Thixotropy is a great rheological behavior of waxy crudes oils and is of great importance for hydraulic characteristics and security of oil pipeline restart. In this paper, through the experiment of four waxy crudes, ...Thixotropy is a great rheological behavior of waxy crudes oils and is of great importance for hydraulic characteristics and security of oil pipeline restart. In this paper, through the experiment of four waxy crudes, three kinds of thixotropic rheology characteristics in the conditions that shear stress decays under a constant shear rate, shear stress decays after shear rate steps up and hysteresis loop of shear rate cycle changes are studied . For eight thixotropic models, experimental data are fitted in the method of least-squares and average deviation is taken as a statistical indicator to evaluate the thixotropic models. It shows that the model with the idea of Cheng that completely reversible and totally irreversible structures both exist in waxy oil products and based on Houska model can describe thixotropic behaviors of waxy crudes most well.展开更多
To investigate the thixotropic fluidities, microstructures and mechanical properties of semi-solid AZ91D magnesium alloy during reheating, a self-made die set with channels of different sizes were used. The results sh...To investigate the thixotropic fluidities, microstructures and mechanical properties of semi-solid AZ91D magnesium alloy during reheating, a self-made die set with channels of different sizes were used. The results show that critical forming forces and maximal forming forces could be obtained and related to the holding times in the semi-solid forming process. In the holding time of 0-2700 s, with increasing the holding time, maximal forming force decreased sharply and critical forming force decreased slowly. In the whole thixotropic flowing process, the filling-in was steady and the surface fineness was good. The forming force increased when the slurry changed the flowing direction or flowed from the big-diameter chamber to the small-diameter one. The tensile strength and elongation to failure of the sample after holding time for 2700 s, compared to as-cast sample, are increased by approximately 42.7% and 180%, respectively, and the fractured surfaces presented dimple-like pattern.展开更多
Waxy crude oil emulsion has thixotropic properties at the temperature near gel point,which is a macromechanical characterization of the structure failure and recovery of waxy crude oil emulsion.In this paper,the thixo...Waxy crude oil emulsion has thixotropic properties at the temperature near gel point,which is a macromechanical characterization of the structure failure and recovery of waxy crude oil emulsion.In this paper,the thixotropic behaviors of waxy crude oil emulsion near gel point were studied using hysteresis loop formed by stress linear increase and decrease,as well as the structural recovery characteristics.The influence of the loading conditions and water content on the thixotropy of waxy crude oil emulsion were analyzed with hysteresis loop area.The concept of"structural recovery"was introduced to study the degree of structural recovery after different stewing,and influencing factors were taken into account.Results have shown that for waxy crude oil emulsion,the failure to fully restore of the structure after lysis is the cause of the formation of hysteresis loop,and the loading conditions will not affect the strength of thixotropy and the degree of structural recovery.Additionally,the dispersed phase droplets weaken the thixotropy and structure recovery characteristics of waxy crude oil emulsion,and the greater the water content,the weaker the thixotropy.The findings can help to better understand the safe and economic operation of waxy crude oil-water pipeline transportation.展开更多
Spring water but not double-distilled water was exposed, in darkness, to a temporally patterned weak magnetic field that has been shown to affect planarian behavior and slow the rate of cancer cell proliferation. Expo...Spring water but not double-distilled water was exposed, in darkness, to a temporally patterned weak magnetic field that has been shown to affect planarian behavior and slow the rate of cancer cell proliferation. Exposure to the magnetic field caused a reliable shift in the peak (longer) wave-length of ~10 nm for fluorescence emissions and a ~20% increase (~100 counts) in fluorescence intensity. Spectral analyses verified a shift of 5 and 10 nm, equivalent to ~1.5 × 10-20 J “periodicity” across the measured wavelengths, which could reflect a change in the an intrinsic energy as predicted by Del Giudice and Preparata and could correspond to two lengths of O-H bonds. Wrapping the water sample containers during exposure with copper foil, aluminum foil, or plastic altered these fluorescent profiles. The most conspicuous effect was the elimination of a ~280 nm peak in the UV-VIS emission spectra only for samples wrapped with copper foil but not aluminum or plastic. These results suggest that weak magnetic fields produce alterations in the water-ionic complexes sufficient to be reliably measured by spectrophotometry. Because the effect was most pronounced when the spring water was exposed in darkness and was not disturbed the role of thixotropic phenomena and Del Giudice entrapment of magnetic fields within coherent domains of Pollack virtual exclusion zones (EZ) may have set the conditions for subsequent release of the energy as photons.展开更多
