Aspects of the general Vlasov theory are examined separately as applied to a thin-walled channel section cantilever beam under free-end end loading. In particular, the flexural bending and shear that arise under trans...Aspects of the general Vlasov theory are examined separately as applied to a thin-walled channel section cantilever beam under free-end end loading. In particular, the flexural bending and shear that arise under transverse shear and axial torsional loading are each considered theoretically. These analyses involve the location of the shear centre at which transverse shear forces when applied do not produce torsion. This centre, when taken to be coincident with the centre of twist implies an equivalent reciprocal behaviour. That is, an axial torsion applied concentric with the shear centre will twist but not bend the beam. The respective bending and shear stress conversions are derived for each action applied to three aluminium alloy extruded channel sections mounted as cantilevers with a horizontal principal axis of symmetry. Bending and shear are considered more generally for other thin-walled sections when the transverse loading axes at the shear centre are not parallel to the section = s centroidal axes of principal second moments of area. The fixing at one end of the cantilever modifies the St Venant free angular twist and the free warping displacement. It is shown from the Wagner-Kappus torsion theory how the end constrained warping generates an axial stress distribution that varies with the length and across the cross-section for an axial torsion applied to the shear centre. It should be mentioned here for wider applications and validation of the Vlasov theory that attendant papers are to consider in detail bending and torsional loadings applied to other axes through each of the centroid and the web centre. Therein, both bending and twisting arise from transverse shear and axial torsion applied to each position being displaced from the shear centre. Here, the influence of the axis position upon the net axial and shear stress distributions is to be established. That is, the net axial stress from axial torsional loading is identified with the sum of axial stress due to bending and axial stress arising from constrained warping displacements at the fixing. The net shear stress distribution overlays the distributions from axial torsion and that from flexural shear under transverse loading. Both arise when transverse forces are displaced from the shear centre.展开更多
A new higher-order shear deformation theory based on global-local superposition technique is developed. The theory satisfies the free surface conditions and the geometric and stress continuity conditions at interfaces...A new higher-order shear deformation theory based on global-local superposition technique is developed. The theory satisfies the free surface conditions and the geometric and stress continuity conditions at interfaces. The global displacement components are of the Reddy theory and local components are of the internal first to third-order terms in each layer. A two-node beam element based on this theory is proposed. The solutions are compared with 3D-elasticity solutions. Numerical results show that present beam element has higher computational efficiency and higher accuracy.展开更多
Regarding laminated structures,an electromechanically coupled Finite Element(FE)model based on Layerwise Third-Order Shear Deformation(LW-TOSD)theory is proposed for sta-tic and dynamic analysis.LW-TOSD ensures the co...Regarding laminated structures,an electromechanically coupled Finite Element(FE)model based on Layerwise Third-Order Shear Deformation(LW-TOSD)theory is proposed for sta-tic and dynamic analysis.LW-TOSD ensures the continuity of in-plane displacements and trans-verse shear stresses.The current LW-TOSD can be applied to arbitrary multi-layer laminated structures with only seven Degrees of Freedom(DOFs)for each element node and eliminates the use of the shear correction factors.Moreover,a shear penalty stiffness matrix is constructed to sat-isfy artificial constraints to optimize the structural shear strain.A dynamic finite element model is obtained based on LW-TOSD using the Hamilton's principle.First,the accuracy of the current model is validated by comparing with literature and ABAQUS results.Then,this study carries out numerical investigations of piezolaminated structures for different width-to-thickness ratios,length-to-width ratios,penalty stiffness matrix,boundary conditions,electric fields and dynamics.展开更多
Due to the conflict between equilibrium and constitutive requirements,Eringen’s strain-driven nonlocal integral model is not applicable to nanostructures of engineering interest.As an alternative,the stress-driven mo...Due to the conflict between equilibrium and constitutive requirements,Eringen’s strain-driven nonlocal integral model is not applicable to nanostructures of engineering interest.As an alternative,the stress-driven model has been recently developed.In this paper,for higher-order shear deformation beams,the ill-posed issue(i.e.,excessive mandatory boundary conditions(BCs)cannot be met simultaneously)exists not only in strain-driven nonlocal models but also in stress-driven ones.The well-posedness of both the strain-and stress-driven two-phase nonlocal(TPN-Strain D and TPN-Stress D)models is pertinently evidenced by formulating the static bending of curved beams made of functionally graded(FG)materials.The two-phase nonlocal integral constitutive relation is equivalent to a differential law equipped with two restriction conditions.By using the generalized differential quadrature method(GDQM),the coupling governing equations are solved numerically.The results show that the two-phase models can predict consistent scale-effects under different supported and loading conditions.展开更多
