The Japanese government’s unilateral decision to discharge the nuclear-contaminated water from the Fukushima nuclear power plant into the ocean has caused immense nuclear safety risks.Monitoring the unclear contamina...The Japanese government’s unilateral decision to discharge the nuclear-contaminated water from the Fukushima nuclear power plant into the ocean has caused immense nuclear safety risks.Monitoring the unclear contaminated water is a starting point to combat these risks and seek remedies for the rights and interests of all concerned parties.The establishment of a mechanism for international cooperation in this respect is necessary to handle the risks of the Fukushima nuclear-contaminated water and to lay the foundation of a framework for tackling any future disposal of nuclear-contaminated water following Japan’s example.At present,the international legal systems in the spheres of nuclear safety and security,marine environmental protection,and other areas,as well as the questioning of the monitoring reports of the International Atomic Energy Agency(IAEA)by the relevant parties,the monitoring practices of historical nuclear accidents,and numerous radioactivity monitoring mechanisms have provided the institutional and practical basis for constructing such a mechanism.The mechanism can be promoted by the IAEA through its existing mechanisms or be jointly initiated by China,the Russian Federation,the Republic of Korea,the Democratic People’s Republic of Korea,and the Pacific Island countries,among other stakeholders.Specifically,this mechanism should consist of three levels:first,the framework of the basic legal system,including the cooperative principles of national sovereignty,interest-relatedness,and procedural fairness,and the signing of the Framework Convention on the Monitoring of Fukushima’s nuclear-contaminated water and its Optional Protocol;second,the organizational structure and its responsibilities,which may include the Conference of Parties as the decision-making body,the Secretariat as the central coordinating body,and the monitoring committees in various fields as specific implementing agencies;and third,specific administrative arrangements,which involve the standardization of monitoring,the management system of monitoring networks and stations,the rules for monitoring procedures,and the rules for the utilization of the monitoring data,etc.With the urgent need for the scientific and fair monitoring of Fukushima’s nuclear-contaminated water,China,as a stakeholder country,can promote the establishment of such a mechanism for monitoring nuclear-contaminated water through the following paths:①It is necessary to clarify the factors affecting the construction of an international cooperation mechanism for monitoring nuclear-contaminated water so as to ascertain the standpoints of the stakeholders,claims of their interests,contents of their cooperation,and the relevant international relations.②On the basis of existing practices,China should consider improving the monitoring mechanism to cope with the risks of the discharge of Fukushima’s nuclear-contaminated water by formulating targeted policies and systems,setting up specialized monitoring institutions,and establishing a systematic monitoring network system.③This is an effective way for China to actively promote the participation of stakeholders in the construction of an international cooperation mechanism for monitoring nuclear-contaminated water in Fukushima by further innovating the dissemination mechanism to address the risk of Fukushima’s nuclear-contaminated water discharging into the sea and facilitating the identification of issues for international cooperation in monitoring Fukushima’s nuclear-contaminated water based on the concept of a community with a shared future for mankind.展开更多
The monitoring data is undoubtedly important to the water quality monitor- ing department. The proficiency testing is an important way to improve the monitor- ing capacity and enhance the quality management of laborat...The monitoring data is undoubtedly important to the water quality monitor- ing department. The proficiency testing is an important way to improve the monitor- ing capacity and enhance the quality management of laboratories. It plays an impor- tant role in ensuring the accuracy, integrity and comparability of monitoring data. In this paper, the positive role of proficiency testing in the water quality monitoring was analyzed. In addition, how to improve the water quality monitoring capacity and the quality management level of laboratories through the proficiency testing was also discussed.展开更多
Taihu Lake is one of the five biggest lakes in China. Surface water samples from 26 sampling sites of Taihu Lake were collected. Furthermore wet chemical analysis (CODCr and BOD5) and measurement of three dimensiona...Taihu Lake is one of the five biggest lakes in China. Surface water samples from 26 sampling sites of Taihu Lake were collected. Furthermore wet chemical analysis (CODCr and BOD5) and measurement of three dimensional excitation-emission matrix (3DEEM) spectra in the laboratory have been conducted. Using parallel factor analysis (PARAFAC) model, three components of colored dissolved organic matter (CDOM) have been identified successfully, based on the analysis of 3DEEM data. The characteristics of the three components also have been described by comparing them to some components of CDOM, identified in earlier researches. Meanwhile, spatial variations of concentration for the three components in Taihu Lake have been analyzed, and the result indicates that the concentration of component 1 depends more on the situation of wastewater pollution and can be used as the indicator of wastewater pollution. The relationship between the concentrations of the three components and results of the wet chemical analysis show that none of the three components can be used as indicators of gross organic matter in water. However, the concentrations of all the three components have obvious linear relationships with the BOD5 value, especially for component 1 (r = 0.72878). Finally, the potential applications of the composition analysis based on 3DEEM and PARAFAC model in water quality monitoring have been illuminated.展开更多
China Marine Surveillance Force was equipped with modern aerial equipments for marine lawexecute with the advantage of functioning agilely at a large scale of surveillance coverage, providing powerful all-round safegu...China Marine Surveillance Force was equipped with modern aerial equipments for marine lawexecute with the advantage of functioning agilely at a large scale of surveillance coverage, providing powerful all-round safeguard, which is of benefit to the harmonious and sustainable development of coastal economy. Onboard the planes, three kinds of remote sensing sensors have been installed, including a marine airborne multi-spectrum scanner (MAMS), an optical-electronic platform, and an airborne hyper-spectral system AISA+. The specifications of remote sensing platforms were introduced briefly first, then examples of water quality monitoring by airborne remote sensing were presented, including the monitoring in coastal suspended material, oil-spill and abnormal warm water, etc.展开更多
