Complex thin-walled titanium alloy components play a key role in the aircraft,aerospace and marine industries,offering the advantages of reduced weight and increased thermal resistance.The geometrical complexity,dimen...Complex thin-walled titanium alloy components play a key role in the aircraft,aerospace and marine industries,offering the advantages of reduced weight and increased thermal resistance.The geometrical complexity,dimensional accuracy and in-service properties are essential to fulfill the high-performance standards required in new transportation systems,which brings new challenges to titanium alloy forming technologies.Traditional forming processes,such as superplastic forming or hot pressing,cannot meet all demands of modern applications due to their limited properties,low productivity and high cost.This has encouraged industry and research groups to develop novel high-efficiency forming processes.Hot gas pressure forming and hot stamping-quenching technologies have been developed for the manufacture of tubular and panel components,and are believed to be the cut-edge processes guaranteeing dimensional accuracy,microstructure and mechanical properties.This article intends to provide a critical review of high-efficiency titanium alloy forming processes,concentrating on latest investigations of controlling dimensional accuracy,microstructure and properties.The advantages and limitations of individual forming process are comprehensively analyzed,through which,future research trends of high-efficiency forming are identified including trends in process integration,processing window design,full cycle and multi-objective optimization.This review aims to provide a guide for researchers and process designers on the manufacture of thin-walled titanium alloy components whilst achieving high dimensional accuracy and satisfying performance properties with high efficiency and low cost.展开更多
The Ti-5Al-2Sn-4Zr-4Mo-2Cr-1Fe(β-CEZ)alloy is considered as a potential structural material in the aviation industry due to its outstanding strength and corrosion resistance.Electrochemical machining(ECM)is an effici...The Ti-5Al-2Sn-4Zr-4Mo-2Cr-1Fe(β-CEZ)alloy is considered as a potential structural material in the aviation industry due to its outstanding strength and corrosion resistance.Electrochemical machining(ECM)is an efficient and low-cost technology for manufacturing theβ-CEZ alloy.In ECM,the machining parameter selection and tool design are based on the electrochemical dissolution behavior of the materials.In this study,the electrochemical dissolution behaviors of theβ-CEZ and Ti-6Al-4V(TC4)alloys in NaNO3solution are discussed.The open circuit potential(OCP),Tafel polarization,potentiodynamic polarization,electrochemical impedance spectroscopy(EIS),and current efficiency curves of theβ-CEZ and TC4 alloys are analyzed.The results show that,compared to the TC4 alloy,the passivation film structure is denser and the charge transfer resistance in the dissolution process is greater for theβ-CEZ alloy.Moreover,the dissolved surface morphology of the two titanium-based alloys under different current densities are analyzed.Under low current densities,theβ-CEZ alloy surface comprises dissolution pits and dissolved products,while the TC4 alloy surface comprises a porous honeycomb structure.Under high current densities,the surface waviness of both the alloys improves and the TC4 alloy surface is flatter and smoother than theβ-CEZ alloy surface.Finally,the electrochemical dissolution models ofβ-CEZ and TC4 alloys are proposed.展开更多
Titanium(Ti)alloys are widely used in high-tech fields like aerospace and biomedical engineering.Laser additive manufacturing(LAM),as an innovative technology,is the key driver for the development of Ti alloys.Despite...Titanium(Ti)alloys are widely used in high-tech fields like aerospace and biomedical engineering.Laser additive manufacturing(LAM),as an innovative technology,is the key driver for the development of Ti alloys.Despite the significant advancements in LAM of Ti alloys,there remain challenges that need further research and development efforts.To recap the potential of LAM high-performance Ti alloy,this article systematically reviews LAM Ti alloys with up-to-date information on process,materials,and properties.Several feasible solutions to advance LAM Ti alloys are reviewed,including intelligent process parameters optimization,LAM process innovation with auxiliary fields and novel Ti alloys customization for LAM.The auxiliary energy fields(e.g.thermal,acoustic,mechanical deformation and magnetic fields)can affect the melt pool dynamics and solidification behaviour during LAM of Ti alloys,altering microstructures and mechanical performances.Different kinds of novel Ti alloys customized for LAM,like peritecticα-Ti,eutectoid(α+β)-Ti,hybrid(α+β)-Ti,isomorphousβ-Ti and eutecticβ-Ti alloys are reviewed in detail.Furthermore,machine learning in accelerating the LAM process optimization and new materials development is also outlooked.This review summarizes the material properties and performance envelops and benchmarks the research achievements in LAM of Ti alloys.In addition,the perspectives and further trends in LAM of Ti alloys are also highlighted.展开更多
Due to a series of exceptional properties,titanium and titanium alloys have received extensive attention in recent years.Different from other alloy systems,there are two allotropes and a sequence of metastable phases ...Due to a series of exceptional properties,titanium and titanium alloys have received extensive attention in recent years.Different from other alloy systems,there are two allotropes and a sequence of metastable phases in titanium alloys.By summarizing the recent investigations,the phase transformation processes corresponding to the common phases and also some less reported phases are reviewed.For the phase transformation only involvingαandβphases,it can be divided intoβ→αtransformation and a reverse transformation.The former one has been demonstrated from the orientation relationship betweenαandβphases and the regulation ofαmorphology.For the latter transformation,the role of the stress has been discussed.In terms of the metastable phases,the mechanisms of phase formation and their effects on microstructure and mechanical properties have been discussed.Finally,some suggestions about the development of titanium alloys have been proposed.展开更多
