by improving the adhesion between steel and structural adhesive and ameliorating the quality of bamboo products.展开更多
Principal component analysis (PCA) combined with artificial neural networks was used to classify the spectra of 27 steel samples acquired using laser-induced breakdown spectroscopy. Three methods of spectral data se...Principal component analysis (PCA) combined with artificial neural networks was used to classify the spectra of 27 steel samples acquired using laser-induced breakdown spectroscopy. Three methods of spectral data selection, selecting all the peak lines of the spectra, selecting intensive spectral partitions and the whole spectra, were utilized to compare the infiuence of different inputs of PCA on the classification of steels. Three intensive partitions were selected based on experience and prior knowledge to compare the classification, as the partitions can obtain the best results compared to all peak lines and the whole spectra. We also used two test data sets, mean spectra after being averaged and raw spectra without any pretreatment, to verify the results of the classification. The results of this comprehensive comparison show that a back propagation network trained using the principal components of appropriate, carefully selecred spectral partitions can obtain the best results accuracy can be achieved using the intensive spectral A perfect result with 100% classification partitions ranging of 357-367 nm.展开更多
The dynamic recrystallization(DRX) simulation performance largely depends on simulated grain topological struc?tures. However, currently solutions used di erent models for describing two?dimensional(2 D) and three?dim...The dynamic recrystallization(DRX) simulation performance largely depends on simulated grain topological struc?tures. However, currently solutions used di erent models for describing two?dimensional(2 D) and three?dimensional(3 D) grain size distributions. Therefore, it is necessary to develop a more universal simulation technique. A cellular automaton(CA) model combined with an optimized topology deformation technology is proposed to simulate the microstructural evolution of 42 CrMo cast steel during DRX. In order to obtain values of material constants adopted in the CA model, hot deformation characteristics of 42 CrMo cast steel are investigated by hot compression metal?lographic testing. The proposed CA model deviates in two important aspects from the regular CA model. First, an optimized grain topology deformation technology is utilized for studying the hot compression e ect on the topology of grain deformation. Second, the overlapping grain topological structures are optimized by using an independent component analysis method, and the influence of various thermomechanical parameters on the nucleation process, grain growth kinetics, and mean grain sizes observed during DRX are explored. Experimental study shows that the average relative root mean square error(RRMSE) of the mean grain diameter obtained by the regular CA model is equal to 0.173, while the magnitude calculated using the proposed optimized CA model is only 0.11. This paper pro?poses a novel combined CA model for simulating the microstructural evolution of 42 CrMo cast steel, which notably uses a ICA?based grain topology deformation method to optimize the overlapping grain topological structures in simulation.展开更多
基金The authors are grateful for the support by National Key Research and Development Program of China(2021YFF0500300,2020YFB1708300)the National Natural Science Foundation of China(52205280,12172041).
文摘Lightweight thin-walled structures with lattice infill are widely desired in satellite for their high stiffness-to-weight ratio and superior buckling strength resulting fromthe sandwich effect.Such structures can be fabricated bymetallic additive manufacturing technique,such as selective laser melting(SLM).However,the maximum dimensions of actual structures are usually in a sub-meter scale,which results in restrictions on their appliance in aerospace and other fields.In this work,a meter-scale thin-walled structure with lattice infill is designed for the fuel tank supporting component of the satellite by integrating a self-supporting lattice into the thickness optimization of the thin-wall.The designed structure is fabricated by SLM of AlSi10Mg and cold metal transfer welding technique.Quasi-static mechanical tests and vibration tests are both conducted to verify the mechanical strength of the designed large-scale lattice thin-walled structure.The experimental results indicate that themeter-scale thin-walled structure with lattice infill could meet the dimension and lightweight requirements of most spacecrafts.
文摘To investigate the vibration principle in machining thin-walled components, a dynamic model for end milling of flexible structures is built based on considering the variations in the dynamic chip thickness and the differences between up-milling and down-milling. Two milling experiments verify the model. Experimental results show that the model can predict the milling force and displacements simultaneously in the dynamic milling process.