Thixotropic properties are one of the low temperature rheology behaviors of gelled waxy crudes. In order to study the thixotropic behavior of gelled waxy crudes oil under cyclic loading of linear increasing and decrea...Thixotropic properties are one of the low temperature rheology behaviors of gelled waxy crudes. In order to study the thixotropic behavior of gelled waxy crudes oil under cyclic loading of linear increasing and decreasing of shear rate, three different types of waxy crude oil were studied ex-perimentally by using MARSIII rheometer. It is found that hysteresis loop area could represent strength of thixotropic properties under that loading. With increasing of the rate of share rate sweep, the area of second hysteresis loop is much smaller than first one and began a slow decline from the third hysteresis loop. Areas of each hysteresis loops were decreased with increasing temperature, but it was different in decline rate—the lower the temperature, the greater the rate of decline. The maximum rate of decrease is the first hysteresis loop with exponential decline, and remaining hysteresis hoops approximately decrease linearly. In addition, based on the experi-mental results an empirical correlation is developed to describe the relationship of hysteresis loop area and rate of share rate sweep.展开更多
In this article, the model of a non-Newtonian fluid (Thixotropic) flow past a vertical surface in the presence of exponential space and temperature dependent heat source in a thermally stratified medium is studied. It...In this article, the model of a non-Newtonian fluid (Thixotropic) flow past a vertical surface in the presence of exponential space and temperature dependent heat source in a thermally stratified medium is studied. It is assumed that free convection is induced by buoyancy and exponentially decaying internal heat source across the space. The dynamic viscosity is taken to be constant and thermal conductivity of this particular fluid model is assumed to vary linearly with temperature. Thermal stratification has been properly incorporated into the governing equation so that its effect can be revealed and properly reported. The governing partial differential equations describing the model are transformed and parameterized to a system of non-linear ordinary differential equation using similarity transformations. Approximate analytic solutions were obtained by adopting Optimal Homotopy Analysis Method (OHAM). The results show that for both cases of non-Newtonian parameters (Thixotropic) (K1=K2=0?& K1=K2=1.0), increasing stratification parameters, relate to decreasing in the heat energy entering into the fluid region and thus reducing the temperature of the Thixotropic fluid as it flows.展开更多
Compression tests on semi-solid SiCp/AZ61 magnesium matrix composites were carried out using Thermecmastor-Z dynamic material testing machine.Influences of strain-rate,strain,temperature and volume fraction of SiC par...Compression tests on semi-solid SiCp/AZ61 magnesium matrix composites were carried out using Thermecmastor-Z dynamic material testing machine.Influences of strain-rate,strain,temperature and volume fraction of SiC particles on flow stress were analyzed.The results show that the flow stress of semi-solid SiCp/AZ61 composites is sensitive to temperature and strain rate.The lower the temperature and the larger the strain rate,the higher the flow stress.Meanwhile the flow stress increases with the increase of the volume fraction of SiC particles.This study helps establish the constitutive model of magnesium matrix composites and offers theoretic and experimental references for its thixoforming.展开更多
The methodology was used to conduct the upper bound analysis of thixotropic extrusion process of semi-solid metal. The calculated formulas of deformed power were derived. The relationship among relative stress, fricti...The methodology was used to conduct the upper bound analysis of thixotropic extrusion process of semi-solid metal. The calculated formulas of deformed power were derived. The relationship among relative stress, frictional factor and die semi-angle were obtained. The relative stress increases with increasing frictional factor, whose value increases with increasing area reduction ratio of a certain die semi-angle. The relative stress firstly decreases and then increases with increasing die semi-angle at a certain area reduction ratio. So, the optimal die semi-angle exists with the corresponding minimum relative stress. The calculated results are in agreement with the experimental ones, which are applied to directing technological practice of axis-symmetry forward extrusion of semi-solid magnesium alloys.展开更多
A phenomenological model for dispersed systems which exhibit complex theological behaviour such as shear and time-dependent viscosity, yield stress, and elasticity is proposed. The model extends the Quemeda model to d...A phenomenological model for dispersed systems which exhibit complex theological behaviour such as shear and time-dependent viscosity, yield stress, and elasticity is proposed. The model extends the Quemeda model to describe the viscosity function with a structural parameter λ which varies according to differ- ent kinetic orders of particle aggregation and segregation. The transient stress response is obtained by solving an instantaneous Maxwell model with an assumed shear modulus function G of the same form as the viscosity function η. Accuracy of the proposed model is verified experimentally with the results obtained for two oil (creosote)/water emulsions. The model that gives the best fit of experimental data appears to be the one with kinetic orders n = m = 2.展开更多
