Despite advancements in neuroimaging,false positive diagnoses of intracranial aneurysms remain a significant concern.This article examines the causes,prevalence,and implications of such false-positive diagnoses.We dis...Despite advancements in neuroimaging,false positive diagnoses of intracranial aneurysms remain a significant concern.This article examines the causes,prevalence,and implications of such false-positive diagnoses.We discuss how conditions like arterial occlusion with vascular stump formation and infundibular widening can mimic aneurysms,particularly in the anterior circulation.The article compares various imaging modalities,including computer tomography angiogram,magnetic resonance imaging/angiography,and digital subtraction angiogram,highlighting their strengths and limitations.We emphasize the im-portance of accurate differentiation to avoid unnecessary surgical interventions.The potential of emerging technologies,such as high-resolution vessel wall ima-ging and deep neural networks for automated detection,is explored as promising avenues for improving diagnostic accuracy.This manuscript underscores the need for continued research and clinical vigilance in the diagnosis of intracranial aneurysms.展开更多
English Language teaching involves various English teaching techniques in terms of listening,speaking,reading,writ ing and the like skills.Traditional teaching ways are mostly discussed from that standpoint.Here,some ...English Language teaching involves various English teaching techniques in terms of listening,speaking,reading,writ ing and the like skills.Traditional teaching ways are mostly discussed from that standpoint.Here,some new English classroom teaching techniques are introduced and evaluated in a dimensional perspective,which relate to such elements as the students,the teacher,classroom organization and management,and instructional strategies,etc.It makes English classroom teaching more effec tive,thus improve English classroom teaching results.So,it’s advisable for English teachers to reconsider and reevaluate their teaching strategy and result in language classroom from a new multi-dimensional angle in order to improve English teaching effi ciency.展开更多
Some techniques such as die surface description, contact judgement algorithm and remeshing are proposed to improve the robustness of the numerical solution. Based on these techniques, a three-dimensional rigid-plastic...Some techniques such as die surface description, contact judgement algorithm and remeshing are proposed to improve the robustness of the numerical solution. Based on these techniques, a three-dimensional rigid-plastic FEM code has been developed. Isothermal forging process of a cylindrical housing has been simulated. The simulation results show that the given techniques and the FEM code are reasonable and feasible for three-dimensional bulk forming processes.展开更多
A fast separable approach based on a cross array is presented, which has coarsegrained parallelism. Its computational load is far less than that of the two-dimensional (2-D) direct processing method and other existing...A fast separable approach based on a cross array is presented, which has coarsegrained parallelism. Its computational load is far less than that of the two-dimensional (2-D) direct processing method and other existing separable approaches. In order to compensate for the performance degradation due to separable processing, two postprocessing schemes are also proposed. Some computer simulation results are provided for illustration in the end.展开更多
The development of intestinal anastomosis techniques,including hand suturing,stapling,and compression anastomoses,has been a significant advancement in surgical practice.These methods aim to prevent leakage and minimi...The development of intestinal anastomosis techniques,including hand suturing,stapling,and compression anastomoses,has been a significant advancement in surgical practice.These methods aim to prevent leakage and minimize tissue fibrosis,which can lead to stricture formation.The healing process involves various phases:hemostasis and inflammation,proliferation,and remodeling.Mechanical staplers and sutures can cause inflammation and fibrosis due to the release of profibrotic chemokines.Compression anastomosis devices,including those made of nickel-titanium alloy,offer a minimally invasive option for various surgical challenges and have shown safety and efficacy.However,despite advancements,anastomotic techniques are evaluated based on leakage risk,with complications being a primary concern.Newer devices like Magnamosis use magnetic rings for compression anastomosis,demonstrating greater strength and patency compared to stapling.Magnetic technology is also being explored for other medical treatments.While there are promising results,particularly in animal models,the realworld application in humans is limited,and further research is needed to assess their safety and practicality.展开更多
Rechargeable battery cycling performance and related safety have been persistent concerns.It is crucial to decipher the capacity fading induced by electrode material failure via a range of techniques.Among these,synch...Rechargeable battery cycling performance and related safety have been persistent concerns.It is crucial to decipher the capacity fading induced by electrode material failure via a range of techniques.Among these,synchrotron-based X-ray techniques with high flux and brightness play a key role in understanding degradation mechanisms.In this comprehensive review,we summarize recent advancements in degra-dation modes and mechanisms that were revealed by synchrotron X-ray methodologies.Subsequently,an overview of X-ray absorption spectroscopy and X-ray scattering techniques is introduced for charac-terizing failure phenomena at local coordination atomic environment and long-range order crystal struc-ture scale,respectively.At last,we envision the future of exploring material failure mechanism.展开更多
A multiple monopole (or multipole) method based on the generalized mul- tipole technique (GMT) is proposed to calculate the band structures of scalar waves in two-dimensional phononic crystals which are composed o...A multiple monopole (or multipole) method based on the generalized mul- tipole technique (GMT) is proposed to calculate the band structures of scalar waves in two-dimensional phononic crystals which are composed of arbitrarily shaped cylinders embedded in a host medium. In order to find the eigenvalues of the problem, besides the sources used to expand the wave field, an extra monopole source is introduced which acts as the external excitation. By varying the frequency of the excitation, the eigenvalues can be localized as the extreme points of an appropriately chosen function. By sweeping the frequency range of interest and sweeping the boundary of the irreducible first Brillouin zone, the band structure is obtained. Some numerical examples are presented to validate the proposed method.展开更多
Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by motor symptoms such as tremors, rigidity, and bradykinesia, as well as non-motor symptoms including cognitive impairment and mood ...Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by motor symptoms such as tremors, rigidity, and bradykinesia, as well as non-motor symptoms including cognitive impairment and mood disorders. A hallmark of PD is the accumulation of alpha-synuclein, a presynaptic neuronal protein that aggregates to form Lewy bodies, leading to neuronal dysfunction and cell death. The study of alpha-synuclein and its pathological forms is crucial for understanding the etiology of PD and developing effective diagnostic and therapeutic strategies. Analytical techniques play a pivotal role in elucidating the structure, function, and aggregation mechanisms of alpha-synuclein. Biochemical methods such as Western blotting and enzyme-linked immunosorbent assay (ELISA) are employed to detect and quantify alpha-synuclein in biological samples, offering insights into its expression levels and post-translational modifications. Imaging techniques like immunohistochemistry and positron emission tomography (PET) allow for the visualization of alpha-synuclein aggregates in tissue samples and in vivo, respectively, facilitating the study of its spatial distribution and progression in PD Spectroscopic methods, including nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry, provide detailed structural information on alpha-synuclein and its isoforms, aiding in the identification of conformational changes associated with aggregation. Emerging techniques such as cryo-electron microscopy (Cryo-EM) and single-molecule fluorescence enable high-resolution structural analysis and real-time monitoring of alpha-synuclein aggregation dynamics, respectively. The application of these analytical techniques has significantly advanced our understanding of the pathophysiological role of alpha-synuclein in PD. They have contributed to the identification of potential biomarkers for early diagnosis and the evaluation of therapeutic interventions targeting alpha-synuclein aggregation. Despite technical limitations and challenges in clinical translation, ongoing advancements in analytical methodologies hold promise for improving the diagnosis, monitoring, and treatment of Parkinson’s disease through a deeper understanding of alpha-synuclein pathology.展开更多
This study is aimed to explore the clinical application of the guiding template designed by three-dimensional printing data for the insertion of sacroiliac screws.A retrospective study of 7 cases (from July 2016 to De...This study is aimed to explore the clinical application of the guiding template designed by three-dimensional printing data for the insertion of sacroiliac screws.A retrospective study of 7 cases (from July 2016 to December 2016),in which the guiding template printed by the three-dimensional printing technique was used for the insertion of sacroiliac screws of patients with posterior ring injuries of pelvis,was performed.Totally,4 males and 3 females were included in template group,aged from 38to 65years old (mean 50.86±8.90).Of them,5 had sacral fractures (3 with Denis type Ⅰ and 2 with type Ⅱ)and 2 the separation of sacroiliac joint.Guiding templates were firstly made by the three-dimensional printing technique based on the pre-operative CT data. Surgical operations for the stabilization of pelvic ring by applying the guiding templates were carried out.A group of 8 patients with sacroiliac injuries treated by percutaneous sacroiliac screws were analyzed as a control group retrospectively.The time of each screw insertion,volume of intra-operative blood loss,and the exposure to X ray were analyzed and the Matta's radiological criteria were used to evaluate the reduction quality.The Majeed score was used to evaluate postoperative living quality.The visual analogue scale (VAS)was applied at different time points to judge pain relief of coccydynia.All the 7 patients in the template group were closely followed up radiographically and clinically for 14 to 20 months,mean (16.57±2.44)months.Totally 9 sacroiliac screws for the S 1 and S2 vertebra were inserted in the 7 patients.The time length for each screw insertion ranged from 450 to 870 s,mean (690.56±135.68)s,and the number of times of exposure to X ray were 4 to 8,mean (5.78±1.20).The intra-operative blood loss ranged from 45to 120 mL,mean (75±23.32)mL.According to Matta's radiology criteria,the fracture and dislocation reduction were excellent in 6cases and good in 1.The pre-operative VAS score ranged from 5.2 to 8.1,mean (7.13±1.00).The average one-week/six-month post-operative VAS was (5.33±0.78)and (1.33±0.66),respectively (P<0.05 when compared with pre-operative VAS).The 12-month post-operative Majeed score ranged from 86 to 92,mean (90.29±2.21).The three-dimensional printed guiding template for sacroiliac screw insertion,which could significantly shorten the operation time,provide a satisfied outcome of the stabilization of the pelvic ring,and protect doctors and patients from X-ray exposure,might be a practical and valuable new clinical technique.展开更多
This paper studies the(2+1)-dimensional Hirota-Satsuma-Ito equation.Based on an associated Hirota bilinear form,lump-type solution,two types of interaction solutions,and breather wave solution of the(2+1)-dimensional ...This paper studies the(2+1)-dimensional Hirota-Satsuma-Ito equation.Based on an associated Hirota bilinear form,lump-type solution,two types of interaction solutions,and breather wave solution of the(2+1)-dimensional Hirota-Satsuma-Ito equation are obtained,which are all related to the seed solution of the equation.It is interesting that the rogue wave is aroused by the interaction between one-lump soliton and a pair of resonance stripe solitons,and the fusion and fission phenomena are also found in the interaction between lump solitons and one-stripe soliton.Furthermore,the breather wave solution is also obtained by reducing the two-soliton solutions.The trajectory and period of the one-order breather wave are analyzed.The corresponding dynamical characteristics are demonstrated by the graphs.展开更多
Epilepsy can be defined as a dysfunction of the brain network,and each type of epilepsy involves different brain-network changes that are implicated diffe rently in the control and propagation of interictal or ictal d...Epilepsy can be defined as a dysfunction of the brain network,and each type of epilepsy involves different brain-network changes that are implicated diffe rently in the control and propagation of interictal or ictal discharges.Gaining more detailed information on brain network alterations can help us to further understand the mechanisms of epilepsy and pave the way for brain network-based precise therapeutic approaches in clinical practice.An increasing number of advanced neuroimaging techniques and electrophysiological techniques such as diffusion tensor imaging-based fiber tra ctography,diffusion kurtosis imaging-based fiber tractography,fiber ball imagingbased tra ctography,electroencephalography,functional magnetic resonance imaging,magnetoencephalography,positron emission tomography,molecular imaging,and functional ultrasound imaging have been extensively used to delineate epileptic networks.In this review,we summarize the relevant neuroimaging and neuroelectrophysiological techniques for assessing structural and functional brain networks in patients with epilepsy,and extensively analyze the imaging mechanisms,advantages,limitations,and clinical application ranges of each technique.A greater focus on emerging advanced technologies,new data analysis software,a combination of multiple techniques,and the construction of personalized virtual epilepsy models can provide a theoretical basis to better understand the brain network mechanisms of epilepsy and make surgical decisions.展开更多