Three kind of application of ADCP is reported for long-term monitoring in coastal sea.(1)The routine monitoring of water qualities. The water quality and ADCP echo data (600 kHz) observed in the long-term are analgzed...Three kind of application of ADCP is reported for long-term monitoring in coastal sea.(1)The routine monitoring of water qualities. The water quality and ADCP echo data (600 kHz) observed in the long-term are analgzed at MT (Marine Tower) Station of Kansai International Airport in the Osaka Bay, Japan. The correlation between the turbidity and echo intensity in the surface layer is not good because air bubbles generated by breaking wave are not detected by the turbidity meter, but detected well by ADCP. When estimating the turbidity consists of plankton population from echo intensity, the effect of bubbles have to be eliminated. (2) Monitoring stirring up of bottom sediment. The special observation was carried out by using following two ADCP in the Osaka Bay, One ADCP was installed upward on the sea. The other ADCP was hanged downward at the gate type stand about 3 m above from the bottom. At the spring tide, high echo intensities indicating the stirring up of bottom sediment were observed. (3) The monitoring for the boundary condition of water mixing at an estuary. In summer season, the ADCP was set at the mouth of Tanabe Bay in Wakayama Prefecture, Japan. During the observation, water temperature near the bottom showed remarkable falls with interval of about 5-7 d. When the bottom temperature fell, the inflow current with low echo intensity water appears at the bottom layer in the ADCP record. It is concluded that when occasional weak northeast wind makes weak coastal upwelling at the mouth of the bay, the combination of upwelling with internal tidal flow causes remarkable water exchange and dispels the red tide.展开更多
The Integrated Environmental Monitoring (IEM) project, part of the Asia-Pacific Environmental Innovation Strategy (APEIS) project, developed an integrated environmental monitoring system that can be used to detect, mo...The Integrated Environmental Monitoring (IEM) project, part of the Asia-Pacific Environmental Innovation Strategy (APEIS) project, developed an integrated environmental monitoring system that can be used to detect, monitor, and assess environmental disasters, degradation, and their impacts in the Asia-Pacific region. The system primarily employs data from the moderate resolution imaging spectrometer (MODIS) sensor on the Earth Observation System-(EOS-) Terra/Aqua satellite, as well as those from ground observations at five sites in different ecological systems in China. From the preliminary data analysis on both annual and daily variations of water, heat and CO2 fluxes, we can confirm that this system basically has been working well. The results show that both latent flux and CO2 flux are much greater in the crop field than those in the grassland and the saline desert, whereas the sensible heat flux shows the opposite trend. Different data products from MODIS have very different correspondence, e.g. MODIS-derived land surface temperature has a close correlation with measured ones, but LAI and NPP are quite different from ground measurements, which suggests that the algorithms used to process MODIS data need to be revised by using the local dataset. We are now using the APEIS-FLUX data to develop an integrated model, which can simulate the regional water, heat, and carbon fluxes. Finally, we are expected to use this model to develop more precise high-order MODIS products in Asia-Pacific region.展开更多
As a new technical means that can detect abnormal signs of water inrush in advance and give an early warning,the automatic monitoring and early warning of water inrush in mines has been widely valued in recent years.D...As a new technical means that can detect abnormal signs of water inrush in advance and give an early warning,the automatic monitoring and early warning of water inrush in mines has been widely valued in recent years.Due to the many factors affecting water inrush and the complicated water inrush mechanism,many factors close to water inrush may have precursory abnormal changes.At present,the existing monitoring and early warning system mainly uses a few monitoring indicators such as groundwater level,water influx,and temperature,and performs water inrush early warning through the abnormal change of a single factor.However,there are relatively few multi-factor comprehensive early warning identification models.Based on the analysis of the abnormal changes of precursor factors in multiple water inrush cases,11 measurable and effective indicators including groundwater flow field,hydrochemical field and temperature field are proposed.Finally,taking Hengyuan coal mine as an example,6 indicators with long-term monitoring data sequences were selected to establish a single-index hierarchical early-warning recognition model,a multi-factor linear recognition model,and a comprehensive intelligent early-warning recognition model.The results show that the correct rate of early warning can reach 95.2%.展开更多
Based on the monitoring data of water quality of more than 40 centralized drinking water sources in 40 towns (townships or streets) of Kaixian County in the first and second half of each year during the "Twelfth Fi...Based on the monitoring data of water quality of more than 40 centralized drinking water sources in 40 towns (townships or streets) of Kaixian County in the first and second half of each year during the "Twelfth Five-year Plan" period, the changing rules of the water quality were studied to provide scientific references for the improvement of drinking water safety of urban and rural residents and drinking water quality. The re- sults show that the water quality of centralized drinking water sources in Kaixian County improved year by year during the "Twelfth Five-year Plan" period, and most monitoring sites with water quality exceeding the standard are distributed in reservoirs. Total phosphorus, total nitrogen, chemical oxygen demand, and permanganate index exceeded the standard obviously. Main pollution sources are domestic pollution and non-point source pol- lution caused by excessive discharge of nitrogen, phosphorus and organic pollutants. To improve drinking water quality, it is suggested that some towns can get drinking water from other reservoirs, surface water or underground water with better quality instead of previous reservoirs with water quality exceeding the standard, and the control of non-point source pollution should be enhanced.展开更多
Deep-sea mining may disturb the water column environment,including the surface water and deep-sea,and these disturbances should be carefully treated.Remote sensing provides high-resolution and accurate long-term obser...Deep-sea mining may disturb the water column environment,including the surface water and deep-sea,and these disturbances should be carefully treated.Remote sensing provides high-resolution and accurate long-term observations in the area around deep-sea mining.Discharge from mining ships can be identified within few days from satellite observations based on changes in reflectance.A pioneer twomonth experimental deep-sea mining cruise was conducted by The Metal Company in the eastern Pacific Ocean from September 15 to November 17,2022.A report from Greenpeace indicated incidents of surface discharge and leakage during this mining experiment.In this study,satellite observations captured a clear signal over the surface water from September 24 to October 28,indicating the location with discharged water from the mothership.The number of pixels where the potential discharged water was identified in the satellite imagery ranged from 4 to 13.The discharged water was transported by the combined effects of wind and currents,locating continuously to the downwind side of the mothership's mooring location.Remote sensing provides a timely and accurate monitoring system for tracking water discharge during deep-sea mining.展开更多