The main target in this investigation was to take advantage of the reology properties of the tixotropic mixes in Ultra Low Cement Castables (ULCC). The cordierite phase in refractory mix can be obtained using raw mate...The main target in this investigation was to take advantage of the reology properties of the tixotropic mixes in Ultra Low Cement Castables (ULCC). The cordierite phase in refractory mix can be obtained using raw materials with magnesium oxide in its composition, such as, Mg(OH)2 or H2Mg3(SiO3)4 (Talc mineral), with a content of? 63.5% SiO2, 31.7% MgO and 4.8% H2O. In this investigation, as magnesium source, a commercial calcined magnesite with 90% MgO was used.? This mineral was selected instead of Talc mineral, because this last contains more impurities in its composition that tend to form more amounts of liquid phases with low fusion points. For this work two different ULCC mixes were designed. These were fired at 1260 oC, the cordierite phase was quantified in each mix.展开更多
Due to large volume and high hardness of thermal insulation materials mostly used in high temperature fields, a composite cooling powder and its thixotropic hydrogel for thermal protection are presented. The core of c...Due to large volume and high hardness of thermal insulation materials mostly used in high temperature fields, a composite cooling powder and its thixotropic hydrogel for thermal protection are presented. The core of composite cooling material powder is super absorbent polymer, composing with metal salt, polysaccharide hydrosol and inorganic particles and other modifiers through a series of composite process, which can be easily stored for a long time. When needed, the powder can be mixed with water to obtain a kind of thixotropic hydrogel in a very short time. Experimental results show this thermal protection technology with thixotropic ability has excellent thermal protection performance, meanwhile flexible, adhesive and low cost, which exerts instantaneous cooling, efficient thermal protection and long-lasting flame-retardant protection.展开更多
The thixotropic behavior of semi-solid AZ91D slurry was studied through a Couette type viscometer. The results show that the apparent viscosity of semi-solid AZ91D magnesium alloy slurry increases after being isotherm...The thixotropic behavior of semi-solid AZ91D slurry was studied through a Couette type viscometer. The results show that the apparent viscosity of semi-solid AZ91D magnesium alloy slurry increases after being isothermally held, but the apparent viscosity quickly falls down to a steady state value after being stirred again and it takes on a sharp shear-thinning behavior. With the same shearing rate and the rest time increasing, the steady apparent viscosity increases because of the agglomeration of the solid particles, and the time required for the slurry to reach the steady state also becomes longer. If the solid fraction increases, it takes longer time for the slurry to reach the steady apparent viscosity with the same shearing rate and the same rest time. If the solid fraction and the rest time are the same, but the shearing rate rises, it takes shorter time for the slurry to reach the steady apparent viscosity and the final steady apparent viscosity also decreases.展开更多
文摘Thixotropy is a great rheological behavior of waxy crudes oils and is of great importance for hydraulic characteristics and security of oil pipeline restart. In this paper, through the experiment of four waxy crudes, three kinds of thixotropic rheology characteristics in the conditions that shear stress decays under a constant shear rate, shear stress decays after shear rate steps up and hysteresis loop of shear rate cycle changes are studied . For eight thixotropic models, experimental data are fitted in the method of least-squares and average deviation is taken as a statistical indicator to evaluate the thixotropic models. It shows that the model with the idea of Cheng that completely reversible and totally irreversible structures both exist in waxy oil products and based on Houska model can describe thixotropic behaviors of waxy crudes most well.
文摘To investigate the thixotropic fluidities, microstructures and mechanical properties of semi-solid AZ91D magnesium alloy during reheating, a self-made die set with channels of different sizes were used. The results show that critical forming forces and maximal forming forces could be obtained and related to the holding times in the semi-solid forming process. In the holding time of 0-2700 s, with increasing the holding time, maximal forming force decreased sharply and critical forming force decreased slowly. In the whole thixotropic flowing process, the filling-in was steady and the surface fineness was good. The forming force increased when the slurry changed the flowing direction or flowed from the big-diameter chamber to the small-diameter one. The tensile strength and elongation to failure of the sample after holding time for 2700 s, compared to as-cast sample, are increased by approximately 42.7% and 180%, respectively, and the fractured surfaces presented dimple-like pattern.