基金funded by the‘Research Project of the Sucheng to Sihong Section of the Yanluo Expressway-Measurement Technology and Application of Bridge Quality Project Based on UAV Binocular Imaging(No.00-00-JSFW-20230203-029)’,received by H.Z.Wang.
文摘Pitting corrosion is harmful during bridge construction,which will lead to uneven roughness of steel surfaces and reduce the thickness of steel.Hence,the effect of pitting corrosion on the mechanical properties of cold-formed thin-walled steel stub columns is studied,and the empirical formulas are established through regression fitting to predict the ultimate load of web and flange under pitting corrosion.In detail,the failure modes and load-displacement curves of specimens with different locations,area ratios,and depths are obtained through a large number of non-linear finite element analysis.As for the specimens with pitting corrosion on the web,all the specimens are subject to local buckling failure,and the failure mode will not change with pitting corrosion,but the failure location will change with pitting corrosion location;the size,location,and area ratio of pitting corrosion have little influence on the ultimate load of cold-formed thin-walled steel short columns,but the loss rate of pitting corrosion section area has a greater impact on the ultimate bearing capacity.As for the specimen with flange pitting corrosion,the location and area ratio of pitting corrosion have less influence on the ultimate load of cold-formed thin-walled steel short columns,and the section area loss rate has greater influence on the ultimate bearing capacity;the impact of web pitting corrosion on the ultimate load is greater than that of flange pitting corrosion under the same condition of pitting corrosion section area.The prediction formulas of limit load which are suitable for pitting corrosion of web and flange are established,which can provide a reference for performance evaluation of corroded cold-formed thin-walled steel.
基金supported by the National Science Fund for Distinguished Young Scholars(50525516)the National Natural Science Foundation of China(U1637209,51175111,50375036,and 59975021).
文摘A new generation of fluid pressure forming technology has been developed for the three typical structures of tubes,sheets,and shells,and hard-to-deform material components that are urgently needed for aerospace,aircraft,automobile,and high-speed train industries.in this paper,an over all review is introduced on the state of the art in fundamentals and processes for lower-pressure hydroforming of tubular components,double-sided pressure hydroforming of sheet components,die-less hydroforming of ellipsoidai shells,and dual hardening hot medium forming af hard-to-deform materiais Particular attention is paid to deformation behavior,stress state adjustment,defect prevention,and typical applications.In addition,future development directions of fluid pressure forming technology are discussed,including hyper lower-loading forming for ultra-large non-uniform components,precision for ming for intermetallic compound and high-entropy alloy components,intelligent process and equipment,and precise finite element simulation of inhomogeneous and strong anisotropic thin shells.
基金supported by the National Natural Science Foundation of China(No.51375396)the Shaanxi Science and Technology Innovation Project Plan,China(No.2016KTCQ01-50)
文摘Fixture locating layout has a direct and influential impact on aeronautical thin-walled component(ATWC)manufacturing quality.The purpose is to develop a topological optimization method for ATWC fixture locating layout to minimize the manufacturing deformation.Firstly,a topological optimization model that takes the stiffness of ATWC as the objective function and the volume of the locating structure as the constraint is established.Secondly,ATWC and the locating structure are regarded as an integrated entity,and the variable-density method based topological optimization approach is adopted for the optimization of the locating structure using ABAQUS topology optimization module(ATOM).Thirdly,through a subsequent model reconstruction referring to the obtained topological structure,the optimal fixture locating layout is achieved.Finally,a case study is conducted to verify the proposed method and the comparison results with firefly algorithm(FA)coupled with finite element analysis(FEA)indicate that the number and positions of the locators for ATWC can be optimized simultaneously and successfully by the proposed topological optimization model.
基金This work was financially supported by the Program of National Natural Science Foundation of China(Nos.U1937204 and 51905124)China Postdoctoral Science Foundation(2019M661278).
