为解决物联网通信技术目前存在的传输距离受限、成本高昂和信号易受干扰等问题,对PLC-IoT(power line communication internet of things)技术在智能物联网领域的应用架构开展了相关研究。在ZigBee无线通信技术、Konnex(KNX)总线技术的...为解决物联网通信技术目前存在的传输距离受限、成本高昂和信号易受干扰等问题,对PLC-IoT(power line communication internet of things)技术在智能物联网领域的应用架构开展了相关研究。在ZigBee无线通信技术、Konnex(KNX)总线技术的基础上,依据PLC-IoT技术的免布专用通信线、通信带宽高、通信时延低等技术特性及优势,设计了PLC-IoT技术在配电物联网、智慧道路、智能充电桩等智慧物联网领域的应用架构,并验证了PLC-IoT技术应用于智能家居系统的可行性。结果表明:应用PLC-IoT技术的家居系统实现了ZigBee技术家居系统无法做到的长距离稳定通信,较使用KNX技术降低了约30%的成本,提升了系统整体的抗干扰性。PLC-IoT技术相较于ZigBee技术和KNX技术更适合实现智能家居、楼宇自动化等智慧物联,可提升系统的安全性与稳定性,满足新兴业务对可靠性和效率的需求。展开更多
One of the buzzwords in the Information Technology is Internet of Things (IoT). The future is Internet of Things, which will transform the real world objects into intelligent virtual objects. The IoT aims to unify eve...One of the buzzwords in the Information Technology is Internet of Things (IoT). The future is Internet of Things, which will transform the real world objects into intelligent virtual objects. The IoT aims to unify everything in our world under a common infrastructure, giving us not only control of things around us, but also keeping us informed of the state of the things. In Light of this, present study addresses IoT concepts through systematic review of scholarly research papers, corporate white papers, professional discussions with experts and online databases. Moreover this research article focuses on definitions, geneses, basic requirements, characteristics and aliases of Internet of Things. The main objective of this paper is to provide an overview of Internet of Things, architectures, and vital technologies and their usages in our daily life. However, this manuscript will give good comprehension for the new researchers, who want to do research in this field of Internet of Things (Technological GOD) and facilitate knowledge accumulation in efficiently.展开更多
随着物联网技术的飞速发展,窄带物联网(Narrow Band Internet of Things,NB-IoT)作为一种低功耗、广覆盖、大连接的无线通信技术,逐渐成为连接物理世界与数字世界的桥梁。然而,在实际应用中,NB-IoT信号面临着诸如信号衰减、干扰、覆盖...随着物联网技术的飞速发展,窄带物联网(Narrow Band Internet of Things,NB-IoT)作为一种低功耗、广覆盖、大连接的无线通信技术,逐渐成为连接物理世界与数字世界的桥梁。然而,在实际应用中,NB-IoT信号面临着诸如信号衰减、干扰、覆盖不均等挑战。这些挑战不仅影响用户体验,还限制了物联网应用的进一步发展。因此,研究面向物联网的NB-IoT信号优化方法具有重要意义。文章深入研究面向物联网的NB-IoT信号优化方法,提出多种有效的优化策略和技术手段。展开更多
In order to incorporate smart elements into distribution networks at ITELCA laboratories in Bogotá-Colombia, a Machine-to-Machine-based solution has been developed. This solution aids in the process of low-cost e...In order to incorporate smart elements into distribution networks at ITELCA laboratories in Bogotá-Colombia, a Machine-to-Machine-based solution has been developed. This solution aids in the process of low-cost electrical fault location, which contributes to improving quality of service, particularly by shortening interruption time spans in mid-voltage grids. The implementation makes use of MQTT protocol with an intensive use of Internet of things (IoT) environment which guarantees the following properties within the automation process: Advanced reports and statistics, remote command execution on one or more units (groups of units), detailed monitoring of remote units and custom alarm mechanism and firmware upgrade on one or more units (groups of units). This kind of implementation is the first one in Colombia and it is able to automatically recover from an N-1 fault.展开更多
The concept of smart houses has grown in prominence in recent years.Major challenges linked to smart homes are identification theft,data safety,automated decision-making for IoT-based devices,and the security of the d...The concept of smart houses has grown in prominence in recent years.Major challenges linked to smart homes are identification theft,data safety,automated decision-making for IoT-based devices,and the security of the device itself.Current home automation systems try to address these issues but there is still an urgent need for a dependable and secure smart home solution that includes automatic decision-making systems and methodical features.This paper proposes a smart home system based on ensemble learning of random forest(RF)and convolutional neural networks(CNN)for programmed decision-making tasks,such as categorizing gadgets as“OFF”or“ON”based on their normal routine in homes.We have integrated emerging blockchain technology to provide secure,decentralized,and trustworthy authentication and recognition of IoT devices.Our system consists of a 5V relay circuit,various sensors,and a Raspberry Pi server and database for managing devices.We have also developed an Android app that communicates with the server interface through an HTTP web interface and an Apache server.The feasibility and efficacy of the proposed smart home automation system have been evaluated in both laboratory and real-time settings.It is essential to use inexpensive,scalable,and readily available components and technologies in smart home automation systems.Additionally,we must incorporate a comprehensive security and privacy-centric design that emphasizes risk assessments,such as cyberattacks,hardware security,and other cyber threats.The trial results support the proposed system and demonstrate its potential for use in everyday life.展开更多
In recent years,the Internet of Things(IoT)technology has been considered one of the most attractive fields for researchers due to its aspirations and implications for society and life as a whole.The IoT environment c...In recent years,the Internet of Things(IoT)technology has been considered one of the most attractive fields for researchers due to its aspirations and implications for society and life as a whole.The IoT environment contains vast numbers of devices,equipment,and heterogeneous users who generate massive amounts of data.Furthermore,things’entry into and exit fromIoT systems occur dynamically,changing the topology and content of IoT networks very quickly.Therefore,managing IoT environments is among the most pressing challenges.This paper proposes an adaptive and dynamic scheme for managing IoT environments is proposed.This management scheme depends on the use of previous management methodologies,considering two main factors.The first factor is network status,which is determined in real-time.The second factor is a management method’s suitability according to its desired administration.To test the proposed management scheme,a simulation environment is created using NS3.The metrics used to measure the management scheme performance are bandwidth consumption,energy consumption,packet loss,throughput,delay,usage rate of individualmanagement techniques,and transformation.The simulation results prove that the proposed management scheme outperformed the individual 6LowPANSNMP,CoAP,and LWM2M management schemes.展开更多
