The existence of nondecreasing positive solutions for the nonlinear third-order twopoint boundary value problem u′″(t) + q(t)f(t,u(t),u′(t)) = 0, 0 〈 t 〈 1, u(0) = u″(0) = u′(1) = 0 is studied....The existence of nondecreasing positive solutions for the nonlinear third-order twopoint boundary value problem u′″(t) + q(t)f(t,u(t),u′(t)) = 0, 0 〈 t 〈 1, u(0) = u″(0) = u′(1) = 0 is studied. The iterative schemes for approximating the solutions are obtained by applying a monotone iterative method.展开更多
An existence theorem of positive solution is established for a nonlinear third-order three-point boundary value problem. Here, we concentrated on the case that the nonlinear term is neither superlinear nor sublinear, ...An existence theorem of positive solution is established for a nonlinear third-order three-point boundary value problem. Here, we concentrated on the case that the nonlinear term is neither superlinear nor sublinear, and is not asymptotic at zero and infinity.展开更多
By using Leray-Schauder nonlinear alternative, Banach contraction theorem and Guo-Krasnosel’skii theorem, we discuss the existence, uniqueness and positivity of solution to the third-order multi-point nonhomogeneous ...By using Leray-Schauder nonlinear alternative, Banach contraction theorem and Guo-Krasnosel’skii theorem, we discuss the existence, uniqueness and positivity of solution to the third-order multi-point nonhomogeneous boundary value problem (BVP1): where for The interesting point lies in the fact that the nonlinear term is allowed to depend on the first order derivative .展开更多
In this paper,we study the existence of triple positive solutions for the nonlinear third-order three-point boundary value problem ■where η∈[0,1/2) is a constant,by using a fixed-point theorem due to Avery and Pete...In this paper,we study the existence of triple positive solutions for the nonlinear third-order three-point boundary value problem ■where η∈[0,1/2) is a constant,by using a fixed-point theorem due to Avery and Peterson,we establish results of triple positive solutions to the boundary value problem,and an example is given to illustrate the importance of result obtained.展开更多
In this paper, we study the existence of positive solutions for a class of third-order three-point boundary value problem. By employing the fixed point theorem on cone, some new criteria to ensure the three-point boun...In this paper, we study the existence of positive solutions for a class of third-order three-point boundary value problem. By employing the fixed point theorem on cone, some new criteria to ensure the three-point boundary value problem has at least three positive solutions are obtained. An example illustrating our main result is given. Moreover, some previous results will be improved significantly in our paper.展开更多
In this paper, we consider the three-point boundary value problem (φp(uˊˊ(t)))ˊ +a(t)f(t, u(t), uˊ(t), uˊˊ(t)) = 0, t ∈ [0, 1] subject to the boundary conditions u(0) =βuˊ(0), uˊ(1) =...In this paper, we consider the three-point boundary value problem (φp(uˊˊ(t)))ˊ +a(t)f(t, u(t), uˊ(t), uˊˊ(t)) = 0, t ∈ [0, 1] subject to the boundary conditions u(0) =βuˊ(0), uˊ(1) = αuˊ(η), uˊˊ(0) = 0, where φp(s) = |s|p?2s with p 〉 1, 0 〈 α, η 〈 1 and 0 ≤ β 〈 1. Applying a fixed point theorem due to Avery and Peterson, we study the existence of at least three positive solutions to the above boundary value problem.展开更多
A class of third-order three-point boundary value problems is considered, where the nonlinear term is a Caratheodory function. By introducing a height function and considering the imtegration of this height function, ...A class of third-order three-point boundary value problems is considered, where the nonlinear term is a Caratheodory function. By introducing a height function and considering the imtegration of this height function, an existence theorem of solution is proved when the limit growth function exists. The main tools are the Lebesgue dominated convergence theorem and the Schauder fixed point theorem.展开更多
Boundary value problem; for third-order ordinary differential equations with turning points are studied as follows : epsilon gamma ' ' + f(x ; epsilon) gamma ' + g(x ; epsilon) gamma ' +h(x ; epsilon) ...Boundary value problem; for third-order ordinary differential equations with turning points are studied as follows : epsilon gamma ' ' + f(x ; epsilon) gamma ' + g(x ; epsilon) gamma ' +h(x ; epsilon) gamma = 0 (- a < x < b, 0 epsilon 1), where f(x ; 0) has several multiple zero points in ( - n, b). the necessary conditions for exhibiting resonance is given, and the uniformly valid asymptotic solutions and the estimations of remainder terms are obtained.展开更多