The solidified structure of the thin-walled and complicated Ti-6AI-4V castings produced by the vertical centrifugal casting process was studied in the present work. The results show that the wall thickness of the sect...The solidified structure of the thin-walled and complicated Ti-6AI-4V castings produced by the vertical centrifugal casting process was studied in the present work. The results show that the wall thickness of the section is featured with homogeneously distributed fine equiaxial grains, compared with the microstructure of the thick-walled section. The grain size of the castings has a tendency to decrease gradually with the increasing of the centrifugal radius. The inter-lamellar space in thick-walled casting parts is bigger than that of the thin-walled parts, and the profile of inter-lamellar space is not susceptible to the centrifugal radius.展开更多
The mold filling process of titanium alloy in a thin-walled cylinder cavity under vertical centrifugal casting process was studied by means of the hydraulic simulation experiments. Results show that the filling mode o...The mold filling process of titanium alloy in a thin-walled cylinder cavity under vertical centrifugal casting process was studied by means of the hydraulic simulation experiments. Results show that the filling mode of the melt in the cylinder cavity varies with casting wall-thickness. When the casting wall-thickness is less than or equal to the thickness of the first layer during the filling process, the melts fill the cavity from the bottom to the top.When the casting wall-thickness is greater than the thickness of the first layer during the filling process, the melts first fill the largest radius parts of the cavity with a certain thickness of the first layer from the bottom to the top of the cavity, and then they fill the cavity from the larger radius part to the smaller radius part. The melt filling ability increases with the increment of the mold rotational speed and the pouring temperature. In another aspect, the melt filling ability rises with the decrement of the melt viscosity, and the melt with the better filling ability is prone to fill the cylinder cavity layer by layer.展开更多
The hot flow behaviors,microstructure evolution and fractographs were studied to optimize the hot forming process of the TA32 titanium alloy thin-walled part.A set of microstructure-based constitutive equations were d...The hot flow behaviors,microstructure evolution and fractographs were studied to optimize the hot forming process of the TA32 titanium alloy thin-walled part.A set of microstructure-based constitutive equations were developed based on the experimental data,which described the relationships among the hot flow stresses and the evolution of phase volume fraction,dislocation density,grain size and damage.The constitutive model was imported into ABAQUS 6.14 to simulate the hot forming process for a typical thin-walled part.The effective strain,dislocation density and damage distribution as well as forming defects of formed parts under different process parameters were predicted.A qualified part without wrinkling and fracture defects was produced at a loading speed of 5 mm/s at 800℃ by the modified blank shape,where the maximum damage value was only 18.3%.The accuracy of constitutive model and finite element(FE)simulation was verified by the microhardness tests,which indicates that the FE model based on physical internal-state variables can well optimize the hot forming process of TA32 titanium alloy complex parts.展开更多
The deep drawing of titanium thin-walled surface part was simulated based on a self-developed three-dimensional finite element model. After an investigation on forming rules, a virtual orthogonal experimental design w...The deep drawing of titanium thin-walled surface part was simulated based on a self-developed three-dimensional finite element model. After an investigation on forming rules, a virtual orthogonal experimental design was adopted to determine the significance of processing parameters, such as die radius, blank holder force, and friction coefficient, on the forming process. The distributions of thickness and equivalent plastic strain of the drawn part were evaluated. The results show that die radius has a relative major influence on the deep drawing process, followed by friction coefficient and blank holder force.展开更多
Metal matrix composites tiles based on Ti-6Al-4V(Ti64)alloy,reinforced with 10,20,and 40(vol%)of either TiC or TiB particles were made using press-and-sinter blended elemental powder metallurgy(BEPM)and then bonded to...Metal matrix composites tiles based on Ti-6Al-4V(Ti64)alloy,reinforced with 10,20,and 40(vol%)of either TiC or TiB particles were made using press-and-sinter blended elemental powder metallurgy(BEPM)and then bonded together into 3-layer laminated plates using hot isostatic pressing(HIP).The laminates were ballistically tested and demonstrated superior performance.The microstructure and properties of the laminates were analyzed to determine the effect of the BEPM and HIP processing on the ballistic properties of the layered plates.The effect of porosity in sintered composites on further diffusion bonding of the plates during HIP is analyzed to understand the bonding features at the interfaces between different adjacent layers in the laminate.Exceptional ballistic performance of fabricated structures was explained by a significant reduction in the residual porosity of the BEPM products by their additional processing using HIP,which provides an unprecedented increase in the hardness of the layered composites.It is argued that the combination of the used two technologies,BEPM and HIP is principally complimentary for the materials in question with the abilities to solve the essential problems of each used individually.展开更多
Titanium alloys are excellent structural materials in engineering fields,but their poor tribological properties limit their further applications.Electroless plating is an effective method to enhance the tribological p...Titanium alloys are excellent structural materials in engineering fields,but their poor tribological properties limit their further applications.Electroless plating is an effective method to enhance the tribological performance of alloys,but it is difficult to efficiently apply to titanium alloys,due to titanium alloy’s strong chemical activity.In this work,the electroless Nickel-Boron(Ni-B)coating was successfully deposited on the surface of titanium alloy(Ti-6AL-4V)via a new pre-treatment process.Then,linearly reciprocating sliding wear tests were performed to evaluate the tribological behaviors of titanium alloy and its electroless Ni-B coatings.It was found that the Ni-B coatings can decrease the wear rate of the titanium alloy from 19.89×10^(−3)mm^(3)to 0.41×10^(−3)mm^(3),which attributes to the much higher hardness of Ni-B coatings.After heat treatment,the hardness of Ni-B coating further increases corresponding to coating crystallization and hard phase formation.However,heat treatment does not improve the tribological performance of Ni-B coating,due to the fact that higher brittleness and more severe oxidative wear exacerbate the damage of heat-treated coatings.Furthermore,the Ni-B coatings heat-treated both in air and nitrogen almost present the same tribological performance.The finding of this work on electroless coating would further extend the practical applications of titanium alloys in the engineering fields.展开更多