The radioheliograph is an extensive array of antennas operating on the principle of aperture synthesis to produce images of the Sun.The image acquired by the telescope results from convoluting the Sun’s true brightne...The radioheliograph is an extensive array of antennas operating on the principle of aperture synthesis to produce images of the Sun.The image acquired by the telescope results from convoluting the Sun’s true brightness distribution with the antenna array’s directional pattern.The imaging quality of the radioheliograph is affected by a multitude of factors,with the performance of the“dirty beam”being simply one component.Other factors such as imaging methods,calibration techniques,clean algorithms,and more also play a significant influence on the resulting image quality.As the layout of the antenna array directly affects the performance of the dirty beam,the design of an appropriate antenna configuration is critical to improving the imaging quality of the radioheliograph.Based on the actual needs of observing the Sun,this work optimized the antenna array design and proposed a twodimensional low-redundancy array.The proposed array was compared with common T-shaped arrays,Y-shaped arrays,uniformly spaced circular arrays,and three-arm spiral arrays.Through simulations and experiments,their performance in terms of sampling point numbers,UV coverage area,beam-half width,sidelobe level,and performance in the absence of antennas are compared and analyzed.It was found that each of these arrays has its advantages,but the two-dimensional low-redundancy array proposed in this paper performs best in overall evaluation.It has the shortest imaging calculation time among the array types and is highly robust when antennas are missing,making it the most suitable choice.展开更多
Background: Delayed gastric emptying(DGE) is one of the most common complications after pancreaticoduodenectomy(PD). DGE represents impaired gastric motility without significant mechanical obstruction and is associate...Background: Delayed gastric emptying(DGE) is one of the most common complications after pancreaticoduodenectomy(PD). DGE represents impaired gastric motility without significant mechanical obstruction and is associated with an increased length of hospital stay, increased healthcare costs, and a high readmission rate. We reviewed published studies on various technical modifications to reduce the incidence of DGE. Data sources: Studies were identified by searching Pub Med for relevant articles published up to December 2022. The following search terms were used: “pancreaticoduodenectomy”, “pancreaticojejunostomy”, “pancreaticogastrostomy”, “gastric emptying”, “gastroparesis” and “postoperative complications”. The search was limited to English publications. Additional articles were identified by a manual search of references from key articles. Results: In recent years, various surgical procedures and techniques have been explored to reduce the incidence of DGE. Pyloric resection, Billroth II reconstruction, Braun's enteroenterostomy, and antecolic reconstruction may be associated with a decreased incidence of DGE, but more high-powered studies are needed in the future. Neither laparoscopic nor robotic surgery has demonstrated superiority in preventing DGE, and the use of staplers is controversial regarding whether they can reduce the incidence of DGE. Conclusions: Despite many innovations in surgical techniques, there is no surgical procedure that is superior to others to reduce DGE. Further larger prospective randomized studies are needed.展开更多
A reduced-order extrapolation algorithm based on Crank-Nicolson least-squares mixed finite element (CNLSMFE) formulation and proper orthogonal decomposition (POD) technique for two-dimensional (2D) Sobolev equat...A reduced-order extrapolation algorithm based on Crank-Nicolson least-squares mixed finite element (CNLSMFE) formulation and proper orthogonal decomposition (POD) technique for two-dimensional (2D) Sobolev equations is established. The error estimates of the reduced-order CNLSMFE solutions and the implementation for the reduced-order extrapolation algorithm are provided. A numerical example is used to show that the results of numerical computations are consistent with theoretical conclusions. Moreover, it is shown that the reduced-order extrapolation algorithm is feasible and efficient for seeking numerical solutions to 2D Sobolev equations.展开更多
Flexible electronics offer a multitude of advantages,such as flexibility,lightweight property,portability,and high durability.These unique properties allow for seamless applications to curved and soft surfaces,leading...Flexible electronics offer a multitude of advantages,such as flexibility,lightweight property,portability,and high durability.These unique properties allow for seamless applications to curved and soft surfaces,leading to extensive utilization across a wide range of fields in consumer electronics.These applications,for example,span integrated circuits,solar cells,batteries,wearable devices,bio-implants,soft robotics,and biomimetic applications.Recently,flexible electronic devices have been developed using a variety of materials such as organic,carbon-based,and inorganic semiconducting materials.Silicon(Si)owing to its mature fabrication process,excellent electrical,optical,thermal properties,and cost efficiency,remains a compelling material choice for flexible electronics.Consequently,the research on ultra-thin Si in the context of flexible electronics is studied rigorously nowadays.The thinning of Si is crucially important for flexible electronics as it reduces its bending stiffness and the resultant bending strain,thereby enhancing flexibility while preserving its exceptional properties.This review provides a comprehensive overview of the recent efforts in the fabrication techniques for forming ultra-thin Si using top-down and bottom-up approaches and explores their utilization in flexible electronics and their applications.展开更多
Manipulating the expression of synaptic plasticity of neuromorphic devices provides fascinating opportunities to develop hardware platforms for artifi-cial intelligence.However,great efforts have been devoted to explo...Manipulating the expression of synaptic plasticity of neuromorphic devices provides fascinating opportunities to develop hardware platforms for artifi-cial intelligence.However,great efforts have been devoted to exploring biomimetic mechanisms of plasticity simulation in the last few years.Recent progress in various plasticity modulation techniques has pushed the research of synaptic electronics from static plasticity simulation to dynamic plasticity modulation,improving the accuracy of neuromorphic computing and providing strategies for implementing neuromorphic sensing functions.Herein,several fascinating strategies for synap-tic plasticity modulation through chemical techniques,device structure design,and physical signal sensing are reviewed.For chemical techniques,the underly-ing mechanisms for the modification of functional materials were clarified and its effect on the expression of synaptic plasticity was also highlighted.Based on device structure design,the reconfigurable operation of neuromorphic devices was well demonstrated to achieve programmable neuromorphic functions.Besides,integrating the sensory units with neuromorphic processing circuits paved a new way to achieve human-like intelligent perception under the modulation of physical signals such as light,strain,and temperature.Finally,considering that the relevant technology is still in the basic exploration stage,some prospects or development suggestions are put forward to promote the development of neuromorphic devices.展开更多