A class of boundary value problems for a third-order differential equation with a turning point is considered. Using the method of multiple scales and others, the uniformly valid asymptotic expansion of solution for t...A class of boundary value problems for a third-order differential equation with a turning point is considered. Using the method of multiple scales and others, the uniformly valid asymptotic expansion of solution for the boundary value problem is constructed.展开更多
In this paper, we investigate the existence of positive solutions for a singular third-order three-point boundary value problem with a parameter. By using fixed point index theory, some existence, multiplicity and non...In this paper, we investigate the existence of positive solutions for a singular third-order three-point boundary value problem with a parameter. By using fixed point index theory, some existence, multiplicity and nonexistence results for positive solutions are derived in terms of different values of λ.展开更多
This paper deals with the singular nonlinear third-order periodic boundary value problem u'' + p(3)u = f (t, u), 0 less than or equal to t less than or equal to 2pi, with u((i)) (0) = u((i)) (2pi), i = 0, 1, 2...This paper deals with the singular nonlinear third-order periodic boundary value problem u'' + p(3)u = f (t, u), 0 less than or equal to t less than or equal to 2pi, with u((i)) (0) = u((i)) (2pi), i = 0, 1, 2, where p is an element of (Graphics) and f is singular at t = 0, t = 1 and u = 0. Under suitable weaker conditions than those of [1], it is proved by constructing a special cone in C[0, 2pi] and employing the fixed point index theory that the problem has at least one or at least two positive solutions.展开更多
The present paper proposes a mathematical method to numerically treat a class of third-order linear Boundary Value Problems (BVPs). This method is based on the combination of the Adomian Decomposition Method (ADM) and...The present paper proposes a mathematical method to numerically treat a class of third-order linear Boundary Value Problems (BVPs). This method is based on the combination of the Adomian Decomposition Method (ADM) and, the modified shooting method. A complete derivation of the proposed method has been provided, in addition to its numerical implementation and, validation via the utilization of the Runge-Kutta method and, other existing methods. The method has been applied to diverse test problems and turned out to perform remarkably. Lastly, the simulated numerical results have been graphically illustrated and, also supported by some absolute error comparison tables.展开更多
Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with...Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with Radial Basis Function methods. The method is used to solve fourth order boundary value problems. The use and location of ghost points are examined in order to enforce the extra boundary conditions that are necessary to make a fourth-order problem well posed. The use of ghost points versus solving an overdetermined linear system via least squares is studied. For a general fourth-order boundary value problem, the recommended approach is to either use one of two novel sets of ghost centers introduced here or else to use a least squares approach. When using either ghost centers or least squares, the random variable shape parameter strategy results in significantly better accuracy than when a constant shape parameter is used.展开更多
In this paper, we consider the existence of three nontrivial solutions for a discrete non-linear multiparameter periodic problem involving the p-Laplacian. By using the similar method for the Dirichlet boundary value ...In this paper, we consider the existence of three nontrivial solutions for a discrete non-linear multiparameter periodic problem involving the p-Laplacian. By using the similar method for the Dirichlet boundary value problems in [C. Bonanno and P. Candito, Appl. Anal., 88(4) (2009), pp. 605-616], we construct two new strong maximum principles and obtain that the boundary value problem has three positive solutions for λ and μ in some suitable intervals. The approaches we use are the critical point theory.展开更多