IoT is considered as one of the key enabling technologies for the fourth industrial revolution that is known as Industry 4.0. In this paper, we consider the mechatronic component as the lowest level in the system comp...IoT is considered as one of the key enabling technologies for the fourth industrial revolution that is known as Industry 4.0. In this paper, we consider the mechatronic component as the lowest level in the system composition hierarchy that tightly integrates mechanics with the electronics and software required to convert the mechanics to intelligent (smart) object offering well defined services to its environment. For this mechatronic component to be integrated in the IoT-based industrial automation environment, a software layer is required on top of it to convert its conventional interface to an IoT compliant one. This layer, which we call IoT wrapper, transforms the conventional mechatronic component to an Industrial Automation Thing (IAT). The IAT is the key element of an IoT model specifically developed in the context of this work for the manufacturing domain. The model is compared to existing IoT models and its main differences are discussed. A model-to-model transformer is presented to automatically transform the legacy mechatronic component to an IAT ready to be integrated in the IoT-based industrial automation environment. The UML4IoT profile is used in the form of a Domain Specific Modelling Language to automate this transformation. A prototype implementation of an Industrial Automation Thing using C and the Contiki operating system demonstrates the effectiveness of the proposed approach.展开更多
Active soil moisture monitoring is an important consideration in irrigation water management. A permanent and readily accessible record of changes in soil moisture can be used to improve future water management decisi...Active soil moisture monitoring is an important consideration in irrigation water management. A permanent and readily accessible record of changes in soil moisture can be used to improve future water management decision-making. Similarly, accessing stored soil moisture data in near-real-time is also essential for making timely farming and management decisions, such as where, when, and how much irrigation to apply. Access to reliable communication systems and delivery of real-time data can be affected by its availability near production fields. Therefore, soil moisture monitoring systems with real-time data functionality that can meet the needs of farmers at an affordable cost are currently needed. The objective of the study was to develop and fieldtest affordable cell-phone-based Internet of things (IoT) systems for soil moisture monitoring. These IoT systems were designed using low-cost hardware components and open-source software to transmit soil moisture data from the Watermark 200SS or ECH<sub>2</sub>O EC-5 sensors. These monitoring systems utilized either Particle Electron or Particle Proton Arduino-compatible devices for data communication. The IoT soil moisture monitoring systems have been deployed and operated successfully over the last three years in South Carolina.展开更多
the world is experiencing a strong rush towards modern technology, while specialized companies are living a terrible rush in the information technology towards the so-called Internet of things IoT or Internet of objec...the world is experiencing a strong rush towards modern technology, while specialized companies are living a terrible rush in the information technology towards the so-called Internet of things IoT or Internet of objects,</span><span style="font-family:""> </span><span style="font-family:Verdana;">which is the integration of things with the world of Internet, by adding hardware or/and software to be smart and so be able to communicate with each other and participate effectively in all aspects of daily life,</span><span style="font-family:""> </span><span style="font-family:Verdana;">so enabling new forms of communication between people and things, and between things themselves, that’s will change the traditional life into a high style of living. But it won’t be easy, because there are still many challenges an</span><span style="font-family:Verdana;">d</span><span style="font-family:Verdana;"> issues that need to be addressed and have to be viewed from various aspects to realize </span><span style="font-family:Verdana;">their</span><span style="font-family:Verdana;"> full potential. The main objective of this review paper will provide the reader with a detailed discussion from a technological and social perspective. The various IoT challenges and issues, definition and architecture were discussed. Furthermore, a description of several sensors and actuators and </span><span style="font-family:Verdana;">their</span><span style="font-family:Verdana;"> smart communication. Also, the most important application areas of IoT were presented. This work will help readers and researchers understand the IoT and its potential application in the real world.展开更多
由于地址跳变是物联网主动防御的一种有效手段,但因跳变资源匮乏、可预见性以及数据包混淆度低已经成为制约物联网地址跳变的主要问题。为此,提出一种基于双模式端址跳变的主动防御方法。该方法设计了双模式端址选择算法,通过动态确定...由于地址跳变是物联网主动防御的一种有效手段,但因跳变资源匮乏、可预见性以及数据包混淆度低已经成为制约物联网地址跳变的主要问题。为此,提出一种基于双模式端址跳变的主动防御方法。该方法设计了双模式端址选择算法,通过动态确定虚拟端址生成策略,以通信时间为阈值,扩大端址跳变空间,从而解决地址池资源受限问题。同时,还构建了双虚拟端址跳变方法,通过动态分配和同步虚拟接收和发送地址,提升数据包混淆度,增强跳变的不可预见性。并且基于SDN(Software Defined Network)设计了流表双向同步机制,实现流表的动态下发和同步,以保证端址跳变的一致性。实验结果表明,该方法能有效提升地址跳变的多样性和不可预测性,显著增强抵御嗅探攻击的能力。展开更多