Characterization of hot deformation behavior of Ti-6Al-4V-0.5Ni-0.5Nb titanium alloy was investigated through isothermal compression at various temperatures from 750 to 1050℃and strain rate from 0.01 to 10 s^(-1).The...Characterization of hot deformation behavior of Ti-6Al-4V-0.5Ni-0.5Nb titanium alloy was investigated through isothermal compression at various temperatures from 750 to 1050℃and strain rate from 0.01 to 10 s^(-1).The isothermal compression experiment results showed that the peak stress of Ti-6Al-4V-0.5Ni-0.5Nb titanium alloy decreased with the temperature increasing and the strain rate decreasing.The softening mechanism was dynamic recovery below T_(β)and changed to dynamic recrystallization above T_(β).The arrheniustype relationship was used to calculate the constitutive equation of Ti-6Al-4V-0.5Ni-0.5Nb alloy in two-phase regions.It was found that the apparent activation energies were 427.095 kJ·mol^(-1)in theα+βphase region and 205.451 kJ·mol^(-1)in theβphase region,respectively.On the basis of dynamic materials model,the processing map is generated,which shows that the highest peak efficiency of power dissipation of 56%occurs at about 1050℃/0.01 s^(-1).It can be found in the processing maps that the strain had significant effect on the peak region of power dissipation efficiency of Ti-6Al-4V-0.5Ni-0.5Nb alloy.Furthermore,optimized hot working regions were investigated and validated through microstructure observation.The optimum thermo mechanical process condition for hot working of Ti-6Al-4V-0.5Ni-0.5Nb titanium alloy was suggested to be in the temperature range of 950-1000℃with a strain rate of 0.01-0.1 s^(-1).展开更多
A new rhombohedral phase(termed R′)in a solution-aging-treated titanium alloy(Ti-4.5Al-6.5Mo-2Cr-2Nb-1V-1Sn-1Zr,wt.%)was identified.Its accurate Bravais lattice parameters were determined by a novel unit cell reconst...A new rhombohedral phase(termed R′)in a solution-aging-treated titanium alloy(Ti-4.5Al-6.5Mo-2Cr-2Nb-1V-1Sn-1Zr,wt.%)was identified.Its accurate Bravais lattice parameters were determined by a novel unit cell reconstruction method based on conventional selected-area electron diffraction(SAED)technique.The orientation relationship between R'phase and BCC phase was revealed.The results show that the R′phase is found to have 48crystallographically equivalent variants,resulting in rather complicated SAED patterns with high-order reflections.A series of in-situ SAED patterns were taken along both low-and high-index zone axes,and all weak and strong reflections arising from the 48 variants were properly explained and directly assigned with self-consistent Miller indices,confirming the presence of the rhombohedral phase.Additionally,some criteria were also proposed for evaluating the indexed results,which together with the Bravais lattice reconstruction method shed light on the microstructure characterization of even unknown phases in other alloys.展开更多
Hot deformation of sintered billets by powder metallurgy(PM)is an effective preparation technique for titanium alloys,which is more significant for high-alloying alloys.In this study,Ti–6.5Al–2Zr–Mo–V(TA15)titaniu...Hot deformation of sintered billets by powder metallurgy(PM)is an effective preparation technique for titanium alloys,which is more significant for high-alloying alloys.In this study,Ti–6.5Al–2Zr–Mo–V(TA15)titanium alloy plates were prepared by cold press-ing sintering combined with high-temperature hot rolling.The microstructure and mechanical properties under different process paramet-ers were investigated.Optical microscope,electron backscatter diffraction,and others were applied to characterize the microstructure evolution and mechanical properties strengthening mechanism.The results showed that the chemical compositions were uniformly dif-fused without segregation during sintering,and the closing of the matrix craters was accelerated by increasing the sintering temperature.The block was hot rolled at 1200℃ with an 80%reduction under only two passes without annealing.The strength and elongation of the plate at 20–25℃ after solution and aging were 1247 MPa and 14.0%,respectively,which were increased by 24.5%and 40.0%,respect-ively,compared with the as-sintered alloy at 1300℃.The microstructure was significantly refined by continuous dynamic recrystalliza-tion,which was completed by the rotation and dislocation absorption of the substructure surrounded by low-angle grain boundaries.After hot rolling combined with heat treatment,the strength and plasticity of PM-TA15 were significantly improved,which resulted from the dense,uniform,and fine recrystallization structure and the synergistic effect of multiple slip systems.展开更多
Ti-6Al-4V alloy powder was taken as raw material. 60%(mass fraction) paraffin, 35%low density polyethylene and 5%stearic acid were employed as binders to prepare injection feedstocks. Capillary rheometer was adopted...Ti-6Al-4V alloy powder was taken as raw material. 60%(mass fraction) paraffin, 35%low density polyethylene and 5%stearic acid were employed as binders to prepare injection feedstocks. Capillary rheometer was adopted to determine the rheological parameters and to analyze the rheological properties of the feedstocks at different milling time, powder loading and temperature. It is indicated through the results that the viscosity increases and the value of n decreases with the increase of milling time. The more the powder loading is, the higher the viscosity is. The empirical formula on the relationship between the viscosity and the powder loading is: ηr=η/ηb=A(1-Ф/Фmax)/^- m . The value m is calculated as 0.33. The flow activation energy Ea decreases with the increase of shear rate.展开更多
The chip deformation of titanium alloys is typical shear localization from low cutting speed, which is general phenomenon in machining of difficult to cut material at high cutting speed. This paper investigates the ...The chip deformation of titanium alloys is typical shear localization from low cutting speed, which is general phenomenon in machining of difficult to cut material at high cutting speed. This paper investigates the chip formation process in machining titanium alloys, and puts forward a three stage model describing formation process of shear localized chip. This model explains how the shear localized chip segments initiate, become trapezoid and form serrated chips.展开更多