In this paper,two existence theorems are given concerning the following 3-point boundary value problem of second order differential systems with impulses[HL(2:1,1Z;2,1Z]x″(t)=f(t,x(t),x′(t)),t∈(0,1),t≠t_k,k=1,2,.....In this paper,two existence theorems are given concerning the following 3-point boundary value problem of second order differential systems with impulses[HL(2:1,1Z;2,1Z]x″(t)=f(t,x(t),x′(t)),t∈(0,1),t≠t_k,k=1,2,...,m, Δx|_~t=t_k =I_k(x(t_k)),k=1,2,...,m, Δx′|_~t=t_k =J_k(x(t_k),x′(t_k)),k=1,2,...,m, x(0)=0,x(1)=αx(η).展开更多
Studies the existence of solutions of nonlinear two point boundary value problems for nonlinear 4n-th-order differential equationy (4n)=f(t,y,y′,y″,...,y (4n-1))(a)with the boundary conditions g 2i(y (2i)(a),y (2i+1...Studies the existence of solutions of nonlinear two point boundary value problems for nonlinear 4n-th-order differential equationy (4n)=f(t,y,y′,y″,...,y (4n-1))(a)with the boundary conditions g 2i(y (2i)(a),y (2i+1)(a))=0,h 2i(y (2i)(c),y (2i+1)(c))=0,(i=0,1,...,2n-1)(b) where the functions f, g i and h i are continuous with certain monotone properties. For the boundary value problems of nonlinear nth order differential equationy (n)=f(t,y,y′,y″,...,y (n-1))many results have been given at the present time. But the existence of solutions of boundary value problem (a),(b) studied in this paper has not been covered by the above researches. Moreover, the corollary of the important theorem in this paper, i.e. existence of solutions of the boundary value problem.y (4n)=f(t,y,y′,y″,...,y (4n-1)) a 2iy (2i)(a)+a 2i+1y (2i+1)(a)=b 2i,c 2iy (2i)(c)+c 2i+1y (2i+1)(c)=d 2i,(i=0,1,...2n-1)has not been dealt with in previous works.展开更多
We study the existence of solutions to the second order three-point boundary value problem:{x″(t)+f(t,x(t),x′(t))=0,t≠ti,△x(ti)=Ii(x(ti),x′(ti)),i=1,2,…,k,△x′(ti)=Ji(x(ti),x′(t)),i=1...We study the existence of solutions to the second order three-point boundary value problem:{x″(t)+f(t,x(t),x′(t))=0,t≠ti,△x(ti)=Ii(x(ti),x′(ti)),i=1,2,…,k,△x′(ti)=Ji(x(ti),x′(t)),i=1,2,…,k,x(0)=0=x(1)-αx(η),where 0〈η〈1,α∈R,and f:[0,1]×R×R→R,Ii:R×R→R,Ji:R×R→R(i=1,2,…,k)are continuous. Our results is new and different from previous results. In particular, we obtain the Green function of the problem, which makes the problem simpler.展开更多
In this article, we consider the existence of two positive solutions to nonlinear second order three-point singular boundary value problem: -u′′(t) = λf(t, u(t)) for all t ∈ (0, 1) subjecting to u(0) = ...In this article, we consider the existence of two positive solutions to nonlinear second order three-point singular boundary value problem: -u′′(t) = λf(t, u(t)) for all t ∈ (0, 1) subjecting to u(0) = 0 and αu(η) = u(1), where η ∈ (0, 1), α ∈ [0, 1), and λ is a positive parameter. The nonlinear term f(t, u) is nonnegative, and may be singular at t = 0, t = 1, and u = 0. By the fixed point index theory and approximation method, we establish that there exists λ* ∈ (0, +∞], such that the above problem has at least two positive solutions for any λ ∈ (0, λ*) under certain conditions on the nonlinear term f.展开更多
In this paper,we are concerned with the existence of multiple positive solutions to a second-order three-point boundary value problem on the half-line.The results are obtained by the Leggett-Williams fixed point theorem.
基金Supported by the Natural Science Foundation of Zhejiang Province (Y605144)the XNF of Zhejiang University of Media and Communications (XN080012008034)
文摘The existence of nondecreasing positive solutions for the nonlinear third-order twopoint boundary value problem u′″(t) + q(t)f(t,u(t),u′(t)) = 0, 0 〈 t 〈 1, u(0) = u″(0) = u′(1) = 0 is studied. The iterative schemes for approximating the solutions are obtained by applying a monotone iterative method.
文摘An existence theorem of positive solution is established for a nonlinear third-order three-point boundary value problem. Here, we concentrated on the case that the nonlinear term is neither superlinear nor sublinear, and is not asymptotic at zero and infinity.
文摘By using Leray-Schauder nonlinear alternative, Banach contraction theorem and Guo-Krasnosel’skii theorem, we discuss the existence, uniqueness and positivity of solution to the third-order multi-point nonhomogeneous boundary value problem (BVP1): where for The interesting point lies in the fact that the nonlinear term is allowed to depend on the first order derivative .
