As a means of transportation to reduce traffic congestion, the metro has drawn increasing attention. In order to effectively enhance the beauty of the city's human landscape, authors of this paper, based on the pu...As a means of transportation to reduce traffic congestion, the metro has drawn increasing attention. In order to effectively enhance the beauty of the city's human landscape, authors of this paper, based on the public art dimension of metro, explore the artistic expression, problems, and countermeasures related to the enhancement of the beauty of human landscape, and solutions to the common failing of metropolises in the evolution of urban civilization, so as to optimize and spread the urban culture. It is hoped that this paper can cover the shortage of relevant domestic and international studies and provide a theoretical reference for the majority of man-made landscape researchers.展开更多
"Landscape is an expression symbol with the time dimension influenced by historical process. Time not only influences landscape project and changing process of regional materials all the time, but also shapes for..."Landscape is an expression symbol with the time dimension influenced by historical process. Time not only influences landscape project and changing process of regional materials all the time, but also shapes forms and cultural connotations of landscape. Proceeding from basic concepts of time dimension in landscape design, influence and significance of time in landscape design were explored from the perspectives of presentation (material changes), perception (spatial experience) and culture (historical process) of time dimension.展开更多
The forest landscape has been highly fragmented in Donglingshan montane region, Beijing, China, where the folding degree of patch perimeters considerately influenced the spatial distribution of biological diversity, t...The forest landscape has been highly fragmented in Donglingshan montane region, Beijing, China, where the folding degree of patch perimeters considerately influenced the spatial distribution of biological diversity, therefore the quantitative description to it is very helpful to conservation biology studies. The fractal dimensions of landscape patch perimeters of this region were estimated and compared. The results showed that fractal dimensions of all the landscape types were between 1.00 and 1.58. The fractal dimensions of natural vegetation types were higher than that of artificial vegetation type. Where forests (1 21) and shrubs (1.24) are near to farmland (1.12), so they were both highly disturbed by human activities regarding the smallest mean patch areas. But the grassland (1.58) had the largest mean patch area, its disturbance intensity was the lowest in this region. The fractal dimension of the overall landscape was 1.24, which was near to those of forests and shrubs, and obviously different from those of farmland and grassland. The fractal dimension of the overall landscape was 1.13 in small scales, and that was 1.65 in large scales. Which means that a large number of small area patches had regular perimeters, their fragment degrees were higher; whereas the large area patches had folding perimeters, their fragment degrees were lower, they had smaller patch numbers, however occupied most of the landscape area. Large areas and highly folded perimeters were the main property of the landscape patch in Donglingshan montane region.展开更多
Since rate effect of materials plays a key role in impact engineering, the microscopic mechanism of rate effect is investigated at molecular level in this paper. The results show that rate effect on the strength of at...Since rate effect of materials plays a key role in impact engineering, the microscopic mechanism of rate effect is investigated at molecular level in this paper. The results show that rate effect on the strength of atomic system is closely related to the coupled evolution of atomic motions and potential landscapes. Accordingly, it becomes possible to develop a new algorithm of molecular simulation, which could properly and efficiently demonstrate strain rate effect under a wide range of loading rates and unveil the mecha- nisms underlying the strain rate effects.展开更多
The Tibetan Plateau(TP)is undergoing rapid urbanization.To improve urban sustainability and construct eco-logical security barriers,it is essential to quantify the spatial patterns of urbanization level on the TP,but ...The Tibetan Plateau(TP)is undergoing rapid urbanization.To improve urban sustainability and construct eco-logical security barriers,it is essential to quantify the spatial patterns of urbanization level on the TP,but the existing studies on the topic have been limited by the lack of socioeconomic data.This study aims to quantify the urbanization level on the TP in 2018 with Luojia1-01(LJ1-01)high-resolution nighttime light(NTL)data.Specifically,the compounded night light index is used to quantify spatial patterns of urbanization level at mul-tiple scales.The results showed that the TP had a low overall urbanization level with a large internal difference.The urbanization level in the northeast,southeast and south of the TP was relatively high,forming three hotspots centered in Xining City,Lhasa City and Shangri-La City,while the urbanization level in the central and western regions was relatively low.The analysis of influencing factors,based on the random forest model,showed that transportation and topography were the main factors affecting the TP’s spatial patterns of urbanization level.The comparison analysis with socioeconomic statistics and traditional NTL data showed that LJ1-01 NTL data can be used to more effectively quantify the urbanization level since it is more advantageous for reflecting the spatial extent of urban land and describing the spatial structure of socioeconomic activities within urban areas.These advantages are attributed to the high spatial resolution of the data,appropriate imaging time and unaf-fected by saturation phenomena.Thus,the proposed LJ1-01 NTL-based urbanization level measurement method has the potential for wide applications around the world,especially in less-developed regions lacking statistical data.Using this method,we refined the measurement of the TP’s urbanization level in 2018 for multiple scales including the region,basin,prefecture and county levels,which provides basic information for the further urban sustainability research on the TP.展开更多
基金Sponsored by Shaanxi Provincial Training Programs of Innovation and Entrepreneurship for Undergraduates(201710712050)
文摘As a means of transportation to reduce traffic congestion, the metro has drawn increasing attention. In order to effectively enhance the beauty of the city's human landscape, authors of this paper, based on the public art dimension of metro, explore the artistic expression, problems, and countermeasures related to the enhancement of the beauty of human landscape, and solutions to the common failing of metropolises in the evolution of urban civilization, so as to optimize and spread the urban culture. It is hoped that this paper can cover the shortage of relevant domestic and international studies and provide a theoretical reference for the majority of man-made landscape researchers.