Internet of things (IoT) has become an interesting topic in the field of technological research. It is basically interconnecting of devices with each other over the internet. Beside its general use in terms of autonom...Internet of things (IoT) has become an interesting topic in the field of technological research. It is basically interconnecting of devices with each other over the internet. Beside its general use in terms of autonomous cars and smart homes, but some of the best applications of IoT technology in fields of health care monitoring is worth mentioning. The main purpose of this research work is to provide comport services for patients. It can be used to promote basic nursing care by improving the quality of care and patient safety from patient home environment. Rural area of a country lacks behind the proper patient monitoring system. So, remote monitoring and prescribing by sharing medical information in an authenticated manner is very effective for betterment of medical facilities in rural area. We have proposed a healthcare system which can analyze ECG report using supervise machine learning techniques. Analyzing report can be stored in cloud platform which can be further used to prescribe by the experienced medical practitioner. For performance evaluation, ECG data is analyzed using six supervised machine learning algorithms. Data sets are divided into two groups: 75 percent data for training the model and rest 25 percent data for testing. To avoid any kind of anomalies or repetitions, cross validation and random train-test split was used to obtain the result as accurate as possible.展开更多
为了解决移动通信系统中的高延迟和覆盖盲点问题,提出了一种基于认知无线电-非正交多址接入(Cognitive Radio Non-orthogonal Multiple Access,CR-NOMA)的工业物联网网络。在认知网络中次用户采用解码转发(Decode and Forward,DF)和放...为了解决移动通信系统中的高延迟和覆盖盲点问题,提出了一种基于认知无线电-非正交多址接入(Cognitive Radio Non-orthogonal Multiple Access,CR-NOMA)的工业物联网网络。在认知网络中次用户采用解码转发(Decode and Forward,DF)和放大转发(Amplify and Forward,AF)两种辅助解码方式下,推导了主用户和次用户在完全串行干扰或不完全串行干扰两种终端状态下的中断性能。当用户间链路条件相同时,认知中继采用AF方式优于DF方式,且不完全串行干扰技术后系统残留干扰噪声的增大也会导致主用户和次用户的中断概率增大。研究还发现,各用户移动导致用户之间距离增大时,主用户和次用户的中断概率也会增大。展开更多
Enhancing the interconnection of devices and systems,the Internet of Things(IoT)is a paradigm-shifting technology.IoT security concerns are still a substantial concern despite its extraordinary advantages.This paper o...Enhancing the interconnection of devices and systems,the Internet of Things(IoT)is a paradigm-shifting technology.IoT security concerns are still a substantial concern despite its extraordinary advantages.This paper offers an extensive review of IoT security,emphasizing the technology’s architecture,important security elements,and common attacks.It highlights how important artificial intelligence(AI)is to bolstering IoT security,especially when it comes to addressing risks at different IoT architecture layers.We systematically examined current mitigation strategies and their effectiveness,highlighting contemporary challenges with practical solutions and case studies from a range of industries,such as healthcare,smart homes,and industrial IoT.Our results highlight the importance of AI methods that are lightweight and improve security without compromising the limited resources of devices and computational capability.IoT networks can ensure operational efficiency and resilience by proactively identifying and countering security risks by utilizing machine learning capabilities.This study provides a comprehensive guide for practitioners and researchers aiming to understand the intricate connection between IoT,security challenges,and AI-driven solutions.展开更多
The Internet of Things(IoT)has revolutionized how we interact with and gather data from our surrounding environment.IoT devices with various sensors and actuators generate vast amounts of data that can be harnessed to...The Internet of Things(IoT)has revolutionized how we interact with and gather data from our surrounding environment.IoT devices with various sensors and actuators generate vast amounts of data that can be harnessed to derive valuable insights.The rapid proliferation of Internet of Things(IoT)devices has ushered in an era of unprecedented data generation and connectivity.These IoT devices,equipped with many sensors and actuators,continuously produce vast volumes of data.However,the conventional approach of transmitting all this data to centralized cloud infrastructures for processing and analysis poses significant challenges.However,transmitting all this data to a centralized cloud infrastructure for processing and analysis can be inefficient and impractical due to bandwidth limitations,network latency,and scalability issues.This paper proposed a Self-Learning Internet Traffic Fuzzy Classifier(SLItFC)for traffic data analysis.The proposed techniques effectively utilize clustering and classification procedures to improve classification accuracy in analyzing network traffic data.SLItFC addresses the intricate task of efficiently managing and analyzing IoT data traffic at the edge.It employs a sophisticated combination of fuzzy clustering and self-learning techniques,allowing it to adapt and improve its classification accuracy over time.This adaptability is a crucial feature,given the dynamic nature of IoT environments where data patterns and traffic characteristics can evolve rapidly.With the implementation of the fuzzy classifier,the accuracy of the clustering process is improvised with the reduction of the computational time.SLItFC can reduce computational time while maintaining high classification accuracy.This efficiency is paramount in edge computing,where resource constraints demand streamlined data processing.Additionally,SLItFC’s performance advantages make it a compelling choice for organizations seeking to harness the potential of IoT data for real-time insights and decision-making.With the Self-Learning process,the SLItFC model monitors the network traffic data acquired from the IoT Devices.The Sugeno fuzzy model is implemented within the edge computing environment for improved classification accuracy.Simulation analysis stated that the proposed SLItFC achieves 94.5%classification accuracy with reduced classification time.展开更多