Classical bending theories for beams and plates can not be used for short, stubby beams and thick plates since transverse shearing effect is excluded, and ordinary theories with multiple generalized displacements can ...Classical bending theories for beams and plates can not be used for short, stubby beams and thick plates since transverse shearing effect is excluded, and ordinary theories with multiple generalized displacements can not be used for long, slender beams and thin plates since the innate relation between rotation angle and deflection is ignored. These two types of theories are not consistent due to the contradiction of dependence and independence of the rotation angle. Based on several basic assumptions, a new type of theories which not only include the transverse shearing effect is presented, but also the relation between potation angle and deflection is obtained. Analytical solutions of several simple beams are given. It has been testified by numerical examples that the new theories can be used for either long, slender beams and thin plates or short, stubby beams and thick plates.展开更多
In this study, a model for dynamic instability of embedded single-walled car- bon nanotubes (SWCNTs) is presented. SWCNTs are modeled by the sinusoidal shear deformation beam theory (SSDBT). The modified couple st...In this study, a model for dynamic instability of embedded single-walled car- bon nanotubes (SWCNTs) is presented. SWCNTs are modeled by the sinusoidal shear deformation beam theory (SSDBT). The modified couple stress theory (MCST) is con- sidered in order to capture the size effects. The surrounding elastic medium is described by a visco-Pasternak foundation model, which accounts for normal, transverse shear, and damping loads. The motion equations are derived based on Hamilton's principle. The differential quadrature method (DQM) in conjunction with the Bolotin method is used in order to calculate the dynamic instability region (DIR) of SWCNTs. The effects of differ- ent parameters, such as nonlocal parameter, visco-Pasternak foundation, mode numbers, and geometrical parameters, are shown on the dynamic instability of SWCNTs. The re- sults depict that increasing the nonlocal parameter shifts the DIR to right. The results presented in this paper would be helpful in design and manufacturing of nano-electromechanical system (NEMS) and micro-electro-mechanical system (MEMS).展开更多
This paper focuses on the thermo-mechanical behaviors of functionally graded(FG)shape memory alloy(SMA)composite beams based on Timoshenko beam theory.The volume fraction of SMA fiber is graded in the thickness of bea...This paper focuses on the thermo-mechanical behaviors of functionally graded(FG)shape memory alloy(SMA)composite beams based on Timoshenko beam theory.The volume fraction of SMA fiber is graded in the thickness of beam according to a power-law function and the equivalent parameters are formulated.The governing differential equations,which can be solved by direct integration,are established by employing the composite laminated plate theory.The influences of FG parameter,ambient temperature and SMA fiber laying angle on the thermo-mechanical behaviors are numerically simulated and discussed under different boundary conditions.Results indicate that the neutral plane does not coincide with the middle plane of the composite beam and the distribution of martensite is asymmetric along the thickness.Both the increments of the functionally graded parameter and ambient temperature make the composite beam become stiffer.However,the influence of the SMA fiber laying angle can be negligent.This work can provide the theoretical basis for the design and application of FG SMA structures.展开更多
Based on the first-order shear deformable beam theory, a refined model for composite beams containing a through-the-width delamination is presented, and the deformation at the delamination front is considered. Differe...Based on the first-order shear deformable beam theory, a refined model for composite beams containing a through-the-width delamination is presented, and the deformation at the delamination front is considered. Different from the ordinary delami- nated beam theory, each of the perfectly bonded portions of the new model is constructed as two separated beams along the interface without assuming a plane section at the de- lamination front. The governing equations of the delaminated portions and bonded ones are established, combined with continuity conditions of displacements and internal forces. Solutions of delaminated composite beams with different boundary conditions, delamina- tion locations and sizes axe shown in excellent agreement with the finite element results, showing efficiency and applicability of the present model.展开更多
The vibration and instability of functionally graded material(FGM)sandwich cylindrical shells conveying fluid are investigated.The Navier-Stokes relation is used to describe the fluid pressure acting on the FGM sandwi...The vibration and instability of functionally graded material(FGM)sandwich cylindrical shells conveying fluid are investigated.The Navier-Stokes relation is used to describe the fluid pressure acting on the FGM sandwich shells.Based on the third-order shear deformation shell theory,the governing equations of the system are derived by using the Hamilton’s principle.To check the validity of the present analysis,the results are compared with those in previous studies for the special cases.Results manifest that the natural frequency of the fluid-conveying FGM sandwich shells increases with the rise of the core-to-thickness ratio and power-law exponent,while decreases with the rise of fluid density,radius-to-thickness ratio and length-to-radius ratio.The fluid-conveying FGM sandwich shells lose stability when the non-dimensional flow velocity falls in 2.1-2.5,which should be avoided in engineering application.展开更多