Tyrosine kinase inhibitors(TKIs)have emerged as the first-line small molecule drugs in many cancer therapies,exerting their effects by impeding aberrant cell growth and proliferation through the modulation of tyrosine...Tyrosine kinase inhibitors(TKIs)have emerged as the first-line small molecule drugs in many cancer therapies,exerting their effects by impeding aberrant cell growth and proliferation through the modulation of tyrosine kinase-mediated signaling pathways.However,there exists a substantial inter-individual variability in the concentrations of certain TKIs and their metabolites,which may render patients with compromised immune function susceptible to diverse infections despite receiving theoretically efficacious anticancer treatments,alongside other potential side effects or adverse reactions.Therefore,an urgent need exists for an up-to-date review concerning the biological matrices relevant to bioanalysis and the sampling methods,clinical pharmacokinetics,and therapeutic drug monitoring of different TKIs.This paper provides a comprehensive overview of the advancements in pretreatment methods,such as protein precipitation(PPT),liquid-liquid extraction(LLE),solid-phase extraction(SPE),micro-SPE(μ-SPE),magnetic SPE(MSPE),and vortex-assisted dispersive SPE(VA-DSPE)achieved since 2017.It also highlights the latest analysis techniques such as newly developed high performance liquid chromatography(HPLC)and high-resolution mass spectrometry(HRMS)methods,capillary electrophoresis(CE),gas chromatography(GC),supercritical fluid chromatography(SFC)procedures,surface plasmon resonance(SPR)assays as well as novel nanoprobes-based biosensing techniques.In addition,a comparison is made between the advantages and disadvantages of different approaches while presenting critical challenges and prospects in pharmacokinetic studies and therapeutic drug monitoring.展开更多
The widespread adoption of the Internet of Things (IoT) has transformed various sectors globally, making themmore intelligent and connected. However, this advancement comes with challenges related to the effectiveness...The widespread adoption of the Internet of Things (IoT) has transformed various sectors globally, making themmore intelligent and connected. However, this advancement comes with challenges related to the effectiveness ofIoT devices. These devices, present in offices, homes, industries, and more, need constant monitoring to ensuretheir proper functionality. The success of smart systems relies on their seamless operation and ability to handlefaults. Sensors, crucial components of these systems, gather data and contribute to their functionality. Therefore,sensor faults can compromise the system’s reliability and undermine the trustworthiness of smart environments.To address these concerns, various techniques and algorithms can be employed to enhance the performance ofIoT devices through effective fault detection. This paper conducted a thorough review of the existing literature andconducted a detailed analysis.This analysis effectively links sensor errors with a prominent fault detection techniquecapable of addressing them. This study is innovative because it paves theway for future researchers to explore errorsthat have not yet been tackled by existing fault detection methods. Significant, the paper, also highlights essentialfactors for selecting and adopting fault detection techniques, as well as the characteristics of datasets and theircorresponding recommended techniques. Additionally, the paper presents amethodical overview of fault detectiontechniques employed in smart devices, including themetrics used for evaluation. Furthermore, the paper examinesthe body of academic work related to sensor faults and fault detection techniques within the domain. This reflectsthe growing inclination and scholarly attention of researchers and academicians toward strategies for fault detectionwithin the realm of the Internet of Things.展开更多
Pd-capped nanocrystalline Mg films were prepared by electron beam evaporation and hydrogenated under isothermal conditions to inves-tigate the hydrogen absorption process via ion beam techniques and in situ optical me...Pd-capped nanocrystalline Mg films were prepared by electron beam evaporation and hydrogenated under isothermal conditions to inves-tigate the hydrogen absorption process via ion beam techniques and in situ optical methods.Films were characterized by different techniques such as X-ray diffraction(XRD)and scanning electron microscopy(SEM).Rutherford backscattering spectrometry(RBS)and elastic recoil detection analysis(ERDA)provided a detailed compositional depth profile of the films during hydrogenation.Gas-solid reaction kinetics theory applied to ERDA data revealed a H absorption mechanism controlled by H diffusion.This rate-limiting step was also confirmed by XRD measurements.The diffusion coefficient(D)was also determined via RBS and ERDA,with a value of(1.1±0.1)·10^(−13)cm^(2)/s at 140℃.Results confirm the validity of IBA to monitor the hydrogenation process and to extract the control mechanism of the process.The H kinetic information given by optical methods is strongly influenced by the optical absorption of the magnesium layer,revealing that thinner films are needed to extract further and reliable information from that technique.展开更多
Image steganography is one of the prominent technologies in data hiding standards.Steganographic system performance mostly depends on the embedding strategy.Its goal is to embed strictly confidential information into ...Image steganography is one of the prominent technologies in data hiding standards.Steganographic system performance mostly depends on the embedding strategy.Its goal is to embed strictly confidential information into images without causing perceptible changes in the original image.The randomization strategies in data embedding techniques may utilize random domains,pixels,or region-of-interest for concealing secrets into a cover image,preventing information from being discovered by an attacker.The implementation of an appropriate embedding technique can achieve a fair balance between embedding capability and stego image imperceptibility,but it is challenging.A systematic approach is used with a standard methodology to carry out this study.This review concentrates on the critical examination of several embedding strategies,incorporating experimental results with state-of-the-art methods emphasizing the robustness,security,payload capacity,and visual quality metrics of the stego images.The fundamental ideas of steganography are presented in this work,along with a unique viewpoint that sets it apart from previous works by highlighting research gaps,important problems,and difficulties.Additionally,it offers a discussion of suggested directions for future study to advance and investigate uncharted territory in image steganography.展开更多
文摘Despite advancements in neuroimaging,false positive diagnoses of intracranial aneurysms remain a significant concern.This article examines the causes,prevalence,and implications of such false-positive diagnoses.We discuss how conditions like arterial occlusion with vascular stump formation and infundibular widening can mimic aneurysms,particularly in the anterior circulation.The article compares various imaging modalities,including computer tomography angiogram,magnetic resonance imaging/angiography,and digital subtraction angiogram,highlighting their strengths and limitations.We emphasize the im-portance of accurate differentiation to avoid unnecessary surgical interventions.The potential of emerging technologies,such as high-resolution vessel wall ima-ging and deep neural networks for automated detection,is explored as promising avenues for improving diagnostic accuracy.This manuscript underscores the need for continued research and clinical vigilance in the diagnosis of intracranial aneurysms.