The used water for human consumption must be free of microorganisms and chemicals that cause risk in the human health. In this study, water quality of 18 rural area of Abarkouh was determined and compared the conventi...The used water for human consumption must be free of microorganisms and chemicals that cause risk in the human health. In this study, water quality of 18 rural area of Abarkouh was determined and compared the conventional monitoring method (According to ISIR (Institute of Standards and Industrial Research of Iran), 1053 and 4208) and use of electronic system method (Patent in industrial property general office of Iran, 77815). Free chlorine monitoring and pH test done by health workers in the conventional method and the results will be sent to the Health Network monthly. Sampling for microbiological testing is done monthly based on population (According to ISIR, 4208). On the electronic system, the procedure is also done by health workers, but the result will be sent to the receiver device by using a cell phone. According to the chlorine test results if the free chlorine residual reported zero, microbiological sampling was done by a health expert. Finally, the number of chlorine test and microbiological sampling and the results of these experiments collected in the both methods and recorded in SPSS 22 then were analyzed by using chi-square test and Fisher exact test. The result of microbiological experiments shows that the sampling rate decreased 29% in using of electronic system method in comparison to the conventional monitoring method while the number of microbial defect detection increased 19% in drinking water networks monitoring by electronic system. Using of electronic system monitoring can reduce the rate and cost of microbiological sampling and its experiments and increase accuracy of these tests, in this way it will increase the quality and safety of drinking water in distribution network in small and dispersed rural communities.展开更多
A simple optical technique based on fluctuations in light transmitted through flowing suspensions has proved useful in two distinct water treatment applications. The first of these is the monitoring and control of coa...A simple optical technique based on fluctuations in light transmitted through flowing suspensions has proved useful in two distinct water treatment applications. The first of these is the monitoring and control of coagulation/flocculation processes, where information on optimum coagulant dosages as well as on the dynamics of floc formation can be derived. The method is suitable for a very wide range of particle concentrations, up to levels found in highly turbid river waters. The second application is as a very sensitive monitor of particles in filtered water. Such monitoring can help to ensure the effective removal of pathogens such as Cryptosporidium from drinking water. Brief accounts of these techniques are given, together with some examples of their use.展开更多
Recently, a new (2+1)-dimensional shallow water wave system, the (2+1)-dlmenslonal displacement shallow water wave system (2DDSWWS), was constructed by applying the variational principle of the analytic mechan...Recently, a new (2+1)-dimensional shallow water wave system, the (2+1)-dlmenslonal displacement shallow water wave system (2DDSWWS), was constructed by applying the variational principle of the analytic mechanics in the Lagrange coordinates. The disadvantage is that fluid viscidity is not considered in the 2DDSWWS, which is the same as the famous Kadomtsev-Petviashvili equation and Korteweg-de Vries equation. Applying dimensional analysis, we modify the 2DDSWWS and add the term related to the fluid viscidity to the 2DDSWWS. The approximate similarity solutions of the modified 2DDSWWS (M2DDSWWS) is studied and four similarity solutions are obtained. For the perfect fluids, the coefficient of kinematic viscosity is zero, then the M2DDSWWS will degenerate to the 2DDSWWS.展开更多
Water is one of the basic resources for human survival.Water pollution monitoring and protection have been becoming a major problem for many countries all over the world.Most traditional water quality monitoring syste...Water is one of the basic resources for human survival.Water pollution monitoring and protection have been becoming a major problem for many countries all over the world.Most traditional water quality monitoring systems,however,generally focus only on water quality data collection,ignoring data analysis and data mining.In addition,some dirty data and data loss may occur due to power failures or transmission failures,further affecting data analysis and its application.In order to meet these needs,by using Internet of things,cloud computing,and big data technologies,we designed and implemented a water quality monitoring data intelligent service platform in C#and PHP language.The platform includes monitoring point addition,monitoring point map labeling,monitoring data uploading,monitoring data processing,early warning of exceeding the standard of monitoring indicators,and other functions modules.Using this platform,we can realize the automatic collection of water quality monitoring data,data cleaning,data analysis,intelligent early warning and early warning information push,and other functions.For better security and convenience,we deployed the system in the Tencent Cloud and tested it.The testing results showed that the data analysis platform could run well and will provide decision support for water resource protection.展开更多
For the evaluation of construction quality and the verification of the design of water conservancy and hydropower engineering projects, and especially for the control of dam safety operation behavior, safety monitorin...For the evaluation of construction quality and the verification of the design of water conservancy and hydropower engineering projects, and especially for the control of dam safety operation behavior, safety monitoring sensors are employed in a majority of engineering projects. These sensors are used to monitor the project during the dam construction and operation periods, and play an important role in reservoir safety operation and producing benefits. With the changing of operating environments and run-time of projects, there are some factors affecting the operation and management of projects, such as a certain amount of damaged sensors and instability of the measured data. Therefore, it is urgent to evaluate existing safety monitoring sensors in water conservancy and hydropower engineering projects. However, there are neither standards nor evaluation guidelines at present. Based on engineering practice, this study examined some key techniques for the evaluation of safety monitoring sensors, including the evaluation process of the safety monitoring system, on-site detection methods of two typical pieces of equipment, the differential resistor sensor and vibrating wire sensor, the on-site detection methods of communication cable faults, and a validity test of the sensor measured data. These key techniques were applied in the Xiaolangdi Water Control Project and Xiaoxi Hydropower Project. The results show that the measured data of a majority of sensors are reliable and reasonable, and can reasonably reflect the structural change behavior in the project operating process, indicating that the availabilities of the safety monitoring sensors of the two projects are high展开更多
Multi-channel polarization optical technology is increasingly used for prompt monitoring of water systems.Optical devices during the assessment of water quality determine the intensity of light through the studied aqu...Multi-channel polarization optical technology is increasingly used for prompt monitoring of water systems.Optical devices during the assessment of water quality determine the intensity of light through the studied aquatic environment.Spectrophotometric devices measure the spectrum of weakening of light through the aquatic environment.Spectroellipsometric devices receive spectra in vertical and horizontal polarizations.The presented article develops an adaptive optical hardware and image system for monitoring water bodies.The system is combined.It consists of 2 parts:1)automated spectrophotometer-refractometer,and 2)adaptive spectroellipsometer.The system is equipped with a corresponding algorithmic and software,including algorithms for identifying spectral curves,databases and knowledge of spectral curves algorithms for solving reverse problems.The presented system is original since it differs from modern foreign systems by a new method of spectrophotometric and spectroellipsometric measurements,an original elemental base of polarization optics and a comprehensive mathematical approach to assessing the quality of a water body.There are no rotating polarization elements in the system.Therefore,this makes it possible to increase the signal-to-noise ratio and,as a result,improve measurement stability and simplify multichannel spectrophotometers and spectroellipsometers.The proposed system can be used in various water systems where it is necessary to assess water quality or identify the presence of a certain set of chemical elements.展开更多