The effect of friction pressure p and oxygen concentration xo on the fireproof performance of Ti40 titanium alloy was studied by frictional ignition test, the U--Xo relationship quantitatively describing the fireproof...The effect of friction pressure p and oxygen concentration xo on the fireproof performance of Ti40 titanium alloy was studied by frictional ignition test, the U--Xo relationship quantitatively describing the fireproof performance of Ti40 was established and the fireproof mechanism of Ti40 was analyzed by SEM, XRD and EDS. The results show that the p--xo relationship of Ti40 obeys parabolic rule. The varying range of xo is about 25% while p varies within 0.1-0.25 MPa. When Xo is 〉70%, Ti40 is ignited immediately at room temperature and develops into continual and steady burning, and the duration of burning is more than 10 s. The fireproof performance of Ti40 is better than TC4 while xo of Ti40 is at least 40% higher than TC4. When Xo is low, the fireproof performance of Ti40 is more sensitive to p; when Xo increases, it is more sensitive to Xo. The forming of fused oxides of V205, TiO2 and Cr203 with strong inner interaction during friction is the basic reason of high fireproof performance of Ti40.展开更多
Titanium cermets were successfully synthesized on the surface of biomedical grade titanium alloys by using sequential carburization method. The mechanical properties such as hardness, fracture toughness and plasticity...Titanium cermets were successfully synthesized on the surface of biomedical grade titanium alloys by using sequential carburization method. The mechanical properties such as hardness, fracture toughness and plasticity were measured to estimate the potential application of titanium cermets. The results show that after carburization the surface hardness of titanium cermets was 778 HV, with a significant improvement of 128% compared with that of titanium alloys. In addition, the fracture toughness of titanium cermets was 21.5 × 10^6 Pa.m^1/2, much higher than that of other ceramics. Furthermore, the analysis of the loading-unloading curve in the nanoindentation test also indicates that the plasticity of titanium cermet reached 32.1%, a relatively high value which illustrates the combination of the metal and ceramics properties. The results suggest that sequential carburization should be an efficient way to produce titanium cermets with hard surface, high toughness and plasticity.展开更多
Titanium and titanium alloys have several advantages, but the cost of titanium alloys is very expensive compared with the traditional metal materials. This article introduces two new low-cost titanium alloys Ti-2.1Cr-...Titanium and titanium alloys have several advantages, but the cost of titanium alloys is very expensive compared with the traditional metal materials. This article introduces two new low-cost titanium alloys Ti-2.1Cr-1.3Fe (TCF alloy) and Ti-3Al-2.1Cr-1.3Fe (TACF alloy). In this study, we used Cr-Fe master alloy as one of the raw materials to develop the two new alloys. We introduce the microstructure and tensile properties of the two new alloys from β solution treated with different cooling methods. Optical microscopy (OM), X-ray diffractometry (XRD), and transmission electron microscopy (TEM) were employed to analyze the phase constitution, and scanning electron microscopy (SEM) was used to observe the fracture surfaces. The results indicate that the microstructures consist of β grain boundary and α′ martensite after water quenching (WQ), β matrix and α phase after air cooling (AC) and furnace cooling (FC), respectively. Also, the microstructure is the typical basketweave structures after FC. Of course, athermal ω is also observed by TEM after WQ. The strength increases with decreasing cooling rates and the plasticity is reversed. Because of the athermal ω, the strength and ductility are highest and lowest when the cooling method is WQ. The strength of TACF alloy is higher than the TCF alloy, but the plasticity is lower. The fracture surfaces are almost entirely covered with dimples under the cooling methods of AC and FC. Also, we observe an intergranular fracture area that is generated by athermal ω, although some dimples are observed after WQ.展开更多
The aim of this paper was to study the reaction between a Ti-6Al-4V alloy and boron nitride based investment shell molds used for investment casting titanium. In BN based investment shell molds, the face coatings are ...The aim of this paper was to study the reaction between a Ti-6Al-4V alloy and boron nitride based investment shell molds used for investment casting titanium. In BN based investment shell molds, the face coatings are made of pretreated hexagonal boron nitride (hBN) with a few yttria (Y2O3) and colloidal yttria as binder. The Ti-6Al-4V alloy was melted in a controlled atmosphere induction furnace with a segment water-cooled copper crucible. The cross-section of reaction interface between Ti alloys and shell mold was investigated by electron probe micro-analyzer (EPMA) and microhardness tester. The results show that the reaction is not serious, the thickness of the reacting layer is about 30-50 μm, and the thickness of α-case is about 180-200 pro. Moreover the α-case formation mechanism was also discussed.展开更多
Laser cladding is a new surface modification technology, and is widely used for fabricating wear and corrosion resistant composites coatings. Self-fluxing alloys have many advantages, such as excellent properties of d...Laser cladding is a new surface modification technology, and is widely used for fabricating wear and corrosion resistant composites coatings. Self-fluxing alloys have many advantages, such as excellent properties of deoxidizing and slagging, high wear resistance, low melting point and easy cladding, and are often used in laser cladding to improve wear and corrosion resistance of titanium and its alloys. In this paper, the recent development of Ni-based and Co-based self-fluxing alloy coatings which includes the influenee of rare earth and ceramic particles in coatings are summarized. Besides, the effects of processing parameters, such as laser power and scanning speed, on coatings are reviewed. Finally, the trend of development in the future is forecasted.展开更多
基金This work was financially supported by the Program of National Natural Science Foundation of China(Nos.U1937204 and 51905124)China Postdoctoral Science Foundation(2019M661278).