Covert communication can conceal the existence of wireless transmission and thus has the ability to address information security transfer issue in many applications of the booming Internet of Things(IoT).However,the p...Covert communication can conceal the existence of wireless transmission and thus has the ability to address information security transfer issue in many applications of the booming Internet of Things(IoT).However,the proliferation of sensing devices has generated massive amounts of data,which has increased the burden of covert communication.Considering the spatiotemporal correlation of data collection causing redundancy between data,eliminating duplicate data before transmission is beneficial for shortening transmission time,reducing the average received signal power of warden,and ultimately realizing covert communication.In this paper,we propose to apply delta compression technology in the gateway to reduce the amount of data generated by IoT devices,and then sent it to the cloud server.To this end,a cost model and evaluation method that is closer to the actual storage mode of computer systems is been constructed.Based on which,the delta version sequence obtained by existing delta compression algorithms is no longer compact,manifested by the still high cost.In this situation,we designed the correction scheme based on instructions merging(CSIM)correction to save costs by merging instructions.Firstly,the delta version sequence is divided into five categories and corresponding merge rules were derived.Then,for any COPY/ADD class delta compression algorithm,merge according to strict to relaxed to selection rules while generating instructions.Finally,a more cost-effective delta version sequence can be gained.The experimental results on random data show that the delta version sequences output by the CSIM corrected 1.5-pass and greedy algorithms have better performance in cost reducing.展开更多
Cloud computing has become increasingly popular due to its capacity to perform computations without relying on physical infrastructure,thereby revolutionizing computer processes.However,the rising energy consumption i...Cloud computing has become increasingly popular due to its capacity to perform computations without relying on physical infrastructure,thereby revolutionizing computer processes.However,the rising energy consumption in cloud centers poses a significant challenge,especially with the escalating energy costs.This paper tackles this issue by introducing efficient solutions for data placement and node management,with a clear emphasis on the crucial role of the Internet of Things(IoT)throughout the research process.The IoT assumes a pivotal role in this study by actively collecting real-time data from various sensors strategically positioned in and around data centers.These sensors continuously monitor vital parameters such as energy usage and temperature,thereby providing a comprehensive dataset for analysis.The data generated by the IoT is seamlessly integrated into the Hybrid TCN-GRU-NBeat(NGT)model,enabling a dynamic and accurate representation of the current state of the data center environment.Through the incorporation of the Seagull Optimization Algorithm(SOA),the NGT model optimizes storage migration strategies based on the latest information provided by IoT sensors.The model is trained using 80%of the available dataset and subsequently tested on the remaining 20%.The results demonstrate the effectiveness of the proposed approach,with a Mean Squared Error(MSE)of 5.33%and a Mean Absolute Error(MAE)of 2.83%,accurately estimating power prices and leading to an average reduction of 23.88%in power costs.Furthermore,the integration of IoT data significantly enhances the accuracy of the NGT model,outperforming benchmark algorithms such as DenseNet,Support Vector Machine(SVM),Decision Trees,and AlexNet.The NGT model achieves an impressive accuracy rate of 97.9%,surpassing the rates of 87%,83%,80%,and 79%,respectively,for the benchmark algorithms.These findings underscore the effectiveness of the proposed method in optimizing energy efficiency and enhancing the predictive capabilities of cloud computing systems.The IoT plays a critical role in driving these advancements by providing real-time data insights into the operational aspects of data centers.展开更多
The Internet of Medical Things(IoMT)is an application of the Internet of Things(IoT)in the medical field.It is a cutting-edge technique that connects medical sensors and their applications to healthcare systems,which ...The Internet of Medical Things(IoMT)is an application of the Internet of Things(IoT)in the medical field.It is a cutting-edge technique that connects medical sensors and their applications to healthcare systems,which is essential in smart healthcare.However,Personal Health Records(PHRs)are normally kept in public cloud servers controlled by IoMT service providers,so privacy and security incidents may be frequent.Fortunately,Searchable Encryption(SE),which can be used to execute queries on encrypted data,can address the issue above.Nevertheless,most existing SE schemes cannot solve the vector dominance threshold problem.In response to this,we present a SE scheme called Vector Dominance with Threshold Searchable Encryption(VDTSE)in this study.We use a Lagrangian polynomial technique and convert the vector dominance threshold problem into a constraint that the number of two equal-length vectors’corresponding bits excluding wildcards is not less than a threshold t.Then,we solve the problem using the proposed technique modified in Hidden Vector Encryption(HVE).This technique makes the trapdoor size linear to the number of attributes and thus much smaller than that of other similar SE schemes.A rigorous experimental analysis of a specific application for privacy-preserving diabetes demonstrates the feasibility of the proposed VDTSE scheme.展开更多
Solar insecticidal lamps(SIL) can effectively control pests and reduce the use of pesticides. Combining SIL and Internet of Things(IoT) has formed a new type of agricultural IoT,known as SIL-IoT, which can improve the...Solar insecticidal lamps(SIL) can effectively control pests and reduce the use of pesticides. Combining SIL and Internet of Things(IoT) has formed a new type of agricultural IoT,known as SIL-IoT, which can improve the effectiveness of migratory phototropic pest control. However, since the SIL is connected to the Internet, it is vulnerable to various security issues.These issues can lead to serious consequences, such as tampering with the parameters of SIL, illegally starting and stopping SIL,etc. In this paper, we describe the overall security requirements of SIL-IoT and present an extensive survey of security and privacy solutions for SIL-IoT. We investigate the background and logical architecture of SIL-IoT, discuss SIL-IoT security scenarios, and analyze potential attacks. Starting from the security requirements of SIL-IoT we divide them into six categories, namely privacy, authentication, confidentiality, access control, availability,and integrity. Next, we describe the SIL-IoT privacy and security solutions, as well as the blockchain-based solutions. Based on the current survey, we finally discuss the challenges and future research directions of SIL-IoT.展开更多