Objective Grasp quality and health status of drinking water, and provide scientific basis for decision making of health administrative de- partment. Method According to the Standards for Drinking Water Quality ( GB...Objective Grasp quality and health status of drinking water, and provide scientific basis for decision making of health administrative de- partment. Method According to the Standards for Drinking Water Quality ( GB 5749 -2006), monitoring results of Tianjin urban and rural drinking water health in 2013 were evaluated, and software SPSS 20.0 and GeoDa was used for temporal-spatial analysis on water quality. Result There were 2 882 copies of monitoring samples in total, in which both finished water and tap water of urban district were qualified, while qualified rates of tap water and secondary water supply from the county were respectively 86.36% and 93.91%, and major exceeding indexes were pH and total number of colonies. Qualified rates of tap water and secondary water supply from the county had difference(x2 = 1 576.875, P 〈0.01 ). Quality of tap water( X2 = 5.425, P 〉 0.05) and secondary water supply (X2 = 16.009, P 〉 0.05) was stable at temporal distribution ( January-December), but spatial distribution of tap water had certain regional difference(x2 = 1 255.802, P 〈0.01 ). Conclusion General quality situation of Tianjin urban and rural drinking water was better, but qualified rate of water quality in some counties was lower, which had safety risk and threatened the health of residents in the corresponding county. The related departments should enhance the supervision and management of drinking water supply, im- prove supply water quality, strengthen water quality monitoring, and guarantee drinking water safety. Geographic information system can better real- ize visualization of drinking water quality monitoring information.展开更多
Microbial activity is the cause of a variety of problems in water injection systems, e.g., microbial corrosion, plugging, and biofouling. Efficient monitoring of Saudi Aramco’s vast water injection system requires th...Microbial activity is the cause of a variety of problems in water injection systems, e.g., microbial corrosion, plugging, and biofouling. Efficient monitoring of Saudi Aramco’s vast water injection system requires the development of online and automated technologies for monitoring microbial activities in the system. A previous system review and technology screening has identified five single-analyte strategies [1], which were evaluated in this study with a laboratory-scale setup to determine their applicability for automated determination of microbial activity in the injection water system. Four of the five single-analyte measuring principles tested in the laboratory setup were deemed less suitable for automation and/or reliable for use in the detection of microbial activity in the company injection water system. These four principles were: luminescence assay for adenosine-5’-triphosphate (ATP), detection and electrochemical measurements of H<sub>2</sub>S, determination of pH by electrochemical sensor, and measurement of oxidation-reduction potential (ORP). The strategy of staining cells with fluorescent DNA dyes, followed by quantification of fluorescence signals, was identified to hold, with proper optimization of DNA staining and fluorescence detection, a very promising potential for integration in automated, online sensors for microbial activity in the injection water system.展开更多
We give the bilinear form and n-soliton solutions of a(2+1)-dimensional [(2+1)-D] extended shallow water wave(eSWW) equation associated with two functions v and r by using Hirota bilinear method. We provide soli...We give the bilinear form and n-soliton solutions of a(2+1)-dimensional [(2+1)-D] extended shallow water wave(eSWW) equation associated with two functions v and r by using Hirota bilinear method. We provide solitons, breathers,and hybrid solutions of them. Four cases of a crucial φ(y), which is an arbitrary real continuous function appeared in f of bilinear form, are selected by using Jacobi elliptic functions, which yield a periodic solution and three kinds of doubly localized dormion-type solution. The first order Jacobi-type solution travels parallelly along the x axis with the velocity(3k12+ α, 0) on(x, y)-plane. If φ(y) = sn(y, 3/10), it is a periodic solution. If φ(y) = cn(y, 1), it is a dormion-type-Ⅰ solutions which has a maximum(3/4)k1p1 and a minimum-(3/4)k1p1. The width of the contour line is ln■. If φ(y) = sn(y, 1), we get a dormion-type-Ⅱ solution(26) which has only one extreme value-(3/2)k1p1. The width of the contour line is ln■. If φ(y) = sn(y, 1/2)/(1 + y2), we get a dormion-type-Ⅲ solution(21) which shows very strong doubly localized feature on(x, y) plane. Moreover, several interesting patterns of the mixture of periodic and localized solutions are also given in graphic way.展开更多
This paper aims to explore the pH,COD,ammonia nitrogen,total nitrogen,total phosphorus and other indices regarding Xinli River water in Binzhou City.The results show that the pH of the water quality index is between 7...This paper aims to explore the pH,COD,ammonia nitrogen,total nitrogen,total phosphorus and other indices regarding Xinli River water in Binzhou City.The results show that the pH of the water quality index is between 7.3 and 7.8,slightly alkaline;the COD content of Xinli River is about 140-163 mg/L,and the COD pollution is serious in some water sections;the ammonia nitrogen content of Xinli River is 0.2-2.17 mg/L,the total nitrogen content is about 0.799-1.3 mg/L,the total phosphorus content is about 0.54-0.92 mg/L,suggesting that the water eutrophication is very serious.Due to the large amount of domestic sewage discharged into Xinli River without treatment,slow circulation of river water and other factors,the eutrophication is serious in the urban watercourse.展开更多
The features of a quasi-two-dimensional( quasi-2D) model for simulating two-phase water hammer flows with vaporous cavity in a pipe are investigated. The quasi-2D model with discrete vaporous cavity in the pipe is pro...The features of a quasi-two-dimensional( quasi-2D) model for simulating two-phase water hammer flows with vaporous cavity in a pipe are investigated. The quasi-2D model with discrete vaporous cavity in the pipe is proposed in this paper. This model uses the quasi-2D model for pure liquid zone and one-dimensional( 1D) discrete vapor cavity model for vaporous cavity zone. The quasi-2D model solves two-dimensional equations for both axial and radial velocities and 1D equations for both pressure head and discharge by the method of characteristics. The 1D discrete vapor cavity model is used to simulate the vaporous cavity occurred when the pressure in the local pipe is lower than the vapor pressure of the liquid. The proposed model is used to simulate two-phase water flows caused by the rapid downstream valve closure in a reservoir-pipe-valve system.The results obtained by the proposed model are compared with those by the corresponding 1D model and the experimental ones provided by the literature,respectively. The comparison shows that the maximum pressure heads simulated by the proposed model are more accurate than those by the corresponding 1D model.展开更多
基金funded by the National Social Science Fund of China[Grant No.20&ZD162].