文摘Complex thin-walled titanium alloy components play a key role in the aircraft,aerospace and marine industries,offering the advantages of reduced weight and increased thermal resistance.The geometrical complexity,dimensional accuracy and in-service properties are essential to fulfill the high-performance standards required in new transportation systems,which brings new challenges to titanium alloy forming technologies.Traditional forming processes,such as superplastic forming or hot pressing,cannot meet all demands of modern applications due to their limited properties,low productivity and high cost.This has encouraged industry and research groups to develop novel high-efficiency forming processes.Hot gas pressure forming and hot stamping-quenching technologies have been developed for the manufacture of tubular and panel components,and are believed to be the cut-edge processes guaranteeing dimensional accuracy,microstructure and mechanical properties.This article intends to provide a critical review of high-efficiency titanium alloy forming processes,concentrating on latest investigations of controlling dimensional accuracy,microstructure and properties.The advantages and limitations of individual forming process are comprehensively analyzed,through which,future research trends of high-efficiency forming are identified including trends in process integration,processing window design,full cycle and multi-objective optimization.This review aims to provide a guide for researchers and process designers on the manufacture of thin-walled titanium alloy components whilst achieving high dimensional accuracy and satisfying performance properties with high efficiency and low cost.
基金supported by the National Natural Science Foundation of China(No.92160301)the Industrial Technology Development Program,China(No.JCKY2021605 B026)。
文摘The Ti-5Al-2Sn-4Zr-4Mo-2Cr-1Fe(β-CEZ)alloy is considered as a potential structural material in the aviation industry due to its outstanding strength and corrosion resistance.Electrochemical machining(ECM)is an efficient and low-cost technology for manufacturing theβ-CEZ alloy.In ECM,the machining parameter selection and tool design are based on the electrochemical dissolution behavior of the materials.In this study,the electrochemical dissolution behaviors of theβ-CEZ and Ti-6Al-4V(TC4)alloys in NaNO3solution are discussed.The open circuit potential(OCP),Tafel polarization,potentiodynamic polarization,electrochemical impedance spectroscopy(EIS),and current efficiency curves of theβ-CEZ and TC4 alloys are analyzed.The results show that,compared to the TC4 alloy,the passivation film structure is denser and the charge transfer resistance in the dissolution process is greater for theβ-CEZ alloy.Moreover,the dissolved surface morphology of the two titanium-based alloys under different current densities are analyzed.Under low current densities,theβ-CEZ alloy surface comprises dissolution pits and dissolved products,while the TC4 alloy surface comprises a porous honeycomb structure.Under high current densities,the surface waviness of both the alloys improves and the TC4 alloy surface is flatter and smoother than theβ-CEZ alloy surface.Finally,the electrochemical dissolution models ofβ-CEZ and TC4 alloys are proposed.
基金financially supported by the Young Individual Research Grants(Grant No:M22K3c0097)Singapore RIE 2025 plan and Singapore Aerospace Programme Cycle 16(Grant No:M2215a0073)led by C Tan+2 种基金supported by the Singapore A*STAR Career Development Funds(Grant No:C210812047)the National Natural Science Foundation of China(52174361 and 52374385)the support by US NSF DMR-2104933。
文摘Titanium(Ti)alloys are widely used in high-tech fields like aerospace and biomedical engineering.Laser additive manufacturing(LAM),as an innovative technology,is the key driver for the development of Ti alloys.Despite the significant advancements in LAM of Ti alloys,there remain challenges that need further research and development efforts.To recap the potential of LAM high-performance Ti alloy,this article systematically reviews LAM Ti alloys with up-to-date information on process,materials,and properties.Several feasible solutions to advance LAM Ti alloys are reviewed,including intelligent process parameters optimization,LAM process innovation with auxiliary fields and novel Ti alloys customization for LAM.The auxiliary energy fields(e.g.thermal,acoustic,mechanical deformation and magnetic fields)can affect the melt pool dynamics and solidification behaviour during LAM of Ti alloys,altering microstructures and mechanical performances.Different kinds of novel Ti alloys customized for LAM,like peritecticα-Ti,eutectoid(α+β)-Ti,hybrid(α+β)-Ti,isomorphousβ-Ti and eutecticβ-Ti alloys are reviewed in detail.Furthermore,machine learning in accelerating the LAM process optimization and new materials development is also outlooked.This review summarizes the material properties and performance envelops and benchmarks the research achievements in LAM of Ti alloys.In addition,the perspectives and further trends in LAM of Ti alloys are also highlighted.
基金financially supported by the National Natural Science Foundation of China(Nos.U23A20540,52371127)the Science and Technology Innovation Program of Hunan Province,China(No.2022RC3035)the Fundamental Research Funds for the Central Universities of Central South University,China(No.2024ZZTS0077)。
文摘Due to a series of exceptional properties,titanium and titanium alloys have received extensive attention in recent years.Different from other alloy systems,there are two allotropes and a sequence of metastable phases in titanium alloys.By summarizing the recent investigations,the phase transformation processes corresponding to the common phases and also some less reported phases are reviewed.For the phase transformation only involvingαandβphases,it can be divided intoβ→αtransformation and a reverse transformation.The former one has been demonstrated from the orientation relationship betweenαandβphases and the regulation ofαmorphology.For the latter transformation,the role of the stress has been discussed.In terms of the metastable phases,the mechanisms of phase formation and their effects on microstructure and mechanical properties have been discussed.Finally,some suggestions about the development of titanium alloys have been proposed.