文摘English Language teaching involves various English teaching techniques in terms of listening,speaking,reading,writ ing and the like skills.Traditional teaching ways are mostly discussed from that standpoint.Here,some new English classroom teaching techniques are introduced and evaluated in a dimensional perspective,which relate to such elements as the students,the teacher,classroom organization and management,and instructional strategies,etc.It makes English classroom teaching more effec tive,thus improve English classroom teaching results.So,it’s advisable for English teachers to reconsider and reevaluate their teaching strategy and result in language classroom from a new multi-dimensional angle in order to improve English teaching effi ciency.
基金This work was supported by the Brain Korea 2lProject and the Grallt of Post-Doc Program, KyungpookNational University (1999).
文摘Some techniques such as die surface description, contact judgement algorithm and remeshing are proposed to improve the robustness of the numerical solution. Based on these techniques, a three-dimensional rigid-plastic FEM code has been developed. Isothermal forging process of a cylindrical housing has been simulated. The simulation results show that the given techniques and the FEM code are reasonable and feasible for three-dimensional bulk forming processes.
文摘A fast separable approach based on a cross array is presented, which has coarsegrained parallelism. Its computational load is far less than that of the two-dimensional (2-D) direct processing method and other existing separable approaches. In order to compensate for the performance degradation due to separable processing, two postprocessing schemes are also proposed. Some computer simulation results are provided for illustration in the end.
文摘The development of intestinal anastomosis techniques,including hand suturing,stapling,and compression anastomoses,has been a significant advancement in surgical practice.These methods aim to prevent leakage and minimize tissue fibrosis,which can lead to stricture formation.The healing process involves various phases:hemostasis and inflammation,proliferation,and remodeling.Mechanical staplers and sutures can cause inflammation and fibrosis due to the release of profibrotic chemokines.Compression anastomosis devices,including those made of nickel-titanium alloy,offer a minimally invasive option for various surgical challenges and have shown safety and efficacy.However,despite advancements,anastomotic techniques are evaluated based on leakage risk,with complications being a primary concern.Newer devices like Magnamosis use magnetic rings for compression anastomosis,demonstrating greater strength and patency compared to stapling.Magnetic technology is also being explored for other medical treatments.While there are promising results,particularly in animal models,the realworld application in humans is limited,and further research is needed to assess their safety and practicality.
基金supported by the U.S.National Science Foundation (2208972,2120559,and 2323117)
文摘Rechargeable battery cycling performance and related safety have been persistent concerns.It is crucial to decipher the capacity fading induced by electrode material failure via a range of techniques.Among these,synchrotron-based X-ray techniques with high flux and brightness play a key role in understanding degradation mechanisms.In this comprehensive review,we summarize recent advancements in degra-dation modes and mechanisms that were revealed by synchrotron X-ray methodologies.Subsequently,an overview of X-ray absorption spectroscopy and X-ray scattering techniques is introduced for charac-terizing failure phenomena at local coordination atomic environment and long-range order crystal struc-ture scale,respectively.At last,we envision the future of exploring material failure mechanism.
基金supported by the National Natural Science Foundation of China(Nos.51178037 and10632020)the German Research Foundation(DFG)(Nos.ZH 15/11-1 and ZH 15/16-1)+1 种基金the International Bureau of the German Federal Ministry of Education and Research(BMBF)(No.CHN11/045)the National Basic Research Program of China(No.2010CB732104)
文摘A multiple monopole (or multipole) method based on the generalized mul- tipole technique (GMT) is proposed to calculate the band structures of scalar waves in two-dimensional phononic crystals which are composed of arbitrarily shaped cylinders embedded in a host medium. In order to find the eigenvalues of the problem, besides the sources used to expand the wave field, an extra monopole source is introduced which acts as the external excitation. By varying the frequency of the excitation, the eigenvalues can be localized as the extreme points of an appropriately chosen function. By sweeping the frequency range of interest and sweeping the boundary of the irreducible first Brillouin zone, the band structure is obtained. Some numerical examples are presented to validate the proposed method.
文摘Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by motor symptoms such as tremors, rigidity, and bradykinesia, as well as non-motor symptoms including cognitive impairment and mood disorders. A hallmark of PD is the accumulation of alpha-synuclein, a presynaptic neuronal protein that aggregates to form Lewy bodies, leading to neuronal dysfunction and cell death. The study of alpha-synuclein and its pathological forms is crucial for understanding the etiology of PD and developing effective diagnostic and therapeutic strategies. Analytical techniques play a pivotal role in elucidating the structure, function, and aggregation mechanisms of alpha-synuclein. Biochemical methods such as Western blotting and enzyme-linked immunosorbent assay (ELISA) are employed to detect and quantify alpha-synuclein in biological samples, offering insights into its expression levels and post-translational modifications. Imaging techniques like immunohistochemistry and positron emission tomography (PET) allow for the visualization of alpha-synuclein aggregates in tissue samples and in vivo, respectively, facilitating the study of its spatial distribution and progression in PD Spectroscopic methods, including nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry, provide detailed structural information on alpha-synuclein and its isoforms, aiding in the identification of conformational changes associated with aggregation. Emerging techniques such as cryo-electron microscopy (Cryo-EM) and single-molecule fluorescence enable high-resolution structural analysis and real-time monitoring of alpha-synuclein aggregation dynamics, respectively. The application of these analytical techniques has significantly advanced our understanding of the pathophysiological role of alpha-synuclein in PD. They have contributed to the identification of potential biomarkers for early diagnosis and the evaluation of therapeutic interventions targeting alpha-synuclein aggregation. Despite technical limitations and challenges in clinical translation, ongoing advancements in analytical methodologies hold promise for improving the diagnosis, monitoring, and treatment of Parkinson’s disease through a deeper understanding of alpha-synuclein pathology.