In structural analysis, it is often necessary to determine the geometrical properties of cross section. The location of the shear center is greater importance for an arbitrary cross section. In this study, the problem...In structural analysis, it is often necessary to determine the geometrical properties of cross section. The location of the shear center is greater importance for an arbitrary cross section. In this study, the problems of coupled shearing and torsional were analyzed by using the finite element method. Namely, the simultaneous equations with respect to the warping, shear deflection, angle of torsion and Lagrange’s multipliers are derived by finite element approximation. Solving them numerically, the matrix of the shearing rigidity and torsional rigidity is obtained. This matrix indicates the coupled shearing and torsional deflection. The shear center can be obtained determining the coordinate axes so as to eliminate the non-diagonal terms. Several numerical examples are performed and show that the present method gives excellent results for an arbitrary cross section.展开更多
文摘Aspects of the general Vlasov theory are examined separately as applied to a thin-walled channel section cantilever beam under free-end end loading. In particular, the flexural bending and shear that arise under transverse shear and axial torsional loading are each considered theoretically. These analyses involve the location of the shear centre at which transverse shear forces when applied do not produce torsion. This centre, when taken to be coincident with the centre of twist implies an equivalent reciprocal behaviour. That is, an axial torsion applied concentric with the shear centre will twist but not bend the beam. The respective bending and shear stress conversions are derived for each action applied to three aluminium alloy extruded channel sections mounted as cantilevers with a horizontal principal axis of symmetry. Bending and shear are considered more generally for other thin-walled sections when the transverse loading axes at the shear centre are not parallel to the section = s centroidal axes of principal second moments of area. The fixing at one end of the cantilever modifies the St Venant free angular twist and the free warping displacement. It is shown from the Wagner-Kappus torsion theory how the end constrained warping generates an axial stress distribution that varies with the length and across the cross-section for an axial torsion applied to the shear centre. It should be mentioned here for wider applications and validation of the Vlasov theory that attendant papers are to consider in detail bending and torsional loadings applied to other axes through each of the centroid and the web centre. Therein, both bending and twisting arise from transverse shear and axial torsion applied to each position being displaced from the shear centre. Here, the influence of the axis position upon the net axial and shear stress distributions is to be established. That is, the net axial stress from axial torsional loading is identified with the sum of axial stress due to bending and axial stress arising from constrained warping displacements at the fixing. The net shear stress distribution overlays the distributions from axial torsion and that from flexural shear under transverse loading. Both arise when transverse forces are displaced from the shear centre.
基金The project supported by the National Natural Science Foundation of China(10172023)
文摘A new higher-order shear deformation theory based on global-local superposition technique is developed. The theory satisfies the free surface conditions and the geometric and stress continuity conditions at interfaces. The global displacement components are of the Reddy theory and local components are of the internal first to third-order terms in each layer. A two-node beam element based on this theory is proposed. The solutions are compared with 3D-elasticity solutions. Numerical results show that present beam element has higher computational efficiency and higher accuracy.
基金support from the National Natural Science Foundation of China (No.11972020)the Natural Science Foundation of Shanghai,China (No.21ZR1424100).
文摘Regarding laminated structures,an electromechanically coupled Finite Element(FE)model based on Layerwise Third-Order Shear Deformation(LW-TOSD)theory is proposed for sta-tic and dynamic analysis.LW-TOSD ensures the continuity of in-plane displacements and trans-verse shear stresses.The current LW-TOSD can be applied to arbitrary multi-layer laminated structures with only seven Degrees of Freedom(DOFs)for each element node and eliminates the use of the shear correction factors.Moreover,a shear penalty stiffness matrix is constructed to sat-isfy artificial constraints to optimize the structural shear strain.A dynamic finite element model is obtained based on LW-TOSD using the Hamilton's principle.First,the accuracy of the current model is validated by comparing with literature and ABAQUS results.Then,this study carries out numerical investigations of piezolaminated structures for different width-to-thickness ratios,length-to-width ratios,penalty stiffness matrix,boundary conditions,electric fields and dynamics.
基金Project supported by the National Natural Science Foundation of China(No.11672131)。
文摘Due to the conflict between equilibrium and constitutive requirements,Eringen’s strain-driven nonlocal integral model is not applicable to nanostructures of engineering interest.As an alternative,the stress-driven model has been recently developed.In this paper,for higher-order shear deformation beams,the ill-posed issue(i.e.,excessive mandatory boundary conditions(BCs)cannot be met simultaneously)exists not only in strain-driven nonlocal models but also in stress-driven ones.The well-posedness of both the strain-and stress-driven two-phase nonlocal(TPN-Strain D and TPN-Stress D)models is pertinently evidenced by formulating the static bending of curved beams made of functionally graded(FG)materials.The two-phase nonlocal integral constitutive relation is equivalent to a differential law equipped with two restriction conditions.By using the generalized differential quadrature method(GDQM),the coupling governing equations are solved numerically.The results show that the two-phase models can predict consistent scale-effects under different supported and loading conditions.