基金by the National Natural Science Foundation of China under grant No. 50775050the State Key Laboratory of Solidif ication Processing in NWPU (200702)
文摘The solidified structure of the thin-walled and complicated Ti-6AI-4V castings produced by the vertical centrifugal casting process was studied in the present work. The results show that the wall thickness of the section is featured with homogeneously distributed fine equiaxial grains, compared with the microstructure of the thick-walled section. The grain size of the castings has a tendency to decrease gradually with the increasing of the centrifugal radius. The inter-lamellar space in thick-walled casting parts is bigger than that of the thin-walled parts, and the profile of inter-lamellar space is not susceptible to the centrifugal radius.
基金financially supported by the National Natural Science Foundation of China(Grant No.51475120)the Project of Science and Technology of Henan Province of China(2018QNJH25,182102110096)
文摘The mold filling process of titanium alloy in a thin-walled cylinder cavity under vertical centrifugal casting process was studied by means of the hydraulic simulation experiments. Results show that the filling mode of the melt in the cylinder cavity varies with casting wall-thickness. When the casting wall-thickness is less than or equal to the thickness of the first layer during the filling process, the melts fill the cavity from the bottom to the top.When the casting wall-thickness is greater than the thickness of the first layer during the filling process, the melts first fill the largest radius parts of the cavity with a certain thickness of the first layer from the bottom to the top of the cavity, and then they fill the cavity from the larger radius part to the smaller radius part. The melt filling ability increases with the increment of the mold rotational speed and the pouring temperature. In another aspect, the melt filling ability rises with the decrement of the melt viscosity, and the melt with the better filling ability is prone to fill the cylinder cavity layer by layer.
基金financially supported by the National Natural Science Foundation of China(No.51805256)。
文摘The hot flow behaviors,microstructure evolution and fractographs were studied to optimize the hot forming process of the TA32 titanium alloy thin-walled part.A set of microstructure-based constitutive equations were developed based on the experimental data,which described the relationships among the hot flow stresses and the evolution of phase volume fraction,dislocation density,grain size and damage.The constitutive model was imported into ABAQUS 6.14 to simulate the hot forming process for a typical thin-walled part.The effective strain,dislocation density and damage distribution as well as forming defects of formed parts under different process parameters were predicted.A qualified part without wrinkling and fracture defects was produced at a loading speed of 5 mm/s at 800℃ by the modified blank shape,where the maximum damage value was only 18.3%.The accuracy of constitutive model and finite element(FE)simulation was verified by the microhardness tests,which indicates that the FE model based on physical internal-state variables can well optimize the hot forming process of TA32 titanium alloy complex parts.
基金supported by the National Key Basic Research Program of China (No. 2007CB613802)the National Natural Science Foundation of China (No. 50805121)China Postdoctoral Science Foundation (No. 20080440192)
文摘The deep drawing of titanium thin-walled surface part was simulated based on a self-developed three-dimensional finite element model. After an investigation on forming rules, a virtual orthogonal experimental design was adopted to determine the significance of processing parameters, such as die radius, blank holder force, and friction coefficient, on the forming process. The distributions of thickness and equivalent plastic strain of the drawn part were evaluated. The results show that die radius has a relative major influence on the deep drawing process, followed by friction coefficient and blank holder force.
基金funding from the NATO Agency Science for Peace and Security (#G5787)Ballistic investigations were co-financed by Military University of Technology in Warsaw under research project UGB 829/2023/WATSeparate works made in G.V.Kurdyumov Institute for Metal Physics of N.A.S.of Ukraine were partially financially supported by N.A.S.of Ukraine within the frames of project#III09-18。
文摘Metal matrix composites tiles based on Ti-6Al-4V(Ti64)alloy,reinforced with 10,20,and 40(vol%)of either TiC or TiB particles were made using press-and-sinter blended elemental powder metallurgy(BEPM)and then bonded together into 3-layer laminated plates using hot isostatic pressing(HIP).The laminates were ballistically tested and demonstrated superior performance.The microstructure and properties of the laminates were analyzed to determine the effect of the BEPM and HIP processing on the ballistic properties of the layered plates.The effect of porosity in sintered composites on further diffusion bonding of the plates during HIP is analyzed to understand the bonding features at the interfaces between different adjacent layers in the laminate.Exceptional ballistic performance of fabricated structures was explained by a significant reduction in the residual porosity of the BEPM products by their additional processing using HIP,which provides an unprecedented increase in the hardness of the layered composites.It is argued that the combination of the used two technologies,BEPM and HIP is principally complimentary for the materials in question with the abilities to solve the essential problems of each used individually.
基金Supported by Sichuan Provincial Science and Technology Program of China(Grant No.2018JY0245)National Natural Science Foundation of China(Grant No.51975492)Natural Science Foundation of Southwest University of Science and Technology of China(Grant No.19xz7163).
文摘Titanium alloys are excellent structural materials in engineering fields,but their poor tribological properties limit their further applications.Electroless plating is an effective method to enhance the tribological performance of alloys,but it is difficult to efficiently apply to titanium alloys,due to titanium alloy’s strong chemical activity.In this work,the electroless Nickel-Boron(Ni-B)coating was successfully deposited on the surface of titanium alloy(Ti-6AL-4V)via a new pre-treatment process.Then,linearly reciprocating sliding wear tests were performed to evaluate the tribological behaviors of titanium alloy and its electroless Ni-B coatings.It was found that the Ni-B coatings can decrease the wear rate of the titanium alloy from 19.89×10^(−3)mm^(3)to 0.41×10^(−3)mm^(3),which attributes to the much higher hardness of Ni-B coatings.After heat treatment,the hardness of Ni-B coating further increases corresponding to coating crystallization and hard phase formation.However,heat treatment does not improve the tribological performance of Ni-B coating,due to the fact that higher brittleness and more severe oxidative wear exacerbate the damage of heat-treated coatings.Furthermore,the Ni-B coatings heat-treated both in air and nitrogen almost present the same tribological performance.The finding of this work on electroless coating would further extend the practical applications of titanium alloys in the engineering fields.