Time synchronization(TS)is crucial for ensuring the secure and reliable functioning of the distribution power Internet of Things(IoT).Multi-clock source time synchronization(MTS)has significant advantages of high reli...Time synchronization(TS)is crucial for ensuring the secure and reliable functioning of the distribution power Internet of Things(IoT).Multi-clock source time synchronization(MTS)has significant advantages of high reliability and accuracy but still faces challenges such as optimization of the multi-clock source selection and the clock source weight calculation at different timescales,and the coupling of synchronization latency jitter and pulse phase difference.In this paper,the multi-timescale MTS model is conducted,and the reinforcement learning(RL)and analytic hierarchy process(AHP)-based multi-timescale MTS algorithm is designed to improve the weighted summation of synchronization latency jitter standard deviation and average pulse phase difference.Specifically,the multi-clock source selection is optimized based on Softmax in the large timescale,and the clock source weight calculation is optimized based on lower confidence bound-assisted AHP in the small timescale.Simulation shows that the proposed algorithm can effectively reduce time synchronization delay standard deviation and average pulse phase difference.展开更多
文摘为解决物联网通信技术目前存在的传输距离受限、成本高昂和信号易受干扰等问题,对PLC-IoT(power line communication internet of things)技术在智能物联网领域的应用架构开展了相关研究。在ZigBee无线通信技术、Konnex(KNX)总线技术的基础上,依据PLC-IoT技术的免布专用通信线、通信带宽高、通信时延低等技术特性及优势,设计了PLC-IoT技术在配电物联网、智慧道路、智能充电桩等智慧物联网领域的应用架构,并验证了PLC-IoT技术应用于智能家居系统的可行性。结果表明:应用PLC-IoT技术的家居系统实现了ZigBee技术家居系统无法做到的长距离稳定通信,较使用KNX技术降低了约30%的成本,提升了系统整体的抗干扰性。PLC-IoT技术相较于ZigBee技术和KNX技术更适合实现智能家居、楼宇自动化等智慧物联,可提升系统的安全性与稳定性,满足新兴业务对可靠性和效率的需求。
文摘One of the buzzwords in the Information Technology is Internet of Things (IoT). The future is Internet of Things, which will transform the real world objects into intelligent virtual objects. The IoT aims to unify everything in our world under a common infrastructure, giving us not only control of things around us, but also keeping us informed of the state of the things. In Light of this, present study addresses IoT concepts through systematic review of scholarly research papers, corporate white papers, professional discussions with experts and online databases. Moreover this research article focuses on definitions, geneses, basic requirements, characteristics and aliases of Internet of Things. The main objective of this paper is to provide an overview of Internet of Things, architectures, and vital technologies and their usages in our daily life. However, this manuscript will give good comprehension for the new researchers, who want to do research in this field of Internet of Things (Technological GOD) and facilitate knowledge accumulation in efficiently.
文摘随着物联网技术的飞速发展,窄带物联网(Narrow Band Internet of Things,NB-IoT)作为一种低功耗、广覆盖、大连接的无线通信技术,逐渐成为连接物理世界与数字世界的桥梁。然而,在实际应用中,NB-IoT信号面临着诸如信号衰减、干扰、覆盖不均等挑战。这些挑战不仅影响用户体验,还限制了物联网应用的进一步发展。因此,研究面向物联网的NB-IoT信号优化方法具有重要意义。文章深入研究面向物联网的NB-IoT信号优化方法,提出多种有效的优化策略和技术手段。
文摘In order to incorporate smart elements into distribution networks at ITELCA laboratories in Bogotá-Colombia, a Machine-to-Machine-based solution has been developed. This solution aids in the process of low-cost electrical fault location, which contributes to improving quality of service, particularly by shortening interruption time spans in mid-voltage grids. The implementation makes use of MQTT protocol with an intensive use of Internet of things (IoT) environment which guarantees the following properties within the automation process: Advanced reports and statistics, remote command execution on one or more units (groups of units), detailed monitoring of remote units and custom alarm mechanism and firmware upgrade on one or more units (groups of units). This kind of implementation is the first one in Colombia and it is able to automatically recover from an N-1 fault.
基金funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2024R333)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘The concept of smart houses has grown in prominence in recent years.Major challenges linked to smart homes are identification theft,data safety,automated decision-making for IoT-based devices,and the security of the device itself.Current home automation systems try to address these issues but there is still an urgent need for a dependable and secure smart home solution that includes automatic decision-making systems and methodical features.This paper proposes a smart home system based on ensemble learning of random forest(RF)and convolutional neural networks(CNN)for programmed decision-making tasks,such as categorizing gadgets as“OFF”or“ON”based on their normal routine in homes.We have integrated emerging blockchain technology to provide secure,decentralized,and trustworthy authentication and recognition of IoT devices.Our system consists of a 5V relay circuit,various sensors,and a Raspberry Pi server and database for managing devices.We have also developed an Android app that communicates with the server interface through an HTTP web interface and an Apache server.The feasibility and efficacy of the proposed smart home automation system have been evaluated in both laboratory and real-time settings.It is essential to use inexpensive,scalable,and readily available components and technologies in smart home automation systems.Additionally,we must incorporate a comprehensive security and privacy-centric design that emphasizes risk assessments,such as cyberattacks,hardware security,and other cyber threats.The trial results support the proposed system and demonstrate its potential for use in everyday life.
基金funded by the Taif University Researchers Supporting Project No.(TURSP-2020/60),Taif University,Taif,Saudi Arabia.