文摘The Japanese government’s unilateral decision to discharge the nuclear-contaminated water from the Fukushima nuclear power plant into the ocean has caused immense nuclear safety risks.Monitoring the unclear contaminated water is a starting point to combat these risks and seek remedies for the rights and interests of all concerned parties.The establishment of a mechanism for international cooperation in this respect is necessary to handle the risks of the Fukushima nuclear-contaminated water and to lay the foundation of a framework for tackling any future disposal of nuclear-contaminated water following Japan’s example.At present,the international legal systems in the spheres of nuclear safety and security,marine environmental protection,and other areas,as well as the questioning of the monitoring reports of the International Atomic Energy Agency(IAEA)by the relevant parties,the monitoring practices of historical nuclear accidents,and numerous radioactivity monitoring mechanisms have provided the institutional and practical basis for constructing such a mechanism.The mechanism can be promoted by the IAEA through its existing mechanisms or be jointly initiated by China,the Russian Federation,the Republic of Korea,the Democratic People’s Republic of Korea,and the Pacific Island countries,among other stakeholders.Specifically,this mechanism should consist of three levels:first,the framework of the basic legal system,including the cooperative principles of national sovereignty,interest-relatedness,and procedural fairness,and the signing of the Framework Convention on the Monitoring of Fukushima’s nuclear-contaminated water and its Optional Protocol;second,the organizational structure and its responsibilities,which may include the Conference of Parties as the decision-making body,the Secretariat as the central coordinating body,and the monitoring committees in various fields as specific implementing agencies;and third,specific administrative arrangements,which involve the standardization of monitoring,the management system of monitoring networks and stations,the rules for monitoring procedures,and the rules for the utilization of the monitoring data,etc.With the urgent need for the scientific and fair monitoring of Fukushima’s nuclear-contaminated water,China,as a stakeholder country,can promote the establishment of such a mechanism for monitoring nuclear-contaminated water through the following paths:①It is necessary to clarify the factors affecting the construction of an international cooperation mechanism for monitoring nuclear-contaminated water so as to ascertain the standpoints of the stakeholders,claims of their interests,contents of their cooperation,and the relevant international relations.②On the basis of existing practices,China should consider improving the monitoring mechanism to cope with the risks of the discharge of Fukushima’s nuclear-contaminated water by formulating targeted policies and systems,setting up specialized monitoring institutions,and establishing a systematic monitoring network system.③This is an effective way for China to actively promote the participation of stakeholders in the construction of an international cooperation mechanism for monitoring nuclear-contaminated water in Fukushima by further innovating the dissemination mechanism to address the risk of Fukushima’s nuclear-contaminated water discharging into the sea and facilitating the identification of issues for international cooperation in monitoring Fukushima’s nuclear-contaminated water based on the concept of a community with a shared future for mankind.
基金Supported by Special Scientific Research Fund of Public Welfare Profession of Ministry of Water Resources(201101007)~~
文摘The monitoring data is undoubtedly important to the water quality monitor- ing department. The proficiency testing is an important way to improve the monitor- ing capacity and enhance the quality management of laboratories. It plays an impor- tant role in ensuring the accuracy, integrity and comparability of monitoring data. In this paper, the positive role of proficiency testing in the water quality monitoring was analyzed. In addition, how to improve the water quality monitoring capacity and the quality management level of laboratories through the proficiency testing was also discussed.
基金Project supported by the Knowledge Innovation Project of ChineseAcademy of Sciences (No. KGCX2-SW-111).
文摘Taihu Lake is one of the five biggest lakes in China. Surface water samples from 26 sampling sites of Taihu Lake were collected. Furthermore wet chemical analysis (CODCr and BOD5) and measurement of three dimensional excitation-emission matrix (3DEEM) spectra in the laboratory have been conducted. Using parallel factor analysis (PARAFAC) model, three components of colored dissolved organic matter (CDOM) have been identified successfully, based on the analysis of 3DEEM data. The characteristics of the three components also have been described by comparing them to some components of CDOM, identified in earlier researches. Meanwhile, spatial variations of concentration for the three components in Taihu Lake have been analyzed, and the result indicates that the concentration of component 1 depends more on the situation of wastewater pollution and can be used as the indicator of wastewater pollution. The relationship between the concentrations of the three components and results of the wet chemical analysis show that none of the three components can be used as indicators of gross organic matter in water. However, the concentrations of all the three components have obvious linear relationships with the BOD5 value, especially for component 1 (r = 0.72878). Finally, the potential applications of the composition analysis based on 3DEEM and PARAFAC model in water quality monitoring have been illuminated.
基金supported by the NO. 2007402 Science Foundation of SOAthe scientific research fund NO.JG0719 of the Second Institute of Oceanography, SOA+1 种基金special funds for scientific research on public cause (NO. 200805028)China "908" Project under contract No.908-03-02-08.
文摘China Marine Surveillance Force was equipped with modern aerial equipments for marine lawexecute with the advantage of functioning agilely at a large scale of surveillance coverage, providing powerful all-round safeguard, which is of benefit to the harmonious and sustainable development of coastal economy. Onboard the planes, three kinds of remote sensing sensors have been installed, including a marine airborne multi-spectrum scanner (MAMS), an optical-electronic platform, and an airborne hyper-spectral system AISA+. The specifications of remote sensing platforms were introduced briefly first, then examples of water quality monitoring by airborne remote sensing were presented, including the monitoring in coastal suspended material, oil-spill and abnormal warm water, etc.