文摘Complex thin-walled titanium alloy components play a key role in the aircraft,aerospace and marine industries,offering the advantages of reduced weight and increased thermal resistance.The geometrical complexity,dimensional accuracy and in-service properties are essential to fulfill the high-performance standards required in new transportation systems,which brings new challenges to titanium alloy forming technologies.Traditional forming processes,such as superplastic forming or hot pressing,cannot meet all demands of modern applications due to their limited properties,low productivity and high cost.This has encouraged industry and research groups to develop novel high-efficiency forming processes.Hot gas pressure forming and hot stamping-quenching technologies have been developed for the manufacture of tubular and panel components,and are believed to be the cut-edge processes guaranteeing dimensional accuracy,microstructure and mechanical properties.This article intends to provide a critical review of high-efficiency titanium alloy forming processes,concentrating on latest investigations of controlling dimensional accuracy,microstructure and properties.The advantages and limitations of individual forming process are comprehensively analyzed,through which,future research trends of high-efficiency forming are identified including trends in process integration,processing window design,full cycle and multi-objective optimization.This review aims to provide a guide for researchers and process designers on the manufacture of thin-walled titanium alloy components whilst achieving high dimensional accuracy and satisfying performance properties with high efficiency and low cost.
基金Supported by National Natural Science Foundation of China(Grant Nos.51875351,51475296).
文摘Sheet-bulk metal forming(SBMF)is a promising process for manufacturing complex sheet components with functional elements.In this study,the entire forming process for a typical thin-walled component with external gearing is investigated,including sheet forming and bulk forming processes.Deep drawn cups are prepared during sheet forming;subsequently,upsetting is performed on the sidewall to form external gearing.The upsetting method performed is known as upsetting with a controllable deformation zone(U-CDZ).Compared with the conventional upsetting method,a floating counter punch with a counter force is used in the U-CDZ method such that the forming mechanism is changed into the accumulation of the deformation zone instead of deformation throughout the entire sidewall.The effects of the counter force and material flow are investigated to understand the mechanism.The forming quality,i.e.,the formfilling and effective strain distribution,improved,whereas a high forming load is avoided.In addition,a punch with a lock bead is used to prevent folding at the inner corner during the experiment.
文摘Thin-walled structures have been widely used in the aerospace industry.The dynamic interaction between the milling cutter and thin-walled workpiece can easily lead to vibration.This paper investigates the vibration caused during milling the thin-walled workpiece on the NC machining center,presents a theoretical milling vibration model of thin-walled beam.The model was verified by using milling experiments and numerical simulations.Some valuable conclusions are derived,this will be references to scientific research and guides to the vibration-free milling of thin-walled structures at different cutting speeds.
基金National Science and Technology Major Project(J2019-VII-0014-0154)the Key Project of National Natural Science Foundation of China(No.52130507)+1 种基金National Natural Science Foundation of China(No.51790175)National Key R&D Program of China(Nos.2020YFA0711100 and 2021YFB3400900)。
文摘The spinning technique has been widely used in the manufacture of aerospace thin-walled axisymmetric components because of its excellent formability. Damage and fracture,as the important defects that often occur and must be avoided in the forming and service stages of components,have attracted much attention of researchers. In this paper,the fracture behavior and laws of spinning components such as conical parts,tubular parts,and components with inner ribs are summarized,the typical coupled and uncoupled ductile fracture models are introduced,and their applications in spinning are analyzed. Meanwhile,the recent developments on the modified ductile fracture model in analyzing damage and fracture mechanisms of spinning are emphatically introduced. The results could provide guidance for the selection and establishment of appropriate ductile fracture models in the finite element simulation for the accurate prediction and analysis of fracture moment,location,form,damage mechanism,and evolution law,and help the development of precision spinning techniques for high-performance thin-walled complex components.
基金Project(IRT0708) supported by Program for Changjiang Scholars and Innovative Research Team in University of China ("PCSIRT")Project(20070008031) supported by the Research Fund for the Dectoral Program of Higher Education of China
文摘A new solution called component modification in-process was introduced to the difficult grinding of air quenching steel slag by a series of experiments. The results show that the fly ash added into the molten steel slag before air quenching can more effectively improve the slag's grindability than milltailings, which is the other modification agent tested under the same conditions. The role of fly ash is strengthened as its proportion increases, although the degree of promotion is gradually reduced. As a result of the reaction between fly ash and steel slag at high temperature, some new mineral phases and vitreous bodies with fine grindability promote the slag grinding easily. This work is helpful to making a comprehensive utilization of steel slag and maximize its economic efficiency in China.