基金Funded by the National Key R&D Program of China(Nos.2021YFB3700804,2021YFB3700803)Shaanxi Provincial Innovation Capability Support Plan(No.2023KJXX-091)。
文摘Characterization of hot deformation behavior of Ti-6Al-4V-0.5Ni-0.5Nb titanium alloy was investigated through isothermal compression at various temperatures from 750 to 1050℃and strain rate from 0.01 to 10 s^(-1).The isothermal compression experiment results showed that the peak stress of Ti-6Al-4V-0.5Ni-0.5Nb titanium alloy decreased with the temperature increasing and the strain rate decreasing.The softening mechanism was dynamic recovery below T_(β)and changed to dynamic recrystallization above T_(β).The arrheniustype relationship was used to calculate the constitutive equation of Ti-6Al-4V-0.5Ni-0.5Nb alloy in two-phase regions.It was found that the apparent activation energies were 427.095 kJ·mol^(-1)in theα+βphase region and 205.451 kJ·mol^(-1)in theβphase region,respectively.On the basis of dynamic materials model,the processing map is generated,which shows that the highest peak efficiency of power dissipation of 56%occurs at about 1050℃/0.01 s^(-1).It can be found in the processing maps that the strain had significant effect on the peak region of power dissipation efficiency of Ti-6Al-4V-0.5Ni-0.5Nb alloy.Furthermore,optimized hot working regions were investigated and validated through microstructure observation.The optimum thermo mechanical process condition for hot working of Ti-6Al-4V-0.5Ni-0.5Nb titanium alloy was suggested to be in the temperature range of 950-1000℃with a strain rate of 0.01-0.1 s^(-1).
基金financial supports from the National Natural Science Foundation of China(No.51071125)the Major Project of Department of Education of Jiangxi Province,China(No.GJJ210605)。
文摘A new rhombohedral phase(termed R′)in a solution-aging-treated titanium alloy(Ti-4.5Al-6.5Mo-2Cr-2Nb-1V-1Sn-1Zr,wt.%)was identified.Its accurate Bravais lattice parameters were determined by a novel unit cell reconstruction method based on conventional selected-area electron diffraction(SAED)technique.The orientation relationship between R'phase and BCC phase was revealed.The results show that the R′phase is found to have 48crystallographically equivalent variants,resulting in rather complicated SAED patterns with high-order reflections.A series of in-situ SAED patterns were taken along both low-and high-index zone axes,and all weak and strong reflections arising from the 48 variants were properly explained and directly assigned with self-consistent Miller indices,confirming the presence of the rhombohedral phase.Additionally,some criteria were also proposed for evaluating the indexed results,which together with the Bravais lattice reconstruction method shed light on the microstructure characterization of even unknown phases in other alloys.
基金supported by the National Natural Science Foundation of China(No.52274359)Guangdong Basic and Applied Basic Research Foundation,China(No.2022A1515110406)+3 种基金Beijing Natural Science Foundation,China(No.2212035)the Fundamental Research Funds for the Central Universities,China(Nos.FRF-TP-19005C1Z and 00007718)the Aeroengine Group University Research Cooperation Project,China(No.HFZL2021CXY021)the State Key Lab of Advanced Metals and Materials,University of Science and Technology Beijing,China(Nos.2021Z-03 and 2022Z-14).
文摘Hot deformation of sintered billets by powder metallurgy(PM)is an effective preparation technique for titanium alloys,which is more significant for high-alloying alloys.In this study,Ti–6.5Al–2Zr–Mo–V(TA15)titanium alloy plates were prepared by cold press-ing sintering combined with high-temperature hot rolling.The microstructure and mechanical properties under different process paramet-ers were investigated.Optical microscope,electron backscatter diffraction,and others were applied to characterize the microstructure evolution and mechanical properties strengthening mechanism.The results showed that the chemical compositions were uniformly dif-fused without segregation during sintering,and the closing of the matrix craters was accelerated by increasing the sintering temperature.The block was hot rolled at 1200℃ with an 80%reduction under only two passes without annealing.The strength and elongation of the plate at 20–25℃ after solution and aging were 1247 MPa and 14.0%,respectively,which were increased by 24.5%and 40.0%,respect-ively,compared with the as-sintered alloy at 1300℃.The microstructure was significantly refined by continuous dynamic recrystalliza-tion,which was completed by the rotation and dislocation absorption of the substructure surrounded by low-angle grain boundaries.After hot rolling combined with heat treatment,the strength and plasticity of PM-TA15 were significantly improved,which resulted from the dense,uniform,and fine recrystallization structure and the synergistic effect of multiple slip systems.
文摘Ti-6Al-4V alloy powder was taken as raw material. 60%(mass fraction) paraffin, 35%low density polyethylene and 5%stearic acid were employed as binders to prepare injection feedstocks. Capillary rheometer was adopted to determine the rheological parameters and to analyze the rheological properties of the feedstocks at different milling time, powder loading and temperature. It is indicated through the results that the viscosity increases and the value of n decreases with the increase of milling time. The more the powder loading is, the higher the viscosity is. The empirical formula on the relationship between the viscosity and the powder loading is: ηr=η/ηb=A(1-Ф/Фmax)/^- m . The value m is calculated as 0.33. The flow activation energy Ea decreases with the increase of shear rate.