文摘Three kind of application of ADCP is reported for long-term monitoring in coastal sea.(1)The routine monitoring of water qualities. The water quality and ADCP echo data (600 kHz) observed in the long-term are analgzed at MT (Marine Tower) Station of Kansai International Airport in the Osaka Bay, Japan. The correlation between the turbidity and echo intensity in the surface layer is not good because air bubbles generated by breaking wave are not detected by the turbidity meter, but detected well by ADCP. When estimating the turbidity consists of plankton population from echo intensity, the effect of bubbles have to be eliminated. (2) Monitoring stirring up of bottom sediment. The special observation was carried out by using following two ADCP in the Osaka Bay, One ADCP was installed upward on the sea. The other ADCP was hanged downward at the gate type stand about 3 m above from the bottom. At the spring tide, high echo intensities indicating the stirring up of bottom sediment were observed. (3) The monitoring for the boundary condition of water mixing at an estuary. In summer season, the ADCP was set at the mouth of Tanabe Bay in Wakayama Prefecture, Japan. During the observation, water temperature near the bottom showed remarkable falls with interval of about 5-7 d. When the bottom temperature fell, the inflow current with low echo intensity water appears at the bottom layer in the ADCP record. It is concluded that when occasional weak northeast wind makes weak coastal upwelling at the mouth of the bay, the combination of upwelling with internal tidal flow causes remarkable water exchange and dispels the red tide.
文摘The Integrated Environmental Monitoring (IEM) project, part of the Asia-Pacific Environmental Innovation Strategy (APEIS) project, developed an integrated environmental monitoring system that can be used to detect, monitor, and assess environmental disasters, degradation, and their impacts in the Asia-Pacific region. The system primarily employs data from the moderate resolution imaging spectrometer (MODIS) sensor on the Earth Observation System-(EOS-) Terra/Aqua satellite, as well as those from ground observations at five sites in different ecological systems in China. From the preliminary data analysis on both annual and daily variations of water, heat and CO2 fluxes, we can confirm that this system basically has been working well. The results show that both latent flux and CO2 flux are much greater in the crop field than those in the grassland and the saline desert, whereas the sensible heat flux shows the opposite trend. Different data products from MODIS have very different correspondence, e.g. MODIS-derived land surface temperature has a close correlation with measured ones, but LAI and NPP are quite different from ground measurements, which suggests that the algorithms used to process MODIS data need to be revised by using the local dataset. We are now using the APEIS-FLUX data to develop an integrated model, which can simulate the regional water, heat, and carbon fluxes. Finally, we are expected to use this model to develop more precise high-order MODIS products in Asia-Pacific region.
基金financially supported by the National Key Research and Development Program of China(No.2019YFC1805400)。
文摘As a new technical means that can detect abnormal signs of water inrush in advance and give an early warning,the automatic monitoring and early warning of water inrush in mines has been widely valued in recent years.Due to the many factors affecting water inrush and the complicated water inrush mechanism,many factors close to water inrush may have precursory abnormal changes.At present,the existing monitoring and early warning system mainly uses a few monitoring indicators such as groundwater level,water influx,and temperature,and performs water inrush early warning through the abnormal change of a single factor.However,there are relatively few multi-factor comprehensive early warning identification models.Based on the analysis of the abnormal changes of precursor factors in multiple water inrush cases,11 measurable and effective indicators including groundwater flow field,hydrochemical field and temperature field are proposed.Finally,taking Hengyuan coal mine as an example,6 indicators with long-term monitoring data sequences were selected to establish a single-index hierarchical early-warning recognition model,a multi-factor linear recognition model,and a comprehensive intelligent early-warning recognition model.The results show that the correct rate of early warning can reach 95.2%.
文摘Based on the monitoring data of water quality of more than 40 centralized drinking water sources in 40 towns (townships or streets) of Kaixian County in the first and second half of each year during the "Twelfth Five-year Plan" period, the changing rules of the water quality were studied to provide scientific references for the improvement of drinking water safety of urban and rural residents and drinking water quality. The re- sults show that the water quality of centralized drinking water sources in Kaixian County improved year by year during the "Twelfth Five-year Plan" period, and most monitoring sites with water quality exceeding the standard are distributed in reservoirs. Total phosphorus, total nitrogen, chemical oxygen demand, and permanganate index exceeded the standard obviously. Main pollution sources are domestic pollution and non-point source pol- lution caused by excessive discharge of nitrogen, phosphorus and organic pollutants. To improve drinking water quality, it is suggested that some towns can get drinking water from other reservoirs, surface water or underground water with better quality instead of previous reservoirs with water quality exceeding the standard, and the control of non-point source pollution should be enhanced.
基金Supported by the National Key Research and Development Program of China(No.2023YFC2811800)the National Natural Science Foundation of China(Nos.42371380,42071387)。
文摘Deep-sea mining may disturb the water column environment,including the surface water and deep-sea,and these disturbances should be carefully treated.Remote sensing provides high-resolution and accurate long-term observations in the area around deep-sea mining.Discharge from mining ships can be identified within few days from satellite observations based on changes in reflectance.A pioneer twomonth experimental deep-sea mining cruise was conducted by The Metal Company in the eastern Pacific Ocean from September 15 to November 17,2022.A report from Greenpeace indicated incidents of surface discharge and leakage during this mining experiment.In this study,satellite observations captured a clear signal over the surface water from September 24 to October 28,indicating the location with discharged water from the mothership.The number of pixels where the potential discharged water was identified in the satellite imagery ranged from 4 to 13.The discharged water was transported by the combined effects of wind and currents,locating continuously to the downwind side of the mothership's mooring location.Remote sensing provides a timely and accurate monitoring system for tracking water discharge during deep-sea mining.