文摘This study is aimed to explore the clinical application of the guiding template designed by three-dimensional printing data for the insertion of sacroiliac screws.A retrospective study of 7 cases (from July 2016 to December 2016),in which the guiding template printed by the three-dimensional printing technique was used for the insertion of sacroiliac screws of patients with posterior ring injuries of pelvis,was performed.Totally,4 males and 3 females were included in template group,aged from 38to 65years old (mean 50.86±8.90).Of them,5 had sacral fractures (3 with Denis type Ⅰ and 2 with type Ⅱ)and 2 the separation of sacroiliac joint.Guiding templates were firstly made by the three-dimensional printing technique based on the pre-operative CT data. Surgical operations for the stabilization of pelvic ring by applying the guiding templates were carried out.A group of 8 patients with sacroiliac injuries treated by percutaneous sacroiliac screws were analyzed as a control group retrospectively.The time of each screw insertion,volume of intra-operative blood loss,and the exposure to X ray were analyzed and the Matta's radiological criteria were used to evaluate the reduction quality.The Majeed score was used to evaluate postoperative living quality.The visual analogue scale (VAS)was applied at different time points to judge pain relief of coccydynia.All the 7 patients in the template group were closely followed up radiographically and clinically for 14 to 20 months,mean (16.57±2.44)months.Totally 9 sacroiliac screws for the S 1 and S2 vertebra were inserted in the 7 patients.The time length for each screw insertion ranged from 450 to 870 s,mean (690.56±135.68)s,and the number of times of exposure to X ray were 4 to 8,mean (5.78±1.20).The intra-operative blood loss ranged from 45to 120 mL,mean (75±23.32)mL.According to Matta's radiology criteria,the fracture and dislocation reduction were excellent in 6cases and good in 1.The pre-operative VAS score ranged from 5.2 to 8.1,mean (7.13±1.00).The average one-week/six-month post-operative VAS was (5.33±0.78)and (1.33±0.66),respectively (P<0.05 when compared with pre-operative VAS).The 12-month post-operative Majeed score ranged from 86 to 92,mean (90.29±2.21).The three-dimensional printed guiding template for sacroiliac screw insertion,which could significantly shorten the operation time,provide a satisfied outcome of the stabilization of the pelvic ring,and protect doctors and patients from X-ray exposure,might be a practical and valuable new clinical technique.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12275172 and 11905124)。
文摘This paper studies the(2+1)-dimensional Hirota-Satsuma-Ito equation.Based on an associated Hirota bilinear form,lump-type solution,two types of interaction solutions,and breather wave solution of the(2+1)-dimensional Hirota-Satsuma-Ito equation are obtained,which are all related to the seed solution of the equation.It is interesting that the rogue wave is aroused by the interaction between one-lump soliton and a pair of resonance stripe solitons,and the fusion and fission phenomena are also found in the interaction between lump solitons and one-stripe soliton.Furthermore,the breather wave solution is also obtained by reducing the two-soliton solutions.The trajectory and period of the one-order breather wave are analyzed.The corresponding dynamical characteristics are demonstrated by the graphs.
基金supported by the Natural Science Foundation of Sichuan Province of China,Nos.2022NSFSC1545 (to YG),2022NSFSC1387 (to ZF)the Natural Science Foundation of Chongqing of China,Nos.CSTB2022NSCQ-LZX0038,cstc2021ycjh-bgzxm0035 (both to XT)+3 种基金the National Natural Science Foundation of China,No.82001378 (to XT)the Joint Project of Chongqing Health Commission and Science and Technology Bureau,No.2023QNXM009 (to XT)the Science and Technology Research Program of Chongqing Education Commission of China,No.KJQN202200435 (to XT)the Chongqing Talents:Exceptional Young Talents Project,No.CQYC202005014 (to XT)。
文摘Epilepsy can be defined as a dysfunction of the brain network,and each type of epilepsy involves different brain-network changes that are implicated diffe rently in the control and propagation of interictal or ictal discharges.Gaining more detailed information on brain network alterations can help us to further understand the mechanisms of epilepsy and pave the way for brain network-based precise therapeutic approaches in clinical practice.An increasing number of advanced neuroimaging techniques and electrophysiological techniques such as diffusion tensor imaging-based fiber tra ctography,diffusion kurtosis imaging-based fiber tractography,fiber ball imagingbased tra ctography,electroencephalography,functional magnetic resonance imaging,magnetoencephalography,positron emission tomography,molecular imaging,and functional ultrasound imaging have been extensively used to delineate epileptic networks.In this review,we summarize the relevant neuroimaging and neuroelectrophysiological techniques for assessing structural and functional brain networks in patients with epilepsy,and extensively analyze the imaging mechanisms,advantages,limitations,and clinical application ranges of each technique.A greater focus on emerging advanced technologies,new data analysis software,a combination of multiple techniques,and the construction of personalized virtual epilepsy models can provide a theoretical basis to better understand the brain network mechanisms of epilepsy and make surgical decisions.