文摘In recent years,the Internet of Things(IoT)technology has been considered one of the most attractive fields for researchers due to its aspirations and implications for society and life as a whole.The IoT environment contains vast numbers of devices,equipment,and heterogeneous users who generate massive amounts of data.Furthermore,things’entry into and exit fromIoT systems occur dynamically,changing the topology and content of IoT networks very quickly.Therefore,managing IoT environments is among the most pressing challenges.This paper proposes an adaptive and dynamic scheme for managing IoT environments is proposed.This management scheme depends on the use of previous management methodologies,considering two main factors.The first factor is network status,which is determined in real-time.The second factor is a management method’s suitability according to its desired administration.To test the proposed management scheme,a simulation environment is created using NS3.The metrics used to measure the management scheme performance are bandwidth consumption,energy consumption,packet loss,throughput,delay,usage rate of individualmanagement techniques,and transformation.The simulation results prove that the proposed management scheme outperformed the individual 6LowPANSNMP,CoAP,and LWM2M management schemes.
文摘IoT is considered as one of the key enabling technologies for the fourth industrial revolution that is known as Industry 4.0. In this paper, we consider the mechatronic component as the lowest level in the system composition hierarchy that tightly integrates mechanics with the electronics and software required to convert the mechanics to intelligent (smart) object offering well defined services to its environment. For this mechatronic component to be integrated in the IoT-based industrial automation environment, a software layer is required on top of it to convert its conventional interface to an IoT compliant one. This layer, which we call IoT wrapper, transforms the conventional mechatronic component to an Industrial Automation Thing (IAT). The IAT is the key element of an IoT model specifically developed in the context of this work for the manufacturing domain. The model is compared to existing IoT models and its main differences are discussed. A model-to-model transformer is presented to automatically transform the legacy mechatronic component to an IAT ready to be integrated in the IoT-based industrial automation environment. The UML4IoT profile is used in the form of a Domain Specific Modelling Language to automate this transformation. A prototype implementation of an Industrial Automation Thing using C and the Contiki operating system demonstrates the effectiveness of the proposed approach.
文摘Active soil moisture monitoring is an important consideration in irrigation water management. A permanent and readily accessible record of changes in soil moisture can be used to improve future water management decision-making. Similarly, accessing stored soil moisture data in near-real-time is also essential for making timely farming and management decisions, such as where, when, and how much irrigation to apply. Access to reliable communication systems and delivery of real-time data can be affected by its availability near production fields. Therefore, soil moisture monitoring systems with real-time data functionality that can meet the needs of farmers at an affordable cost are currently needed. The objective of the study was to develop and fieldtest affordable cell-phone-based Internet of things (IoT) systems for soil moisture monitoring. These IoT systems were designed using low-cost hardware components and open-source software to transmit soil moisture data from the Watermark 200SS or ECH<sub>2</sub>O EC-5 sensors. These monitoring systems utilized either Particle Electron or Particle Proton Arduino-compatible devices for data communication. The IoT soil moisture monitoring systems have been deployed and operated successfully over the last three years in South Carolina.
文摘the world is experiencing a strong rush towards modern technology, while specialized companies are living a terrible rush in the information technology towards the so-called Internet of things IoT or Internet of objects,</span><span style="font-family:""> </span><span style="font-family:Verdana;">which is the integration of things with the world of Internet, by adding hardware or/and software to be smart and so be able to communicate with each other and participate effectively in all aspects of daily life,</span><span style="font-family:""> </span><span style="font-family:Verdana;">so enabling new forms of communication between people and things, and between things themselves, that’s will change the traditional life into a high style of living. But it won’t be easy, because there are still many challenges an</span><span style="font-family:Verdana;">d</span><span style="font-family:Verdana;"> issues that need to be addressed and have to be viewed from various aspects to realize </span><span style="font-family:Verdana;">their</span><span style="font-family:Verdana;"> full potential. The main objective of this review paper will provide the reader with a detailed discussion from a technological and social perspective. The various IoT challenges and issues, definition and architecture were discussed. Furthermore, a description of several sensors and actuators and </span><span style="font-family:Verdana;">their</span><span style="font-family:Verdana;"> smart communication. Also, the most important application areas of IoT were presented. This work will help readers and researchers understand the IoT and its potential application in the real world.
文摘由于地址跳变是物联网主动防御的一种有效手段,但因跳变资源匮乏、可预见性以及数据包混淆度低已经成为制约物联网地址跳变的主要问题。为此,提出一种基于双模式端址跳变的主动防御方法。该方法设计了双模式端址选择算法,通过动态确定虚拟端址生成策略,以通信时间为阈值,扩大端址跳变空间,从而解决地址池资源受限问题。同时,还构建了双虚拟端址跳变方法,通过动态分配和同步虚拟接收和发送地址,提升数据包混淆度,增强跳变的不可预见性。并且基于SDN(Software Defined Network)设计了流表双向同步机制,实现流表的动态下发和同步,以保证端址跳变的一致性。实验结果表明,该方法能有效提升地址跳变的多样性和不可预测性,显著增强抵御嗅探攻击的能力。
文摘Internet of things (IoT) has become an interesting topic in the field of technological research. It is basically interconnecting of devices with each other over the internet. Beside its general use in terms of autonomous cars and smart homes, but some of the best applications of IoT technology in fields of health care monitoring is worth mentioning. The main purpose of this research work is to provide comport services for patients. It can be used to promote basic nursing care by improving the quality of care and patient safety from patient home environment. Rural area of a country lacks behind the proper patient monitoring system. So, remote monitoring and prescribing by sharing medical information in an authenticated manner is very effective for betterment of medical facilities in rural area. We have proposed a healthcare system which can analyze ECG report using supervise machine learning techniques. Analyzing report can be stored in cloud platform which can be further used to prescribe by the experienced medical practitioner. For performance evaluation, ECG data is analyzed using six supervised machine learning algorithms. Data sets are divided into two groups: 75 percent data for training the model and rest 25 percent data for testing. To avoid any kind of anomalies or repetitions, cross validation and random train-test split was used to obtain the result as accurate as possible.