文摘The used water for human consumption must be free of microorganisms and chemicals that cause risk in the human health. In this study, water quality of 18 rural area of Abarkouh was determined and compared the conventional monitoring method (According to ISIR (Institute of Standards and Industrial Research of Iran), 1053 and 4208) and use of electronic system method (Patent in industrial property general office of Iran, 77815). Free chlorine monitoring and pH test done by health workers in the conventional method and the results will be sent to the Health Network monthly. Sampling for microbiological testing is done monthly based on population (According to ISIR, 4208). On the electronic system, the procedure is also done by health workers, but the result will be sent to the receiver device by using a cell phone. According to the chlorine test results if the free chlorine residual reported zero, microbiological sampling was done by a health expert. Finally, the number of chlorine test and microbiological sampling and the results of these experiments collected in the both methods and recorded in SPSS 22 then were analyzed by using chi-square test and Fisher exact test. The result of microbiological experiments shows that the sampling rate decreased 29% in using of electronic system method in comparison to the conventional monitoring method while the number of microbial defect detection increased 19% in drinking water networks monitoring by electronic system. Using of electronic system monitoring can reduce the rate and cost of microbiological sampling and its experiments and increase accuracy of these tests, in this way it will increase the quality and safety of drinking water in distribution network in small and dispersed rural communities.
文摘A simple optical technique based on fluctuations in light transmitted through flowing suspensions has proved useful in two distinct water treatment applications. The first of these is the monitoring and control of coagulation/flocculation processes, where information on optimum coagulant dosages as well as on the dynamics of floc formation can be derived. The method is suitable for a very wide range of particle concentrations, up to levels found in highly turbid river waters. The second application is as a very sensitive monitor of particles in filtered water. Such monitoring can help to ensure the effective removal of pathogens such as Cryptosporidium from drinking water. Brief accounts of these techniques are given, together with some examples of their use.
基金Project supported by the Natural Science Foundation of Guangdong Province of China (Grant No.10452840301004616)the National Natural Science Foundation of China (Grant No.61001018)the Scientific Research Foundation for the Doctors of University of Electronic Science and Technology of China Zhongshan Institute (Grant No.408YKQ09)
文摘Recently, a new (2+1)-dimensional shallow water wave system, the (2+1)-dlmenslonal displacement shallow water wave system (2DDSWWS), was constructed by applying the variational principle of the analytic mechanics in the Lagrange coordinates. The disadvantage is that fluid viscidity is not considered in the 2DDSWWS, which is the same as the famous Kadomtsev-Petviashvili equation and Korteweg-de Vries equation. Applying dimensional analysis, we modify the 2DDSWWS and add the term related to the fluid viscidity to the 2DDSWWS. The approximate similarity solutions of the modified 2DDSWWS (M2DDSWWS) is studied and four similarity solutions are obtained. For the perfect fluids, the coefficient of kinematic viscosity is zero, then the M2DDSWWS will degenerate to the 2DDSWWS.
基金the National Natural Science Foundation of China(No.61304208)Scientific Research Fund of Hunan Province Education Department(18C0003)+5 种基金Researchproject on teaching reform in colleges and universities of Hunan Province Education Department(20190147)Changsha City Science and Technology Plan Program(K1501013-11)Hunan NormalUniversity University-Industry Cooperation.This work is implemented at the 2011 Collaborative Innovation Center for Development and Utilization of Finance and Economics Big Data PropertyUniversities of Hunan ProvinceOpen projectgrant number 20181901CRP04.
文摘Water is one of the basic resources for human survival.Water pollution monitoring and protection have been becoming a major problem for many countries all over the world.Most traditional water quality monitoring systems,however,generally focus only on water quality data collection,ignoring data analysis and data mining.In addition,some dirty data and data loss may occur due to power failures or transmission failures,further affecting data analysis and its application.In order to meet these needs,by using Internet of things,cloud computing,and big data technologies,we designed and implemented a water quality monitoring data intelligent service platform in C#and PHP language.The platform includes monitoring point addition,monitoring point map labeling,monitoring data uploading,monitoring data processing,early warning of exceeding the standard of monitoring indicators,and other functions modules.Using this platform,we can realize the automatic collection of water quality monitoring data,data cleaning,data analysis,intelligent early warning and early warning information push,and other functions.For better security and convenience,we deployed the system in the Tencent Cloud and tested it.The testing results showed that the data analysis platform could run well and will provide decision support for water resource protection.
基金supported by the National Natural Science Foundation of China(Grants No.51179108and50909066)the Key Research Foundation of Nanjing Hydraulic Research Institute(Grant No.Y711007)
文摘For the evaluation of construction quality and the verification of the design of water conservancy and hydropower engineering projects, and especially for the control of dam safety operation behavior, safety monitoring sensors are employed in a majority of engineering projects. These sensors are used to monitor the project during the dam construction and operation periods, and play an important role in reservoir safety operation and producing benefits. With the changing of operating environments and run-time of projects, there are some factors affecting the operation and management of projects, such as a certain amount of damaged sensors and instability of the measured data. Therefore, it is urgent to evaluate existing safety monitoring sensors in water conservancy and hydropower engineering projects. However, there are neither standards nor evaluation guidelines at present. Based on engineering practice, this study examined some key techniques for the evaluation of safety monitoring sensors, including the evaluation process of the safety monitoring system, on-site detection methods of two typical pieces of equipment, the differential resistor sensor and vibrating wire sensor, the on-site detection methods of communication cable faults, and a validity test of the sensor measured data. These key techniques were applied in the Xiaolangdi Water Control Project and Xiaoxi Hydropower Project. The results show that the measured data of a majority of sensors are reliable and reasonable, and can reasonably reflect the structural change behavior in the project operating process, indicating that the availabilities of the safety monitoring sensors of the two projects are high
基金Supported By The Russian Science Foundation Grant No.23-21-00115,https://rscf.ru/en/project/23-21-00115/.
文摘Multi-channel polarization optical technology is increasingly used for prompt monitoring of water systems.Optical devices during the assessment of water quality determine the intensity of light through the studied aquatic environment.Spectrophotometric devices measure the spectrum of weakening of light through the aquatic environment.Spectroellipsometric devices receive spectra in vertical and horizontal polarizations.The presented article develops an adaptive optical hardware and image system for monitoring water bodies.The system is combined.It consists of 2 parts:1)automated spectrophotometer-refractometer,and 2)adaptive spectroellipsometer.The system is equipped with a corresponding algorithmic and software,including algorithms for identifying spectral curves,databases and knowledge of spectral curves algorithms for solving reverse problems.The presented system is original since it differs from modern foreign systems by a new method of spectrophotometric and spectroellipsometric measurements,an original elemental base of polarization optics and a comprehensive mathematical approach to assessing the quality of a water body.There are no rotating polarization elements in the system.Therefore,this makes it possible to increase the signal-to-noise ratio and,as a result,improve measurement stability and simplify multichannel spectrophotometers and spectroellipsometers.The proposed system can be used in various water systems where it is necessary to assess water quality or identify the presence of a certain set of chemical elements.