基金Funded by the "11th Five" National Science and Technology Support Project(No.2006BAE03A13)
文摘The microstructures and mechanical properties of 550 MPa grade lightweight high strength thin-walled H-beam steel were experimentally studied. The experimental results show that the microstructure of the air-cooled H-beam steel sample is consisted of ferrite, pearlite and a small amount of granular bainites as well as fine and dispersive V(C,N) precipitates. The microstructure of the water-cooled steel sample is consisted of ferrite and bainite as well as a small amount of fine pearlites. The microstructure of the water-cooled sample is finer than that of the air-cooled sample with the average intercept size of the surface grains reaching to 3.5 gna. The finish rolling temperature of the thin-walled high strength H-beam steel is in the range of 750 ~C-850 ~C. The lower the finish rolling temperature and the faster the cooling rate, the finer the ferrite grains, the volume fraction of bainite is increased through water cooling process. Grain refinement strengthening and precipitation strengthening are used as major strengthening means to develop 550 MPa grade lightweight high strength thin- walled H-beam steel. Vanadium partially soluted in the matrix and contributes to the solution strengthening. The 550 MPa grade high-strength thin-walled H-beam steel could be developed by direct air cooling after hot rolling to fully meet the requirements of the target properties.
基金supported by National Natural Science Foundation of China (Grant No. 50521503)National Basic Research Program of China (973 Program, Grant No. 2007CB714704)National Hi-tech Research and Development Program of China (863 Program, Grant No. 2006AA04Z406)
文摘The introduction of surface engineering is expected to be an effective strategy against fretting damage. A large number of studies show that the low gas multi-component (such as carbon, nitrogen, sulphur and oxygen, etc) thermo-chemical treatment(LTGMTT) can overcome the brittleness of nitriding process, and upgrade the surface hardness and improve the wear resistance and fatigue properties of the work-pieces significantly. However, there are few reports on the anti-fretting properties of the LTGMTT modified layer up to now, which limits the applications of fretting. So this paper discusses the fretting wear behavior of modified layer on the surface of LZ50 (0.48%C) steel prepared by low temperature gas multi-component thermo-chemical treatment (LTGMTT) technology. The fretting wear tests of the modified layer flat specimens and its substrate (LZ50 steel) against 52100 steel balls with diameter of 40 mm are carried out under normal load of 150 N and displacement amplitudes varied from 2 μm to 40 μm. Characterization of the modified layer and dynamic analyses in combination with microscopic examinations were performed through the means of scanning electron microscope(SEM), optical microscope(OM), X-ray diffraction(XRD) and surface profilometer. The experimental results showed that the modified layer with a total thickness of 60 μm was consisted of three parts, i.e., loose layer, compound layer and diffusion layer. Compared with the substrate, the range of the mixed fretting regime(MFR) of the LTGMTT modified layer diminished, and the slip regime(SR) of the modified layer shifted to the direction of smaller displacement amplitude. The coefficient of friction(COF) of the modified layer was lower than that of the substrate in the initial stage. For the modified layer, the damage in partial slip regime(PSR) was very slight. The fretting wear mechanism of the modified layer both in MFR and SR was abrasive wear and delamination. The modified layer presented better wear resistance than the substrate in PSR and MFR; however, in SR, the wear resistance of the modified layer decreased with the increase of the displacement amplitudes. The experimental results can provide some experimental bases for promoting industrial application of LTGMTT modified layer in anti-fretting wear.