文摘为了解决移动通信系统中的高延迟和覆盖盲点问题,提出了一种基于认知无线电-非正交多址接入(Cognitive Radio Non-orthogonal Multiple Access,CR-NOMA)的工业物联网网络。在认知网络中次用户采用解码转发(Decode and Forward,DF)和放大转发(Amplify and Forward,AF)两种辅助解码方式下,推导了主用户和次用户在完全串行干扰或不完全串行干扰两种终端状态下的中断性能。当用户间链路条件相同时,认知中继采用AF方式优于DF方式,且不完全串行干扰技术后系统残留干扰噪声的增大也会导致主用户和次用户的中断概率增大。研究还发现,各用户移动导致用户之间距离增大时,主用户和次用户的中断概率也会增大。
文摘Enhancing the interconnection of devices and systems,the Internet of Things(IoT)is a paradigm-shifting technology.IoT security concerns are still a substantial concern despite its extraordinary advantages.This paper offers an extensive review of IoT security,emphasizing the technology’s architecture,important security elements,and common attacks.It highlights how important artificial intelligence(AI)is to bolstering IoT security,especially when it comes to addressing risks at different IoT architecture layers.We systematically examined current mitigation strategies and their effectiveness,highlighting contemporary challenges with practical solutions and case studies from a range of industries,such as healthcare,smart homes,and industrial IoT.Our results highlight the importance of AI methods that are lightweight and improve security without compromising the limited resources of devices and computational capability.IoT networks can ensure operational efficiency and resilience by proactively identifying and countering security risks by utilizing machine learning capabilities.This study provides a comprehensive guide for practitioners and researchers aiming to understand the intricate connection between IoT,security challenges,and AI-driven solutions.
基金This research is funded by 2023 Henan Province Science and Technology Research Projects:Key Technology of Rapid Urban Flood Forecasting Based onWater Level Feature Analysis and Spatio-Temporal Deep Learning(No.232102320015)Henan Provincial Higher Education Key Research Project Program(Project No.23B520024)a Multi-Sensor-Based Indoor Environmental Parameters Monitoring and Control System.
文摘The Internet of Things(IoT)has revolutionized how we interact with and gather data from our surrounding environment.IoT devices with various sensors and actuators generate vast amounts of data that can be harnessed to derive valuable insights.The rapid proliferation of Internet of Things(IoT)devices has ushered in an era of unprecedented data generation and connectivity.These IoT devices,equipped with many sensors and actuators,continuously produce vast volumes of data.However,the conventional approach of transmitting all this data to centralized cloud infrastructures for processing and analysis poses significant challenges.However,transmitting all this data to a centralized cloud infrastructure for processing and analysis can be inefficient and impractical due to bandwidth limitations,network latency,and scalability issues.This paper proposed a Self-Learning Internet Traffic Fuzzy Classifier(SLItFC)for traffic data analysis.The proposed techniques effectively utilize clustering and classification procedures to improve classification accuracy in analyzing network traffic data.SLItFC addresses the intricate task of efficiently managing and analyzing IoT data traffic at the edge.It employs a sophisticated combination of fuzzy clustering and self-learning techniques,allowing it to adapt and improve its classification accuracy over time.This adaptability is a crucial feature,given the dynamic nature of IoT environments where data patterns and traffic characteristics can evolve rapidly.With the implementation of the fuzzy classifier,the accuracy of the clustering process is improvised with the reduction of the computational time.SLItFC can reduce computational time while maintaining high classification accuracy.This efficiency is paramount in edge computing,where resource constraints demand streamlined data processing.Additionally,SLItFC’s performance advantages make it a compelling choice for organizations seeking to harness the potential of IoT data for real-time insights and decision-making.With the Self-Learning process,the SLItFC model monitors the network traffic data acquired from the IoT Devices.The Sugeno fuzzy model is implemented within the edge computing environment for improved classification accuracy.Simulation analysis stated that the proposed SLItFC achieves 94.5%classification accuracy with reduced classification time.
基金supported by regional innovation capability guidance plan of Shaanxi Provincial Department of science and Technology(2022QFY01-14)Plan Project of the Xi’an Science and Technology(22GXFW0047)under Grant+1 种基金Science,Technology Plan Project of Xi’an Bei lin District(GX2214)under GrantKey R&D projects of Xianyang Science and Technology Bureau(2021ZDYF-NY-0019)。
文摘Covert communication can conceal the existence of wireless transmission and thus has the ability to address information security transfer issue in many applications of the booming Internet of Things(IoT).However,the proliferation of sensing devices has generated massive amounts of data,which has increased the burden of covert communication.Considering the spatiotemporal correlation of data collection causing redundancy between data,eliminating duplicate data before transmission is beneficial for shortening transmission time,reducing the average received signal power of warden,and ultimately realizing covert communication.In this paper,we propose to apply delta compression technology in the gateway to reduce the amount of data generated by IoT devices,and then sent it to the cloud server.To this end,a cost model and evaluation method that is closer to the actual storage mode of computer systems is been constructed.Based on which,the delta version sequence obtained by existing delta compression algorithms is no longer compact,manifested by the still high cost.In this situation,we designed the correction scheme based on instructions merging(CSIM)correction to save costs by merging instructions.Firstly,the delta version sequence is divided into five categories and corresponding merge rules were derived.Then,for any COPY/ADD class delta compression algorithm,merge according to strict to relaxed to selection rules while generating instructions.Finally,a more cost-effective delta version sequence can be gained.The experimental results on random data show that the delta version sequences output by the CSIM corrected 1.5-pass and greedy algorithms have better performance in cost reducing.