基金The National Natural Science Foundation of China(11661071)
文摘In this paper,we study the existence of triple positive solutions for the nonlinear third-order three-point boundary value problem ■where η∈[0,1/2) is a constant,by using a fixed-point theorem due to Avery and Peterson,we establish results of triple positive solutions to the boundary value problem,and an example is given to illustrate the importance of result obtained.
文摘In this paper, we study the existence of positive solutions for a class of third-order three-point boundary value problem. By employing the fixed point theorem on cone, some new criteria to ensure the three-point boundary value problem has at least three positive solutions are obtained. An example illustrating our main result is given. Moreover, some previous results will be improved significantly in our paper.
基金Supported by the HEBNSF of China(A2012506010)Supported by the YSF of Heibei Province(A2014506016)
文摘In this paper, we consider the three-point boundary value problem (φp(uˊˊ(t)))ˊ +a(t)f(t, u(t), uˊ(t), uˊˊ(t)) = 0, t ∈ [0, 1] subject to the boundary conditions u(0) =βuˊ(0), uˊ(1) = αuˊ(η), uˊˊ(0) = 0, where φp(s) = |s|p?2s with p 〉 1, 0 〈 α, η 〈 1 and 0 ≤ β 〈 1. Applying a fixed point theorem due to Avery and Peterson, we study the existence of at least three positive solutions to the above boundary value problem.
文摘A class of third-order three-point boundary value problems is considered, where the nonlinear term is a Caratheodory function. By introducing a height function and considering the imtegration of this height function, an existence theorem of solution is proved when the limit growth function exists. The main tools are the Lebesgue dominated convergence theorem and the Schauder fixed point theorem.
文摘Boundary value problem; for third-order ordinary differential equations with turning points are studied as follows : epsilon gamma ' ' + f(x ; epsilon) gamma ' + g(x ; epsilon) gamma ' +h(x ; epsilon) gamma = 0 (- a < x < b, 0 epsilon 1), where f(x ; 0) has several multiple zero points in ( - n, b). the necessary conditions for exhibiting resonance is given, and the uniformly valid asymptotic solutions and the estimations of remainder terms are obtained.
基金Project supported by the National Natural Science Foundation of China (No. 40876010)the Main Direction Program of the Knowledge Innovation Project of Chinese Academy of Sciences (No. KZCX2-YW-Q03-08)+3 种基金the Research and Development Special Fund for Public Welfare Industry (meteorol-ogy) (No. GYHY200806010)the LASG State Key Laboratory Special Fundthe Foundation of E-Institutes of Shanghai Municipal Education Commission (No. E03004)the Natural Science Foundation of Zhejiang Province (No. Y6090164)
文摘A class of boundary value problems for a third-order differential equation with a turning point is considered. Using the method of multiple scales and others, the uniformly valid asymptotic expansion of solution for the boundary value problem is constructed.
文摘In this paper, we investigate the existence of positive solutions for a singular third-order three-point boundary value problem with a parameter. By using fixed point index theory, some existence, multiplicity and nonexistence results for positive solutions are derived in terms of different values of λ.
文摘This paper deals with the singular nonlinear third-order periodic boundary value problem u'' + p(3)u = f (t, u), 0 less than or equal to t less than or equal to 2pi, with u((i)) (0) = u((i)) (2pi), i = 0, 1, 2, where p is an element of (Graphics) and f is singular at t = 0, t = 1 and u = 0. Under suitable weaker conditions than those of [1], it is proved by constructing a special cone in C[0, 2pi] and employing the fixed point index theory that the problem has at least one or at least two positive solutions.
文摘The present paper proposes a mathematical method to numerically treat a class of third-order linear Boundary Value Problems (BVPs). This method is based on the combination of the Adomian Decomposition Method (ADM) and, the modified shooting method. A complete derivation of the proposed method has been provided, in addition to its numerical implementation and, validation via the utilization of the Runge-Kutta method and, other existing methods. The method has been applied to diverse test problems and turned out to perform remarkably. Lastly, the simulated numerical results have been graphically illustrated and, also supported by some absolute error comparison tables.