基金supported by the grants of the National Natural Science Foundation of China(42127804,42374219)。
文摘The radioheliograph is an extensive array of antennas operating on the principle of aperture synthesis to produce images of the Sun.The image acquired by the telescope results from convoluting the Sun’s true brightness distribution with the antenna array’s directional pattern.The imaging quality of the radioheliograph is affected by a multitude of factors,with the performance of the“dirty beam”being simply one component.Other factors such as imaging methods,calibration techniques,clean algorithms,and more also play a significant influence on the resulting image quality.As the layout of the antenna array directly affects the performance of the dirty beam,the design of an appropriate antenna configuration is critical to improving the imaging quality of the radioheliograph.Based on the actual needs of observing the Sun,this work optimized the antenna array design and proposed a twodimensional low-redundancy array.The proposed array was compared with common T-shaped arrays,Y-shaped arrays,uniformly spaced circular arrays,and three-arm spiral arrays.Through simulations and experiments,their performance in terms of sampling point numbers,UV coverage area,beam-half width,sidelobe level,and performance in the absence of antennas are compared and analyzed.It was found that each of these arrays has its advantages,but the two-dimensional low-redundancy array proposed in this paper performs best in overall evaluation.It has the shortest imaging calculation time among the array types and is highly robust when antennas are missing,making it the most suitable choice.
文摘Background: Delayed gastric emptying(DGE) is one of the most common complications after pancreaticoduodenectomy(PD). DGE represents impaired gastric motility without significant mechanical obstruction and is associated with an increased length of hospital stay, increased healthcare costs, and a high readmission rate. We reviewed published studies on various technical modifications to reduce the incidence of DGE. Data sources: Studies were identified by searching Pub Med for relevant articles published up to December 2022. The following search terms were used: “pancreaticoduodenectomy”, “pancreaticojejunostomy”, “pancreaticogastrostomy”, “gastric emptying”, “gastroparesis” and “postoperative complications”. The search was limited to English publications. Additional articles were identified by a manual search of references from key articles. Results: In recent years, various surgical procedures and techniques have been explored to reduce the incidence of DGE. Pyloric resection, Billroth II reconstruction, Braun's enteroenterostomy, and antecolic reconstruction may be associated with a decreased incidence of DGE, but more high-powered studies are needed in the future. Neither laparoscopic nor robotic surgery has demonstrated superiority in preventing DGE, and the use of staplers is controversial regarding whether they can reduce the incidence of DGE. Conclusions: Despite many innovations in surgical techniques, there is no surgical procedure that is superior to others to reduce DGE. Further larger prospective randomized studies are needed.
基金Supported by the National Natural Science Foundation of China(11271127)Science Research Projectof Guizhou Province Education Department(QJHKYZ[2013]207)
文摘A reduced-order extrapolation algorithm based on Crank-Nicolson least-squares mixed finite element (CNLSMFE) formulation and proper orthogonal decomposition (POD) technique for two-dimensional (2D) Sobolev equations is established. The error estimates of the reduced-order CNLSMFE solutions and the implementation for the reduced-order extrapolation algorithm are provided. A numerical example is used to show that the results of numerical computations are consistent with theoretical conclusions. Moreover, it is shown that the reduced-order extrapolation algorithm is feasible and efficient for seeking numerical solutions to 2D Sobolev equations.
基金supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. RS-2024-00353768)the Yonsei Fellowship, funded by Lee Youn Jae. This study was funded by the KIST Institutional Program Project No. 2E31603-22-140 (K J Y). S M W acknowledges the support by National Research Foundation of Korea (NRF) grant funded by the Korea government (Grant Nos. NRF-2021R1C1C1009410, NRF2022R1A4A3032913 and RS-2024-00411904)
文摘Flexible electronics offer a multitude of advantages,such as flexibility,lightweight property,portability,and high durability.These unique properties allow for seamless applications to curved and soft surfaces,leading to extensive utilization across a wide range of fields in consumer electronics.These applications,for example,span integrated circuits,solar cells,batteries,wearable devices,bio-implants,soft robotics,and biomimetic applications.Recently,flexible electronic devices have been developed using a variety of materials such as organic,carbon-based,and inorganic semiconducting materials.Silicon(Si)owing to its mature fabrication process,excellent electrical,optical,thermal properties,and cost efficiency,remains a compelling material choice for flexible electronics.Consequently,the research on ultra-thin Si in the context of flexible electronics is studied rigorously nowadays.The thinning of Si is crucially important for flexible electronics as it reduces its bending stiffness and the resultant bending strain,thereby enhancing flexibility while preserving its exceptional properties.This review provides a comprehensive overview of the recent efforts in the fabrication techniques for forming ultra-thin Si using top-down and bottom-up approaches and explores their utilization in flexible electronics and their applications.
基金financial support from the National Natural Science Foundation of China(Nos.62104017 and 52072204)Beijing Institute of Technology Research Fund Program for Young Scholars.
文摘Manipulating the expression of synaptic plasticity of neuromorphic devices provides fascinating opportunities to develop hardware platforms for artifi-cial intelligence.However,great efforts have been devoted to exploring biomimetic mechanisms of plasticity simulation in the last few years.Recent progress in various plasticity modulation techniques has pushed the research of synaptic electronics from static plasticity simulation to dynamic plasticity modulation,improving the accuracy of neuromorphic computing and providing strategies for implementing neuromorphic sensing functions.Herein,several fascinating strategies for synap-tic plasticity modulation through chemical techniques,device structure design,and physical signal sensing are reviewed.For chemical techniques,the underly-ing mechanisms for the modification of functional materials were clarified and its effect on the expression of synaptic plasticity was also highlighted.Based on device structure design,the reconfigurable operation of neuromorphic devices was well demonstrated to achieve programmable neuromorphic functions.Besides,integrating the sensory units with neuromorphic processing circuits paved a new way to achieve human-like intelligent perception under the modulation of physical signals such as light,strain,and temperature.Finally,considering that the relevant technology is still in the basic exploration stage,some prospects or development suggestions are put forward to promote the development of neuromorphic devices.
基金supported by the Natural Science Foundation of Liaoning Province,China(Grant No.:2023-MS-172).