基金The National Natural Science Foundation of China(No.51078229)the Specialized Research Fund for the Doctoral Program of Higher Education(o.20100073110008)
文摘A nonlinear explicit dynamic finite element formulation based on the generalized beam theory(GBT)is proposed and developed to simulate the dynamic responses of prismatic thin-walled steel members under transverse impulsive loads.Considering the rate strengthening and thermal softening effects on member impact behavior,a modified Cowper-Symonds model for constructional steels is utilized.The element displacement field is built upon the superposition of GBT cross-section deformation modes,so arbitrary deformations such as cross-section distortions,local buckling and warping shear can all be involved by the proposed model.The amplitude function of each cross-section deformation mode is approximated by the cubic non-uniform B-spline basis functions.The Kirchhoff s thin-plate assumption is utilized in the construction of the bending related displacements.The Green-Lagrange strain tensor and the second Piola-Kirchhoff(PK2)stress tensor are employed to measure deformations and stresses at any material point,where stresses are assumed to be in plane-stress state.In order to verify the effectiveness of the proposed GBT model,three numerical cases involving impulsive loading of the thin-walled parts are given.The GBT results are compared with those of the Ls-Dyna shell finite element.It is shown that the proposed model and the shell finite element analysis has equivalent accuracy in displacement and stress.Moreover,the proposed model is much more computationally efficient and structurally clearer than the shell finite elements.
文摘This paper introduces CBFEM (component-based finite element model) which is a new method to analyze and design connections of steel structures. Design focused CM (component model) is compared to FEM (finite elements models). Procedure for composition of a model based on usual production process is used in CBFEM. Its results are compared to those obtained by component method for portal frame eaves moment connection with good agreement. Design of moment resistant column base is demonstrated by a case loaded by two directional bending moments and normal force. Interaction of several connections in one complex joint is explained in the last example. This paper aims to provide structural engineers with a new tool to effectively analyze and design various joints of steel structures.
基金supported by the National Natural Science Foundation of China(Nos.51921003,92160301,52175415 and 52205475)the Science Center for Gas Turbine Project(No.P2022-A-IV-002-001)Natural Science Foundation of Jiangsu Province(No.BK20210295).
文摘Presently,the service performance of new-generation high-tech equipment is directly affected by the manufacturing quality of complex thin-walled components.A high-efficiency and quality manufacturing of these complex thin-walled components creates a bottleneck that needs to be solved urgently in machinery manufacturing.To address this problem,the collaborative manufacturing of structure shape and surface integrity has emerged as a new process that can shorten processing cycles,improve machining qualities,and reduce costs.This paper summarises the research status on the material removal mechanism,precision control of structure shape,machined surface integrity control and intelligent process control technology of complex thin-walled components.Numerous solutions and technical approaches are then put forward to solve the critical problems in the high-performance manufacturing of complex thin-wall components.The development status,challenge and tendency of collaborative manufacturing technologies in the high-efficiency and quality manufacturing of complex thin-wall components is also discussed.
基金supported by National Natural Science Foundation of China(NSFC)(Nos.51705171 and 51975228)Natural Science Foundation of Guangdong(No.2020A151501638)the Program of China Scholarship Council(No.201806160076)。
文摘Machining performance of thin-walled components made by aeronautical difficult-toprocess materials is a significant issue in the aviation manufacturing industry.Although wire electric discharge machining-low speed(WEDM-LS)is one of typical non-contact machining processes without macro cutting force,which does well in removing hardness and brittleness materials via pulsed discharge at high temperature,but few researchers have studied the thermal distortion behavior leading to a considerable geometric error in the WEDM-LS of thin-walled components.In this paper,a transverse magnetic field assisted method is applied for affecting the uniformity of discharge point distribution so as to reduce the distortion in WEDM-LS processing thin-wall component.First,the generation mechanism of this new distortion behavior and the impact mechanism of transverse magnetic field(TMF)on distortion are demonstrated by theoretical analysis.In order to further figure out the distortion behavior in the TMF-WEDM process,a new thermophysical model considering the discharge point distribution is established to simulate temperature field,residual stress field and distortion profiles.Then a large number of Taguchi experiments are carried out to investigate the influences of process parameters including pulse discharge energy(pulse on time,pulse off time,and current)and magnetic field strength on distortion in WEDM-LS.To comparatively analyze simulated and experimental results,the accuracy of established thermophysical model is verified within a relative error of 18.38%in distortion.Moreover,it can be revealed that transverse magnetic field contribute to significantly improve the longitudinal distribution uniformity with maximum increase of 12.32%at magnetic field strength:0.15 T,leading to significant reductions of 32.77%in distortion and 22.68%in recast layer.Eventually,we also presented the variation of residual stress and recast layer along thickness direction under different distortion behavior,which are in good agreement with that of distortion behavior.