文摘The chip deformation of titanium alloys is typical shear localization from low cutting speed, which is general phenomenon in machining of difficult to cut material at high cutting speed. This paper investigates the chip formation process in machining titanium alloys, and puts forward a three stage model describing formation process of shear localized chip. This model explains how the shear localized chip segments initiate, become trapezoid and form serrated chips.
基金Project(20123021004) supported by the Key Program of the Aeronautical Science Foundation of ChinaProject(51312030501) supported by the Pre-Research Program of China
文摘The effect of friction pressure p and oxygen concentration xo on the fireproof performance of Ti40 titanium alloy was studied by frictional ignition test, the U--Xo relationship quantitatively describing the fireproof performance of Ti40 was established and the fireproof mechanism of Ti40 was analyzed by SEM, XRD and EDS. The results show that the p--xo relationship of Ti40 obeys parabolic rule. The varying range of xo is about 25% while p varies within 0.1-0.25 MPa. When Xo is 〉70%, Ti40 is ignited immediately at room temperature and develops into continual and steady burning, and the duration of burning is more than 10 s. The fireproof performance of Ti40 is better than TC4 while xo of Ti40 is at least 40% higher than TC4. When Xo is low, the fireproof performance of Ti40 is more sensitive to p; when Xo increases, it is more sensitive to Xo. The forming of fused oxides of V205, TiO2 and Cr203 with strong inner interaction during friction is the basic reason of high fireproof performance of Ti40.
基金Acknowledgments The authors wish to thank the National Natural Science Foundation of China (Grant No. 51005234 and 50905180), the Foundation of China University of Mining and Technology (Grant No. 2009A056) and the Natural Science Foundation of Jiangsu Province (Grant No. BK2008005).
文摘Titanium cermets were successfully synthesized on the surface of biomedical grade titanium alloys by using sequential carburization method. The mechanical properties such as hardness, fracture toughness and plasticity were measured to estimate the potential application of titanium cermets. The results show that after carburization the surface hardness of titanium cermets was 778 HV, with a significant improvement of 128% compared with that of titanium alloys. In addition, the fracture toughness of titanium cermets was 21.5 × 10^6 Pa.m^1/2, much higher than that of other ceramics. Furthermore, the analysis of the loading-unloading curve in the nanoindentation test also indicates that the plasticity of titanium cermet reached 32.1%, a relatively high value which illustrates the combination of the metal and ceramics properties. The results suggest that sequential carburization should be an efficient way to produce titanium cermets with hard surface, high toughness and plasticity.
基金financially sponsored by the International Science and Technology Cooperation Project (No.2010DFA52280)
文摘Titanium and titanium alloys have several advantages, but the cost of titanium alloys is very expensive compared with the traditional metal materials. This article introduces two new low-cost titanium alloys Ti-2.1Cr-1.3Fe (TCF alloy) and Ti-3Al-2.1Cr-1.3Fe (TACF alloy). In this study, we used Cr-Fe master alloy as one of the raw materials to develop the two new alloys. We introduce the microstructure and tensile properties of the two new alloys from β solution treated with different cooling methods. Optical microscopy (OM), X-ray diffractometry (XRD), and transmission electron microscopy (TEM) were employed to analyze the phase constitution, and scanning electron microscopy (SEM) was used to observe the fracture surfaces. The results indicate that the microstructures consist of β grain boundary and α′ martensite after water quenching (WQ), β matrix and α phase after air cooling (AC) and furnace cooling (FC), respectively. Also, the microstructure is the typical basketweave structures after FC. Of course, athermal ω is also observed by TEM after WQ. The strength increases with decreasing cooling rates and the plasticity is reversed. Because of the athermal ω, the strength and ductility are highest and lowest when the cooling method is WQ. The strength of TACF alloy is higher than the TCF alloy, but the plasticity is lower. The fracture surfaces are almost entirely covered with dimples under the cooling methods of AC and FC. Also, we observe an intergranular fracture area that is generated by athermal ω, although some dimples are observed after WQ.
文摘The aim of this paper was to study the reaction between a Ti-6Al-4V alloy and boron nitride based investment shell molds used for investment casting titanium. In BN based investment shell molds, the face coatings are made of pretreated hexagonal boron nitride (hBN) with a few yttria (Y2O3) and colloidal yttria as binder. The Ti-6Al-4V alloy was melted in a controlled atmosphere induction furnace with a segment water-cooled copper crucible. The cross-section of reaction interface between Ti alloys and shell mold was investigated by electron probe micro-analyzer (EPMA) and microhardness tester. The results show that the reaction is not serious, the thickness of the reacting layer is about 30-50 μm, and the thickness of α-case is about 180-200 pro. Moreover the α-case formation mechanism was also discussed.
基金supported by the Shandong Provincial Key Research and Development Plan(Project No.2016GGX102018)Shandong Provincial Natural Science Foundation,China(Project No.ZR2017MEE063)
文摘Laser cladding is a new surface modification technology, and is widely used for fabricating wear and corrosion resistant composites coatings. Self-fluxing alloys have many advantages, such as excellent properties of deoxidizing and slagging, high wear resistance, low melting point and easy cladding, and are often used in laser cladding to improve wear and corrosion resistance of titanium and its alloys. In this paper, the recent development of Ni-based and Co-based self-fluxing alloy coatings which includes the influenee of rare earth and ceramic particles in coatings are summarized. Besides, the effects of processing parameters, such as laser power and scanning speed, on coatings are reviewed. Finally, the trend of development in the future is forecasted.