文摘Tyrosine kinase inhibitors(TKIs)have emerged as the first-line small molecule drugs in many cancer therapies,exerting their effects by impeding aberrant cell growth and proliferation through the modulation of tyrosine kinase-mediated signaling pathways.However,there exists a substantial inter-individual variability in the concentrations of certain TKIs and their metabolites,which may render patients with compromised immune function susceptible to diverse infections despite receiving theoretically efficacious anticancer treatments,alongside other potential side effects or adverse reactions.Therefore,an urgent need exists for an up-to-date review concerning the biological matrices relevant to bioanalysis and the sampling methods,clinical pharmacokinetics,and therapeutic drug monitoring of different TKIs.This paper provides a comprehensive overview of the advancements in pretreatment methods,such as protein precipitation(PPT),liquid-liquid extraction(LLE),solid-phase extraction(SPE),micro-SPE(μ-SPE),magnetic SPE(MSPE),and vortex-assisted dispersive SPE(VA-DSPE)achieved since 2017.It also highlights the latest analysis techniques such as newly developed high performance liquid chromatography(HPLC)and high-resolution mass spectrometry(HRMS)methods,capillary electrophoresis(CE),gas chromatography(GC),supercritical fluid chromatography(SFC)procedures,surface plasmon resonance(SPR)assays as well as novel nanoprobes-based biosensing techniques.In addition,a comparison is made between the advantages and disadvantages of different approaches while presenting critical challenges and prospects in pharmacokinetic studies and therapeutic drug monitoring.
文摘The widespread adoption of the Internet of Things (IoT) has transformed various sectors globally, making themmore intelligent and connected. However, this advancement comes with challenges related to the effectiveness ofIoT devices. These devices, present in offices, homes, industries, and more, need constant monitoring to ensuretheir proper functionality. The success of smart systems relies on their seamless operation and ability to handlefaults. Sensors, crucial components of these systems, gather data and contribute to their functionality. Therefore,sensor faults can compromise the system’s reliability and undermine the trustworthiness of smart environments.To address these concerns, various techniques and algorithms can be employed to enhance the performance ofIoT devices through effective fault detection. This paper conducted a thorough review of the existing literature andconducted a detailed analysis.This analysis effectively links sensor errors with a prominent fault detection techniquecapable of addressing them. This study is innovative because it paves theway for future researchers to explore errorsthat have not yet been tackled by existing fault detection methods. Significant, the paper, also highlights essentialfactors for selecting and adopting fault detection techniques, as well as the characteristics of datasets and theircorresponding recommended techniques. Additionally, the paper presents amethodical overview of fault detectiontechniques employed in smart devices, including themetrics used for evaluation. Furthermore, the paper examinesthe body of academic work related to sensor faults and fault detection techniques within the domain. This reflectsthe growing inclination and scholarly attention of researchers and academicians toward strategies for fault detectionwithin the realm of the Internet of Things.
基金support by Spanish MICINN through the project PID2021-126098OB-I00/AEI/FEDER10.13039/501100011033 are gratefully ac-knowledgedthe MiNa Laboratory at IMN,and funding from CAM(project S2018/NMT-4291 TEC2SPACE),MINECO(project CSIC13-4E-1794)and EU(FEDER,FSE)+2 种基金fund-ing from TechnoFusion Project(P2018/EMT-4437)of the CAM(Comunidad Autónoma Madrid)support from the Center for Micro-Analysis of Materials(CMAM)-Univer-sidad Autónoma de Madrid,for the beam time proposals,with codes STD005/23,STD020/23 and STD037/23,and its technical staff for their contribution to the operation of the acceleratorsupport from the research project“Captación de Talento UAM”Ref:#541D300 supervised by the Vice-Chancellor of Research of Universidad Autonoma de Madrid(UAM).
文摘Pd-capped nanocrystalline Mg films were prepared by electron beam evaporation and hydrogenated under isothermal conditions to inves-tigate the hydrogen absorption process via ion beam techniques and in situ optical methods.Films were characterized by different techniques such as X-ray diffraction(XRD)and scanning electron microscopy(SEM).Rutherford backscattering spectrometry(RBS)and elastic recoil detection analysis(ERDA)provided a detailed compositional depth profile of the films during hydrogenation.Gas-solid reaction kinetics theory applied to ERDA data revealed a H absorption mechanism controlled by H diffusion.This rate-limiting step was also confirmed by XRD measurements.The diffusion coefficient(D)was also determined via RBS and ERDA,with a value of(1.1±0.1)·10^(−13)cm^(2)/s at 140℃.Results confirm the validity of IBA to monitor the hydrogenation process and to extract the control mechanism of the process.The H kinetic information given by optical methods is strongly influenced by the optical absorption of the magnesium layer,revealing that thinner films are needed to extract further and reliable information from that technique.
基金This research was funded by the Ministry of Higher Education(MOHE)through Fundamental Research Grant Scheme(FRGS)under the Grand Number FRGS/1/2020/ICT01/UK M/02/4,and University Kebangsaan Malaysia for open access publication.
文摘Image steganography is one of the prominent technologies in data hiding standards.Steganographic system performance mostly depends on the embedding strategy.Its goal is to embed strictly confidential information into images without causing perceptible changes in the original image.The randomization strategies in data embedding techniques may utilize random domains,pixels,or region-of-interest for concealing secrets into a cover image,preventing information from being discovered by an attacker.The implementation of an appropriate embedding technique can achieve a fair balance between embedding capability and stego image imperceptibility,but it is challenging.A systematic approach is used with a standard methodology to carry out this study.This review concentrates on the critical examination of several embedding strategies,incorporating experimental results with state-of-the-art methods emphasizing the robustness,security,payload capacity,and visual quality metrics of the stego images.The fundamental ideas of steganography are presented in this work,along with a unique viewpoint that sets it apart from previous works by highlighting research gaps,important problems,and difficulties.Additionally,it offers a discussion of suggested directions for future study to advance and investigate uncharted territory in image steganography.