基金supported by the Natural Science Foundation of Heilongjiang Province(Grant No.LH2020E015)the General Project of Natural Science Research in Jiangsu Universities(Grant No.20KJB440004)+1 种基金the science and technology program of Changzhou University(Grant No.ZMF18020303 and ZMF18020304)the science and technology program of Jiangsu Key Laboratory of Oil and Gas Storage&Transportation Technology(Grant No.CDYQCY201903,CDYQCY201904 and CDYQCY202003)。
文摘Waxy crude oil emulsion has thixotropic properties at the temperature near gel point,which is a macromechanical characterization of the structure failure and recovery of waxy crude oil emulsion.In this paper,the thixotropic behaviors of waxy crude oil emulsion near gel point were studied using hysteresis loop formed by stress linear increase and decrease,as well as the structural recovery characteristics.The influence of the loading conditions and water content on the thixotropy of waxy crude oil emulsion were analyzed with hysteresis loop area.The concept of"structural recovery"was introduced to study the degree of structural recovery after different stewing,and influencing factors were taken into account.Results have shown that for waxy crude oil emulsion,the failure to fully restore of the structure after lysis is the cause of the formation of hysteresis loop,and the loading conditions will not affect the strength of thixotropy and the degree of structural recovery.Additionally,the dispersed phase droplets weaken the thixotropy and structure recovery characteristics of waxy crude oil emulsion,and the greater the water content,the weaker the thixotropy.The findings can help to better understand the safe and economic operation of waxy crude oil-water pipeline transportation.
文摘Spring water but not double-distilled water was exposed, in darkness, to a temporally patterned weak magnetic field that has been shown to affect planarian behavior and slow the rate of cancer cell proliferation. Exposure to the magnetic field caused a reliable shift in the peak (longer) wave-length of ~10 nm for fluorescence emissions and a ~20% increase (~100 counts) in fluorescence intensity. Spectral analyses verified a shift of 5 and 10 nm, equivalent to ~1.5 × 10-20 J “periodicity” across the measured wavelengths, which could reflect a change in the an intrinsic energy as predicted by Del Giudice and Preparata and could correspond to two lengths of O-H bonds. Wrapping the water sample containers during exposure with copper foil, aluminum foil, or plastic altered these fluorescent profiles. The most conspicuous effect was the elimination of a ~280 nm peak in the UV-VIS emission spectra only for samples wrapped with copper foil but not aluminum or plastic. These results suggest that weak magnetic fields produce alterations in the water-ionic complexes sufficient to be reliably measured by spectrophotometry. Because the effect was most pronounced when the spring water was exposed in darkness and was not disturbed the role of thixotropic phenomena and Del Giudice entrapment of magnetic fields within coherent domains of Pollack virtual exclusion zones (EZ) may have set the conditions for subsequent release of the energy as photons.
文摘Thixotropic properties are one of the low temperature rheology behaviors of gelled waxy crudes. In order to study the thixotropic behavior of gelled waxy crudes oil under cyclic loading of linear increasing and decreasing of shear rate, three different types of waxy crude oil were studied ex-perimentally by using MARSIII rheometer. It is found that hysteresis loop area could represent strength of thixotropic properties under that loading. With increasing of the rate of share rate sweep, the area of second hysteresis loop is much smaller than first one and began a slow decline from the third hysteresis loop. Areas of each hysteresis loops were decreased with increasing temperature, but it was different in decline rate—the lower the temperature, the greater the rate of decline. The maximum rate of decrease is the first hysteresis loop with exponential decline, and remaining hysteresis hoops approximately decrease linearly. In addition, based on the experi-mental results an empirical correlation is developed to describe the relationship of hysteresis loop area and rate of share rate sweep.
文摘In this article, the model of a non-Newtonian fluid (Thixotropic) flow past a vertical surface in the presence of exponential space and temperature dependent heat source in a thermally stratified medium is studied. It is assumed that free convection is induced by buoyancy and exponentially decaying internal heat source across the space. The dynamic viscosity is taken to be constant and thermal conductivity of this particular fluid model is assumed to vary linearly with temperature. Thermal stratification has been properly incorporated into the governing equation so that its effect can be revealed and properly reported. The governing partial differential equations describing the model are transformed and parameterized to a system of non-linear ordinary differential equation using similarity transformations. Approximate analytic solutions were obtained by adopting Optimal Homotopy Analysis Method (OHAM). The results show that for both cases of non-Newtonian parameters (Thixotropic) (K1=K2=0?& K1=K2=1.0), increasing stratification parameters, relate to decreasing in the heat energy entering into the fluid region and thus reducing the temperature of the Thixotropic fluid as it flows.