基金The authors extend their appreciation to Prince Sattam bin Abdulaziz University for funding this research work through the Project Number(PSAU/2023/01/27268).
文摘Cloud computing has become increasingly popular due to its capacity to perform computations without relying on physical infrastructure,thereby revolutionizing computer processes.However,the rising energy consumption in cloud centers poses a significant challenge,especially with the escalating energy costs.This paper tackles this issue by introducing efficient solutions for data placement and node management,with a clear emphasis on the crucial role of the Internet of Things(IoT)throughout the research process.The IoT assumes a pivotal role in this study by actively collecting real-time data from various sensors strategically positioned in and around data centers.These sensors continuously monitor vital parameters such as energy usage and temperature,thereby providing a comprehensive dataset for analysis.The data generated by the IoT is seamlessly integrated into the Hybrid TCN-GRU-NBeat(NGT)model,enabling a dynamic and accurate representation of the current state of the data center environment.Through the incorporation of the Seagull Optimization Algorithm(SOA),the NGT model optimizes storage migration strategies based on the latest information provided by IoT sensors.The model is trained using 80%of the available dataset and subsequently tested on the remaining 20%.The results demonstrate the effectiveness of the proposed approach,with a Mean Squared Error(MSE)of 5.33%and a Mean Absolute Error(MAE)of 2.83%,accurately estimating power prices and leading to an average reduction of 23.88%in power costs.Furthermore,the integration of IoT data significantly enhances the accuracy of the NGT model,outperforming benchmark algorithms such as DenseNet,Support Vector Machine(SVM),Decision Trees,and AlexNet.The NGT model achieves an impressive accuracy rate of 97.9%,surpassing the rates of 87%,83%,80%,and 79%,respectively,for the benchmark algorithms.These findings underscore the effectiveness of the proposed method in optimizing energy efficiency and enhancing the predictive capabilities of cloud computing systems.The IoT plays a critical role in driving these advancements by providing real-time data insights into the operational aspects of data centers.
基金supported in part by the National Natural Science Foundation of China under Grant Nos.61872289 and 62172266in part by the Henan Key Laboratory of Network Cryptography Technology LNCT2020-A07the Guangxi Key Laboratory of Trusted Software under Grant No.KX202308.
文摘The Internet of Medical Things(IoMT)is an application of the Internet of Things(IoT)in the medical field.It is a cutting-edge technique that connects medical sensors and their applications to healthcare systems,which is essential in smart healthcare.However,Personal Health Records(PHRs)are normally kept in public cloud servers controlled by IoMT service providers,so privacy and security incidents may be frequent.Fortunately,Searchable Encryption(SE),which can be used to execute queries on encrypted data,can address the issue above.Nevertheless,most existing SE schemes cannot solve the vector dominance threshold problem.In response to this,we present a SE scheme called Vector Dominance with Threshold Searchable Encryption(VDTSE)in this study.We use a Lagrangian polynomial technique and convert the vector dominance threshold problem into a constraint that the number of two equal-length vectors’corresponding bits excluding wildcards is not less than a threshold t.Then,we solve the problem using the proposed technique modified in Hidden Vector Encryption(HVE).This technique makes the trapdoor size linear to the number of attributes and thus much smaller than that of other similar SE schemes.A rigorous experimental analysis of a specific application for privacy-preserving diabetes demonstrates the feasibility of the proposed VDTSE scheme.
基金supported in part by the National Natural Science Foundation of China (62072248, 62072247)the Jiangsu Agriculture Science and Technology Innovation Fund (CX(21)3060)。
文摘Solar insecticidal lamps(SIL) can effectively control pests and reduce the use of pesticides. Combining SIL and Internet of Things(IoT) has formed a new type of agricultural IoT,known as SIL-IoT, which can improve the effectiveness of migratory phototropic pest control. However, since the SIL is connected to the Internet, it is vulnerable to various security issues.These issues can lead to serious consequences, such as tampering with the parameters of SIL, illegally starting and stopping SIL,etc. In this paper, we describe the overall security requirements of SIL-IoT and present an extensive survey of security and privacy solutions for SIL-IoT. We investigate the background and logical architecture of SIL-IoT, discuss SIL-IoT security scenarios, and analyze potential attacks. Starting from the security requirements of SIL-IoT we divide them into six categories, namely privacy, authentication, confidentiality, access control, availability,and integrity. Next, we describe the SIL-IoT privacy and security solutions, as well as the blockchain-based solutions. Based on the current survey, we finally discuss the challenges and future research directions of SIL-IoT.
基金supported by Science and Technology Project of China Southern Power Grid Company Limited under Grant Number 036000KK52200058(GDKJXM20202001).
文摘Time synchronization(TS)is crucial for ensuring the secure and reliable functioning of the distribution power Internet of Things(IoT).Multi-clock source time synchronization(MTS)has significant advantages of high reliability and accuracy but still faces challenges such as optimization of the multi-clock source selection and the clock source weight calculation at different timescales,and the coupling of synchronization latency jitter and pulse phase difference.In this paper,the multi-timescale MTS model is conducted,and the reinforcement learning(RL)and analytic hierarchy process(AHP)-based multi-timescale MTS algorithm is designed to improve the weighted summation of synchronization latency jitter standard deviation and average pulse phase difference.Specifically,the multi-clock source selection is optimized based on Softmax in the large timescale,and the clock source weight calculation is optimized based on lower confidence bound-assisted AHP in the small timescale.Simulation shows that the proposed algorithm can effectively reduce time synchronization delay standard deviation and average pulse phase difference.