基金supported by National Key R&D Program of China[grant number 2017YFC0703502]the National Natural Science Foundation of China(NSFC)[grant numbers 51978345,51678310 and 51708304]K.C.Wong Magna Fund at the Ningbo University.
文摘The steel-bamboo composite structure is a newly developed structure,combining phyllostachys pubescens(also called Moso bamboo)plywood and cold-formed thin-walled steel with structural adhesive.The reliability of steelbamboo interface is the premise of composite effect.13 specimens were prepared to investigate the failure modes and mechanism of the steel-bamboo interface on the basis of push-out test,and the strain difference analysis method was proposed to study the distribution of shear stress.The results show that the main failure modes of steel-bamboo interface are adhesion failure and splitting of bamboo plywood.The shear stress is not evenly distributed along the longitudinal direction of the interface,showing a shape of“larger at two ends and smaller in the middle”.The lower end of the interface is the initial location of the interface failure and the shear stress concentration degree is positively correlated with the thickness of the externally bonded bamboo plate.The shear resistance of steel-bamboo interface can be enhanced by improving the adhesion between steel and structural adhesive and ameliorating the quality of bamboo products.
基金supported by the National High Technology Research and Development Program of China(863 Program)(No.2012AA040608)National Natural Science Foundation of China(Nos.61473279,61004131)the Development of Scientific Research Equipment Program of Chinese Academy of Sciences(No.YZ201247)
文摘Principal component analysis (PCA) combined with artificial neural networks was used to classify the spectra of 27 steel samples acquired using laser-induced breakdown spectroscopy. Three methods of spectral data selection, selecting all the peak lines of the spectra, selecting intensive spectral partitions and the whole spectra, were utilized to compare the infiuence of different inputs of PCA on the classification of steels. Three intensive partitions were selected based on experience and prior knowledge to compare the classification, as the partitions can obtain the best results compared to all peak lines and the whole spectra. We also used two test data sets, mean spectra after being averaged and raw spectra without any pretreatment, to verify the results of the classification. The results of this comprehensive comparison show that a back propagation network trained using the principal components of appropriate, carefully selecred spectral partitions can obtain the best results accuracy can be achieved using the intensive spectral A perfect result with 100% classification partitions ranging of 357-367 nm.
基金financially supported by the National Natural Science Foundation of China(No.51365014)the Industrial Support Key Project of Jiangxi Province,China(No.20161BBE50072)
基金Supported by Key Program of National Natural Science Foundation of China(Grant No.51135007)National Natural Science Foundation of China(Grant Nos.51575371,61301250)Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi Province of China(Grant No.[2015]3)
文摘The dynamic recrystallization(DRX) simulation performance largely depends on simulated grain topological struc?tures. However, currently solutions used di erent models for describing two?dimensional(2 D) and three?dimensional(3 D) grain size distributions. Therefore, it is necessary to develop a more universal simulation technique. A cellular automaton(CA) model combined with an optimized topology deformation technology is proposed to simulate the microstructural evolution of 42 CrMo cast steel during DRX. In order to obtain values of material constants adopted in the CA model, hot deformation characteristics of 42 CrMo cast steel are investigated by hot compression metal?lographic testing. The proposed CA model deviates in two important aspects from the regular CA model. First, an optimized grain topology deformation technology is utilized for studying the hot compression e ect on the topology of grain deformation. Second, the overlapping grain topological structures are optimized by using an independent component analysis method, and the influence of various thermomechanical parameters on the nucleation process, grain growth kinetics, and mean grain sizes observed during DRX are explored. Experimental study shows that the average relative root mean square error(RRMSE) of the mean grain diameter obtained by the regular CA model is equal to 0.173, while the magnitude calculated using the proposed optimized CA model is only 0.11. This paper pro?poses a novel combined CA model for simulating the microstructural evolution of 42 CrMo cast steel, which notably uses a ICA?based grain topology deformation method to optimize the overlapping grain topological structures in simulation.