基金Supported by Science and Technology Foundation of Tianjin Municipal Health Bureau(2013KY18,2013KY19)Science and Technology Foundation of Tianjin Center for Disease Control and Prevention(CDCKY1301)Tianjin Natural Science Fund(14JCQNJC11900)
文摘Objective Grasp quality and health status of drinking water, and provide scientific basis for decision making of health administrative de- partment. Method According to the Standards for Drinking Water Quality ( GB 5749 -2006), monitoring results of Tianjin urban and rural drinking water health in 2013 were evaluated, and software SPSS 20.0 and GeoDa was used for temporal-spatial analysis on water quality. Result There were 2 882 copies of monitoring samples in total, in which both finished water and tap water of urban district were qualified, while qualified rates of tap water and secondary water supply from the county were respectively 86.36% and 93.91%, and major exceeding indexes were pH and total number of colonies. Qualified rates of tap water and secondary water supply from the county had difference(x2 = 1 576.875, P 〈0.01 ). Quality of tap water( X2 = 5.425, P 〉 0.05) and secondary water supply (X2 = 16.009, P 〉 0.05) was stable at temporal distribution ( January-December), but spatial distribution of tap water had certain regional difference(x2 = 1 255.802, P 〈0.01 ). Conclusion General quality situation of Tianjin urban and rural drinking water was better, but qualified rate of water quality in some counties was lower, which had safety risk and threatened the health of residents in the corresponding county. The related departments should enhance the supervision and management of drinking water supply, im- prove supply water quality, strengthen water quality monitoring, and guarantee drinking water safety. Geographic information system can better real- ize visualization of drinking water quality monitoring information.
文摘Microbial activity is the cause of a variety of problems in water injection systems, e.g., microbial corrosion, plugging, and biofouling. Efficient monitoring of Saudi Aramco’s vast water injection system requires the development of online and automated technologies for monitoring microbial activities in the system. A previous system review and technology screening has identified five single-analyte strategies [1], which were evaluated in this study with a laboratory-scale setup to determine their applicability for automated determination of microbial activity in the injection water system. Four of the five single-analyte measuring principles tested in the laboratory setup were deemed less suitable for automation and/or reliable for use in the detection of microbial activity in the company injection water system. These four principles were: luminescence assay for adenosine-5’-triphosphate (ATP), detection and electrochemical measurements of H<sub>2</sub>S, determination of pH by electrochemical sensor, and measurement of oxidation-reduction potential (ORP). The strategy of staining cells with fluorescent DNA dyes, followed by quantification of fluorescence signals, was identified to hold, with proper optimization of DNA staining and fluorescence detection, a very promising potential for integration in automated, online sensors for microbial activity in the injection water system.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11671219 and 11871446)
文摘We give the bilinear form and n-soliton solutions of a(2+1)-dimensional [(2+1)-D] extended shallow water wave(eSWW) equation associated with two functions v and r by using Hirota bilinear method. We provide solitons, breathers,and hybrid solutions of them. Four cases of a crucial φ(y), which is an arbitrary real continuous function appeared in f of bilinear form, are selected by using Jacobi elliptic functions, which yield a periodic solution and three kinds of doubly localized dormion-type solution. The first order Jacobi-type solution travels parallelly along the x axis with the velocity(3k12+ α, 0) on(x, y)-plane. If φ(y) = sn(y, 3/10), it is a periodic solution. If φ(y) = cn(y, 1), it is a dormion-type-Ⅰ solutions which has a maximum(3/4)k1p1 and a minimum-(3/4)k1p1. The width of the contour line is ln■. If φ(y) = sn(y, 1), we get a dormion-type-Ⅱ solution(26) which has only one extreme value-(3/2)k1p1. The width of the contour line is ln■. If φ(y) = sn(y, 1/2)/(1 + y2), we get a dormion-type-Ⅲ solution(21) which shows very strong doubly localized feature on(x, y) plane. Moreover, several interesting patterns of the mixture of periodic and localized solutions are also given in graphic way.
基金Supported by Research Fund of Binzhou University in 2017(BZXYG1712)Shandong Provincial Soft Science Research Program(2017RKB01166)
文摘This paper aims to explore the pH,COD,ammonia nitrogen,total nitrogen,total phosphorus and other indices regarding Xinli River water in Binzhou City.The results show that the pH of the water quality index is between 7.3 and 7.8,slightly alkaline;the COD content of Xinli River is about 140-163 mg/L,and the COD pollution is serious in some water sections;the ammonia nitrogen content of Xinli River is 0.2-2.17 mg/L,the total nitrogen content is about 0.799-1.3 mg/L,the total phosphorus content is about 0.54-0.92 mg/L,suggesting that the water eutrophication is very serious.Due to the large amount of domestic sewage discharged into Xinli River without treatment,slow circulation of river water and other factors,the eutrophication is serious in the urban watercourse.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51208160)the Natural Science Foundation of Heilongjiang Province(Grant No.QC2012C056)
文摘The features of a quasi-two-dimensional( quasi-2D) model for simulating two-phase water hammer flows with vaporous cavity in a pipe are investigated. The quasi-2D model with discrete vaporous cavity in the pipe is proposed in this paper. This model uses the quasi-2D model for pure liquid zone and one-dimensional( 1D) discrete vapor cavity model for vaporous cavity zone. The quasi-2D model solves two-dimensional equations for both axial and radial velocities and 1D equations for both pressure head and discharge by the method of characteristics. The 1D discrete vapor cavity model is used to simulate the vaporous cavity occurred when the pressure in the local pipe is lower than the vapor pressure of the liquid. The proposed model is used to simulate two-phase water flows caused by the rapid downstream valve closure in a reservoir-pipe-valve system.The results obtained by the proposed model are compared with those by the corresponding 1D model and the experimental ones provided by the literature,respectively. The comparison shows that the maximum pressure heads simulated by the proposed model are more accurate than those by the corresponding 1D model.