Complex third-order cumulant has different definition forms. Different forms have different coupling properties, and the generated complex cumulants slices contain different coupling information of signals. In experim...Complex third-order cumulant has different definition forms. Different forms have different coupling properties, and the generated complex cumulants slices contain different coupling information of signals. In experiments, using the different definitions, the same coupling method is applied to both specific fault signals and normal signals. Furthermore, complex third-order cumulant slices spectrum is defined, and it is used to analyse the coupling features of normal signals and fault signals. Experiments indicate that the detection accuracy rate on the same fault is not the same with the different coupling method, thus, it provides an alternative method to diagnose the specific fault.展开更多
This paper presents a novel approach to structure determination of linear systems along with the choice of system orders and parameters. AutoRegressive (AR), Moving Average (MA) or AutoRegressive-Moving Average (...This paper presents a novel approach to structure determination of linear systems along with the choice of system orders and parameters. AutoRegressive (AR), Moving Average (MA) or AutoRegressive-Moving Average (ARMA) model structure can be extracted blindly from the Third Order Cumulants (TOC) of the system output ts, where the unknown system is driven by an unobservable stationary independent identically distributed (i.i.d.) non-Gaussian signal. By means of the system order recursion, whether the system has an AR structure or has AR part of an ARMA structure is firstly investigated. MA features in the TOC domain is then applied as a threshold to decide if the system is an MA model or has MA part of an ARMA model. Numerical simulations illustrate the generality of the proposed blind structure identification methodology that may serve as a guideline for blind, linear system modeling.展开更多
文摘Complex third-order cumulant has different definition forms. Different forms have different coupling properties, and the generated complex cumulants slices contain different coupling information of signals. In experiments, using the different definitions, the same coupling method is applied to both specific fault signals and normal signals. Furthermore, complex third-order cumulant slices spectrum is defined, and it is used to analyse the coupling features of normal signals and fault signals. Experiments indicate that the detection accuracy rate on the same fault is not the same with the different coupling method, thus, it provides an alternative method to diagnose the specific fault.
基金Supported by the National Natural Science Foundation of China (No.60575006).
文摘This paper presents a novel approach to structure determination of linear systems along with the choice of system orders and parameters. AutoRegressive (AR), Moving Average (MA) or AutoRegressive-Moving Average (ARMA) model structure can be extracted blindly from the Third Order Cumulants (TOC) of the system output ts, where the unknown system is driven by an unobservable stationary independent identically distributed (i.i.d.) non-Gaussian signal. By means of the system order recursion, whether the system has an AR structure or has AR part of an ARMA structure is firstly investigated. MA features in the TOC domain is then applied as a threshold to decide if the system is an MA model or has MA part of an ARMA model. Numerical simulations illustrate the generality of the proposed blind structure identification methodology that may serve as a guideline for blind, linear system modeling.