期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Ground threat prediction-based path planning of unmanned autonomous helicopter using hybrid enhanced artificial bee colony algorithm
1
作者 Zengliang Han Mou Chen +1 位作者 Haojie Zhu Qingxian Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期1-22,共22页
Unmanned autonomous helicopter(UAH)path planning problem is an important component of the UAH mission planning system.Aiming to reduce the influence of non-complete ground threat information on UAH path planning,a gro... Unmanned autonomous helicopter(UAH)path planning problem is an important component of the UAH mission planning system.Aiming to reduce the influence of non-complete ground threat information on UAH path planning,a ground threat prediction-based path planning method is proposed based on artificial bee colony(ABC)algorithm by collaborative thinking strategy.Firstly,a dynamic threat distribution probability model is developed based on the characteristics of typical ground threats.The dynamic no-fly zone of the UAH is simulated and established by calculating the distribution probability of ground threats in real time.Then,a dynamic path planning method for UAH is designed in complex environment based on the real-time prediction of ground threats.By adding the collision warning mechanism to the path planning model,the flight path could be dynamically adjusted according to changing no-fly zones.Furthermore,a hybrid enhanced ABC algorithm is proposed based on collaborative thinking strategy.The proposed algorithm applies the leader-member thinking mechanism to guide the direction of population evolution,and reduces the negative impact of local optimal solutions caused by collaborative learning update strategy,which makes the optimization performance of ABC algorithm more controllable and efficient.Finally,simulation results verify the feasibility and effectiveness of the proposed ground threat prediction path planning method. 展开更多
关键词 UAH Path planning Ground threat prediction Hybrid enhanced Collaborative thinking
下载PDF
The SSA-BP-based potential threat prediction for aerial target considering commander emotion 被引量:6
2
作者 Xun Wang Jin Liu +1 位作者 Tao Hou Chao Pan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第11期2097-2106,共10页
The target's threat prediction is an essential procedure for the situation analysis in an aerial defense system.However,the traditional threat prediction methods mostly ignore the effect of commander's emotion... The target's threat prediction is an essential procedure for the situation analysis in an aerial defense system.However,the traditional threat prediction methods mostly ignore the effect of commander's emotion.They only predict a target's present threat from the target's features itself,which leads to their poor ability in a complex situation.To aerial targets,this paper proposes a method for its potential threat prediction considering commander emotion(PTP-CE)that uses the Bi-directional LSTM(BiLSTM)network and the backpropagation neural network(BP)optimized by the sparrow search algorithm(SSA).Furthermore,we use the BiLSTM to predict the target's future state from real-time series data,and then adopt the SSA-BP to combine the target's state with the commander's emotion to establish a threat prediction model.Therefore,the target's potential threat level can be obtained by this threat prediction model from the predicted future state and the recognized emotion.The experimental results show that the PTP-CE is efficient for aerial target's state prediction and threat prediction,regardless of commander's emotional effect. 展开更多
关键词 Aerial targets Emotional factors Potential threat prediction BiLSTM Sparrow search algorithm Neural network
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部