文摘Classical bending theories for beams and plates can not be used for short, stubby beams and thick plates since transverse shearing effect is excluded, and ordinary theories with multiple generalized displacements can not be used for long, slender beams and thin plates since the innate relation between rotation angle and deflection is ignored. These two types of theories are not consistent due to the contradiction of dependence and independence of the rotation angle. Based on several basic assumptions, a new type of theories which not only include the transverse shearing effect is presented, but also the relation between potation angle and deflection is obtained. Analytical solutions of several simple beams are given. It has been testified by numerical examples that the new theories can be used for either long, slender beams and thin plates or short, stubby beams and thick plates.
文摘In this study, a model for dynamic instability of embedded single-walled car- bon nanotubes (SWCNTs) is presented. SWCNTs are modeled by the sinusoidal shear deformation beam theory (SSDBT). The modified couple stress theory (MCST) is con- sidered in order to capture the size effects. The surrounding elastic medium is described by a visco-Pasternak foundation model, which accounts for normal, transverse shear, and damping loads. The motion equations are derived based on Hamilton's principle. The differential quadrature method (DQM) in conjunction with the Bolotin method is used in order to calculate the dynamic instability region (DIR) of SWCNTs. The effects of differ- ent parameters, such as nonlocal parameter, visco-Pasternak foundation, mode numbers, and geometrical parameters, are shown on the dynamic instability of SWCNTs. The re- sults depict that increasing the nonlocal parameter shifts the DIR to right. The results presented in this paper would be helpful in design and manufacturing of nano-electromechanical system (NEMS) and micro-electro-mechanical system (MEMS).
文摘This paper focuses on the thermo-mechanical behaviors of functionally graded(FG)shape memory alloy(SMA)composite beams based on Timoshenko beam theory.The volume fraction of SMA fiber is graded in the thickness of beam according to a power-law function and the equivalent parameters are formulated.The governing differential equations,which can be solved by direct integration,are established by employing the composite laminated plate theory.The influences of FG parameter,ambient temperature and SMA fiber laying angle on the thermo-mechanical behaviors are numerically simulated and discussed under different boundary conditions.Results indicate that the neutral plane does not coincide with the middle plane of the composite beam and the distribution of martensite is asymmetric along the thickness.Both the increments of the functionally graded parameter and ambient temperature make the composite beam become stiffer.However,the influence of the SMA fiber laying angle can be negligent.This work can provide the theoretical basis for the design and application of FG SMA structures.
基金supported by the National Natural Science Foundation of China (No.10932001)the Fanzhou Foundation (No.20070501)the Scientific Research Foundation for Returned Scholars of Ministry of Education of China
文摘Based on the first-order shear deformable beam theory, a refined model for composite beams containing a through-the-width delamination is presented, and the deformation at the delamination front is considered. Different from the ordinary delami- nated beam theory, each of the perfectly bonded portions of the new model is constructed as two separated beams along the interface without assuming a plane section at the de- lamination front. The governing equations of the delaminated portions and bonded ones are established, combined with continuity conditions of displacements and internal forces. Solutions of delaminated composite beams with different boundary conditions, delamina- tion locations and sizes axe shown in excellent agreement with the finite element results, showing efficiency and applicability of the present model.
基金supported by the National Natural Science Foundation of China(Nos.11922205,12072201)the Fundamental Research Fund for the Central Universities(No.N2005019)。
文摘The vibration and instability of functionally graded material(FGM)sandwich cylindrical shells conveying fluid are investigated.The Navier-Stokes relation is used to describe the fluid pressure acting on the FGM sandwich shells.Based on the third-order shear deformation shell theory,the governing equations of the system are derived by using the Hamilton’s principle.To check the validity of the present analysis,the results are compared with those in previous studies for the special cases.Results manifest that the natural frequency of the fluid-conveying FGM sandwich shells increases with the rise of the core-to-thickness ratio and power-law exponent,while decreases with the rise of fluid density,radius-to-thickness ratio and length-to-radius ratio.The fluid-conveying FGM sandwich shells lose stability when the non-dimensional flow velocity falls in 2.1-2.5,which should be avoided in engineering application.
文摘In structural analysis, it is often necessary to determine the geometrical properties of cross section. The location of the shear center is greater importance for an arbitrary cross section. In this study, the problems of coupled shearing and torsional were analyzed by using the finite element method. Namely, the simultaneous equations with respect to the warping, shear deflection, angle of torsion and Lagrange’s multipliers are derived by finite element approximation. Solving them numerically, the matrix of the shearing rigidity and torsional rigidity is obtained. This matrix indicates the coupled shearing and torsional deflection. The shear center can be obtained determining the coordinate axes so as to eliminate the non-diagonal terms. Several numerical examples are performed and show that the present method gives excellent results for an arbitrary cross section.