文摘"Landscape is an expression symbol with the time dimension influenced by historical process. Time not only influences landscape project and changing process of regional materials all the time, but also shapes forms and cultural connotations of landscape. Proceeding from basic concepts of time dimension in landscape design, influence and significance of time in landscape design were explored from the perspectives of presentation (material changes), perception (spatial experience) and culture (historical process) of time dimension.
文摘The forest landscape has been highly fragmented in Donglingshan montane region, Beijing, China, where the folding degree of patch perimeters considerately influenced the spatial distribution of biological diversity, therefore the quantitative description to it is very helpful to conservation biology studies. The fractal dimensions of landscape patch perimeters of this region were estimated and compared. The results showed that fractal dimensions of all the landscape types were between 1.00 and 1.58. The fractal dimensions of natural vegetation types were higher than that of artificial vegetation type. Where forests (1 21) and shrubs (1.24) are near to farmland (1.12), so they were both highly disturbed by human activities regarding the smallest mean patch areas. But the grassland (1.58) had the largest mean patch area, its disturbance intensity was the lowest in this region. The fractal dimension of the overall landscape was 1.24, which was near to those of forests and shrubs, and obviously different from those of farmland and grassland. The fractal dimension of the overall landscape was 1.13 in small scales, and that was 1.65 in large scales. Which means that a large number of small area patches had regular perimeters, their fragment degrees were higher; whereas the large area patches had folding perimeters, their fragment degrees were lower, they had smaller patch numbers, however occupied most of the landscape area. Large areas and highly folded perimeters were the main property of the landscape patch in Donglingshan montane region.
基金supported by the National Basic Research Program of China (973 Program)(2012CB937500)the National Natural Science Foundation of China (11202212,10932011,11021262,11172024,11172305,and 11232013)
文摘Since rate effect of materials plays a key role in impact engineering, the microscopic mechanism of rate effect is investigated at molecular level in this paper. The results show that rate effect on the strength of atomic system is closely related to the coupled evolution of atomic motions and potential landscapes. Accordingly, it becomes possible to develop a new algorithm of molecular simulation, which could properly and efficiently demonstrate strain rate effect under a wide range of loading rates and unveil the mecha- nisms underlying the strain rate effects.
基金the Second Tibetan Plateau Scientific Expedition and Research Program(Grant No.2019QZKK0405)the National Natural Science Foundation of China(Grant No.41871185&41971270)。
文摘The Tibetan Plateau(TP)is undergoing rapid urbanization.To improve urban sustainability and construct eco-logical security barriers,it is essential to quantify the spatial patterns of urbanization level on the TP,but the existing studies on the topic have been limited by the lack of socioeconomic data.This study aims to quantify the urbanization level on the TP in 2018 with Luojia1-01(LJ1-01)high-resolution nighttime light(NTL)data.Specifically,the compounded night light index is used to quantify spatial patterns of urbanization level at mul-tiple scales.The results showed that the TP had a low overall urbanization level with a large internal difference.The urbanization level in the northeast,southeast and south of the TP was relatively high,forming three hotspots centered in Xining City,Lhasa City and Shangri-La City,while the urbanization level in the central and western regions was relatively low.The analysis of influencing factors,based on the random forest model,showed that transportation and topography were the main factors affecting the TP’s spatial patterns of urbanization level.The comparison analysis with socioeconomic statistics and traditional NTL data showed that LJ1-01 NTL data can be used to more effectively quantify the urbanization level since it is more advantageous for reflecting the spatial extent of urban land and describing the spatial structure of socioeconomic activities within urban areas.These advantages are attributed to the high spatial resolution of the data,appropriate imaging time and unaf-fected by saturation phenomena.Thus,the proposed LJ1-01 NTL-based urbanization level measurement method has the potential for wide applications around the world,especially in less-developed regions lacking statistical data.Using this method,we refined the measurement of the TP’s urbanization level in 2018 for multiple scales including the region,basin,prefecture and county levels,which provides basic information for the further urban sustainability research on the TP.