基金Projects (50765005,50465003) supported by the National Natural Science Foundation of ChinaProject (S00875) supported by Innovative Group of Science and Technology of College of Jiangxi Province,China
文摘Compression tests on semi-solid SiCp/AZ61 magnesium matrix composites were carried out using Thermecmastor-Z dynamic material testing machine.Influences of strain-rate,strain,temperature and volume fraction of SiC particles on flow stress were analyzed.The results show that the flow stress of semi-solid SiCp/AZ61 composites is sensitive to temperature and strain rate.The lower the temperature and the larger the strain rate,the higher the flow stress.Meanwhile the flow stress increases with the increase of the volume fraction of SiC particles.This study helps establish the constitutive model of magnesium matrix composites and offers theoretic and experimental references for its thixoforming.
文摘The methodology was used to conduct the upper bound analysis of thixotropic extrusion process of semi-solid metal. The calculated formulas of deformed power were derived. The relationship among relative stress, frictional factor and die semi-angle were obtained. The relative stress increases with increasing frictional factor, whose value increases with increasing area reduction ratio of a certain die semi-angle. The relative stress firstly decreases and then increases with increasing die semi-angle at a certain area reduction ratio. So, the optimal die semi-angle exists with the corresponding minimum relative stress. The calculated results are in agreement with the experimental ones, which are applied to directing technological practice of axis-symmetry forward extrusion of semi-solid magnesium alloys.
文摘A phenomenological model for dispersed systems which exhibit complex theological behaviour such as shear and time-dependent viscosity, yield stress, and elasticity is proposed. The model extends the Quemeda model to describe the viscosity function with a structural parameter λ which varies according to differ- ent kinetic orders of particle aggregation and segregation. The transient stress response is obtained by solving an instantaneous Maxwell model with an assumed shear modulus function G of the same form as the viscosity function η. Accuracy of the proposed model is verified experimentally with the results obtained for two oil (creosote)/water emulsions. The model that gives the best fit of experimental data appears to be the one with kinetic orders n = m = 2.
文摘The main target in this investigation was to take advantage of the reology properties of the tixotropic mixes in Ultra Low Cement Castables (ULCC). The cordierite phase in refractory mix can be obtained using raw materials with magnesium oxide in its composition, such as, Mg(OH)2 or H2Mg3(SiO3)4 (Talc mineral), with a content of? 63.5% SiO2, 31.7% MgO and 4.8% H2O. In this investigation, as magnesium source, a commercial calcined magnesite with 90% MgO was used.? This mineral was selected instead of Talc mineral, because this last contains more impurities in its composition that tend to form more amounts of liquid phases with low fusion points. For this work two different ULCC mixes were designed. These were fired at 1260 oC, the cordierite phase was quantified in each mix.
文摘Due to large volume and high hardness of thermal insulation materials mostly used in high temperature fields, a composite cooling powder and its thixotropic hydrogel for thermal protection are presented. The core of composite cooling material powder is super absorbent polymer, composing with metal salt, polysaccharide hydrosol and inorganic particles and other modifiers through a series of composite process, which can be easily stored for a long time. When needed, the powder can be mixed with water to obtain a kind of thixotropic hydrogel in a very short time. Experimental results show this thermal protection technology with thixotropic ability has excellent thermal protection performance, meanwhile flexible, adhesive and low cost, which exerts instantaneous cooling, efficient thermal protection and long-lasting flame-retardant protection.
文摘The thixotropic behavior of semi-solid AZ91D slurry was studied through a Couette type viscometer. The results show that the apparent viscosity of semi-solid AZ91D magnesium alloy slurry increases after being isothermally held, but the apparent viscosity quickly falls down to a steady state value after being stirred again and it takes on a sharp shear-thinning behavior. With the same shearing rate and the rest time increasing, the steady apparent viscosity increases because of the agglomeration of the solid particles, and the time required for the slurry to reach the steady state also becomes longer. If the solid fraction increases, it takes longer time for the slurry to reach the steady apparent viscosity with the same shearing rate and the same rest time. If the solid fraction and the rest time are the same, but the shearing rate rises, it takes shorter time for the slurry to reach the steady apparent viscosity and the final steady apparent viscosity also decreases.