文摘Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with Radial Basis Function methods. The method is used to solve fourth order boundary value problems. The use and location of ghost points are examined in order to enforce the extra boundary conditions that are necessary to make a fourth-order problem well posed. The use of ghost points versus solving an overdetermined linear system via least squares is studied. For a general fourth-order boundary value problem, the recommended approach is to either use one of two novel sets of ghost centers introduced here or else to use a least squares approach. When using either ghost centers or least squares, the random variable shape parameter strategy results in significantly better accuracy than when a constant shape parameter is used.
基金Supported by NSFC(11326127,11101335)NWNULKQN-11-23the Fundamental Research Funds for the Gansu Universities
文摘In this paper, we consider the existence of three nontrivial solutions for a discrete non-linear multiparameter periodic problem involving the p-Laplacian. By using the similar method for the Dirichlet boundary value problems in [C. Bonanno and P. Candito, Appl. Anal., 88(4) (2009), pp. 605-616], we construct two new strong maximum principles and obtain that the boundary value problem has three positive solutions for λ and μ in some suitable intervals. The approaches we use are the critical point theory.
文摘In this paper,two existence theorems are given concerning the following 3-point boundary value problem of second order differential systems with impulses[HL(2:1,1Z;2,1Z]x″(t)=f(t,x(t),x′(t)),t∈(0,1),t≠t_k,k=1,2,...,m, Δx|_~t=t_k =I_k(x(t_k)),k=1,2,...,m, Δx′|_~t=t_k =J_k(x(t_k),x′(t_k)),k=1,2,...,m, x(0)=0,x(1)=αx(η).
文摘Studies the existence of solutions of nonlinear two point boundary value problems for nonlinear 4n-th-order differential equationy (4n)=f(t,y,y′,y″,...,y (4n-1))(a)with the boundary conditions g 2i(y (2i)(a),y (2i+1)(a))=0,h 2i(y (2i)(c),y (2i+1)(c))=0,(i=0,1,...,2n-1)(b) where the functions f, g i and h i are continuous with certain monotone properties. For the boundary value problems of nonlinear nth order differential equationy (n)=f(t,y,y′,y″,...,y (n-1))many results have been given at the present time. But the existence of solutions of boundary value problem (a),(b) studied in this paper has not been covered by the above researches. Moreover, the corollary of the important theorem in this paper, i.e. existence of solutions of the boundary value problem.y (4n)=f(t,y,y′,y″,...,y (4n-1)) a 2iy (2i)(a)+a 2i+1y (2i+1)(a)=b 2i,c 2iy (2i)(c)+c 2i+1y (2i+1)(c)=d 2i,(i=0,1,...2n-1)has not been dealt with in previous works.
基金Supported by the National Natural Science Foundation of China(10371006)
文摘We study the existence of solutions to the second order three-point boundary value problem:{x″(t)+f(t,x(t),x′(t))=0,t≠ti,△x(ti)=Ii(x(ti),x′(ti)),i=1,2,…,k,△x′(ti)=Ji(x(ti),x′(t)),i=1,2,…,k,x(0)=0=x(1)-αx(η),where 0〈η〈1,α∈R,and f:[0,1]×R×R→R,Ii:R×R→R,Ji:R×R→R(i=1,2,…,k)are continuous. Our results is new and different from previous results. In particular, we obtain the Green function of the problem, which makes the problem simpler.
基金supported by the National Natural Science Foundation of China (11071149, 10771128)the NSF of Shanxi Province (2006011002, 2010011001-1)
文摘In this article, we consider the existence of two positive solutions to nonlinear second order three-point singular boundary value problem: -u′′(t) = λf(t, u(t)) for all t ∈ (0, 1) subjecting to u(0) = 0 and αu(η) = u(1), where η ∈ (0, 1), α ∈ [0, 1), and λ is a positive parameter. The nonlinear term f(t, u) is nonnegative, and may be singular at t = 0, t = 1, and u = 0. By the fixed point index theory and approximation method, we establish that there exists λ* ∈ (0, +∞], such that the above problem has at least two positive solutions for any λ ∈ (0, λ*) under certain conditions on the nonlinear term f.
基金Supported by the NNSF of China(10871116)Supported by the NSFSP of China(ZR2010AM005)
文摘In this paper,we are concerned with the existence of multiple positive solutions to a second-order three-point boundary value problem on the half-line.The results are obtained by the Leggett-Williams fixed point theorem.