The warm powder compaction process is simulated by the finite element analysis software, MSCJMARC. The thermal mechanically coupled analysis method is applied on the basis of the updated Lagrangian Method, to simulate...The warm powder compaction process is simulated by the finite element analysis software, MSCJMARC. The thermal mechanically coupled analysis method is applied on the basis of the updated Lagrangian Method, to simulate the warm powder compaction process. The warm powder compaction process is simulated, and the influence of friction condition and pressing styles are researched on the density of powder green and the mechanics behavior at certain temperature. The results indicate that for cylindrical compacts, with the improvement of the friction condition, the uniformity of distribution of green relative density is largely improved, the pressing force and stress decrease, and the nonconforming pressing processes influence the distribution of green density to some degree. The status of stress distribution of the process that punches firstly press and die finally press is different from the other three processes, and presents the figure of 'flume '.展开更多
The mechanical properties of copper nanocubes by molecular dynamics are investigated in this paper. The [100], [110], [111] nanocubes are created, and their energies, yield stresses, hydrostatic stresses, Mises stress...The mechanical properties of copper nanocubes by molecular dynamics are investigated in this paper. The [100], [110], [111] nanocubes are created, and their energies, yield stresses, hydrostatic stresses, Mises stresses, and the relation- ships between them and strain are analyzed. Some concepts of the microscopic damage mechanics are introduced, which are the basis of studying the damage mechanical properties by molecular dynamics. The [100] nanocube exhibits homo- geneity and isotropy and achieves a balance easily. The [110] nanocube presents transverse isotropy. The [111] nanocube shows the complexity and anisotropy because the orientation sizes in three directions are different. The broken point occurs on a surface, but the other two do not. The [100] orientation model will be an ideal model for studying the microscopic damage theory.展开更多
Based on the seismic response characteristics of space frame structures,a new type of seismic isolation bearing defined as a three-dimensional seismic isolation bearing(3DSIB) is developed in this paper.The bearing ...Based on the seismic response characteristics of space frame structures,a new type of seismic isolation bearing defined as a three-dimensional seismic isolation bearing(3DSIB) is developed in this paper.The bearing offers excellent properties such as multi-dimensional seismic isolation,reasonable rotation capability,good ability to resist lifting load,uncoupled stiffness in horizontal and vertical directions,etc.In the 3DSIB,the horizontal dimension is designed by combining the Teflon sliding device and helical spring,while the vertical dimension is developed by introducing disk springs or helical springs.The mathematical model of the 3DSIB was established and its performance with the critical parameters was tested on a shaking table.Furthermore,the 3DSIB was applied in a 120 m span hangar structure and simulated using SAP2000 software to evaluate its performance in practical structures.The performance of the structures with and without 3DSIB was compared.It is shown that the hangar structure with 3D bearings achieves a better performance.The axial force and acceleration response of the structures with 3DSIB are effectively reduced,while the displacement response of the bearing is within the predetermined range.展开更多
The smooth convex generalized failure function, which represents 1/6 part of envelope in tile deviatoric plane, is proposed. The proposed function relies on four shape parameters (L, a, b and c), in which two parame...The smooth convex generalized failure function, which represents 1/6 part of envelope in tile deviatoric plane, is proposed. The proposed function relies on four shape parameters (L, a, b and c), in which two parameters (a and b) are dependent on the others. The parameter Ls is called extension ratio. The proposed failure function could be incorporated with any two-dimensional (2D) failure criteria to make it a three-dimensional (3D) version. In this paper, a mathematical formulation for incorporation of Hoek-Brown failure criterion with the proposed function is presented. The Hoek-Brown failure criterion is the most suited 2D failure criterion tbr geomaterials. Two types of analyses for best-fitting solution of published true tri-axial test data were made by considering (1) constant extension ratio and (2) variable extension ratio. The shape and strength parameters for different types of rocks have been determined by best-fitting the published true tri-axial test data for both the analyses. It is observed from the best-fitting solution by considering uniform extension ratio (L~) that shape constants have a correlation with Hoek-Brown strength parameters. Thus, only two parameters (c~. and m) are needed for representing the 3D failure criterion for intact rock. The statistical expression between shape and Hoek-Brown strength parameters is given. In the second analysis, when considering varying extension ratio, another parameterfis introduced. The modified extension ratio is related tofand extension ratio. The results at minimum mean misfit for all the nine rocks indicate that the range off varies from 0.7 to 1.0. It is found that mean misfit by considering varying extension ratio is lower than that in the first analysis. But it requires three parameters. A statistical expression betweenfand Hoek-Brown strength parameters has been established. Though coefficient of correlation is not reasonable, we may eliminate it as an extra parameter. At the end of the paper, a methodology has also been given for its application to isotropic jointed rock mass, so that it can be implemented in a numerical code for stability analysis of jointed rock mass structures.展开更多
Recently, many optimal designs for axial flux permanent magnet (AFPM) motors were performed based on finite- element (FE) analysis. Most of the models are based on reduction of 3D problem to 2D problem which is not ac...Recently, many optimal designs for axial flux permanent magnet (AFPM) motors were performed based on finite- element (FE) analysis. Most of the models are based on reduction of 3D problem to 2D problem which is not accurate for design aspects. This paper describes an accurate electromagnetic analysis of a surface mounted, 28 pole AFPM with concentrated stator winding. The AFPM is modeled with three-dimensional finite-element method. This model in-cludes all geometrical and physical characteristics of the machine components. Using this accurate modeling makes it possible to obtain demanded signals for a very high precision analysis. Magnetic flux density, back-EMF, magnetic axial force and cogging torque of the motor are simulated using FLUX-3D V10.3.2. Meanwhile, the model is paramet-ric and can be used for design process and sensitivity analysis.展开更多
文摘The warm powder compaction process is simulated by the finite element analysis software, MSCJMARC. The thermal mechanically coupled analysis method is applied on the basis of the updated Lagrangian Method, to simulate the warm powder compaction process. The warm powder compaction process is simulated, and the influence of friction condition and pressing styles are researched on the density of powder green and the mechanics behavior at certain temperature. The results indicate that for cylindrical compacts, with the improvement of the friction condition, the uniformity of distribution of green relative density is largely improved, the pressing force and stress decrease, and the nonconforming pressing processes influence the distribution of green density to some degree. The status of stress distribution of the process that punches firstly press and die finally press is different from the other three processes, and presents the figure of 'flume '.
文摘The mechanical properties of copper nanocubes by molecular dynamics are investigated in this paper. The [100], [110], [111] nanocubes are created, and their energies, yield stresses, hydrostatic stresses, Mises stresses, and the relation- ships between them and strain are analyzed. Some concepts of the microscopic damage mechanics are introduced, which are the basis of studying the damage mechanical properties by molecular dynamics. The [100] nanocube exhibits homo- geneity and isotropy and achieves a balance easily. The [110] nanocube presents transverse isotropy. The [111] nanocube shows the complexity and anisotropy because the orientation sizes in three directions are different. The broken point occurs on a surface, but the other two do not. The [100] orientation model will be an ideal model for studying the microscopic damage theory.
基金National Natural Science Foundation of China under Grant No. 50778006,51278008Doctoral Fund of Ministry of Education of China under Grant No.20121103110021+1 种基金Beijing Natural Science Foundation under Grant No.8112005the Funding of the Jurisdiction of Beijing Municipality 2011
文摘Based on the seismic response characteristics of space frame structures,a new type of seismic isolation bearing defined as a three-dimensional seismic isolation bearing(3DSIB) is developed in this paper.The bearing offers excellent properties such as multi-dimensional seismic isolation,reasonable rotation capability,good ability to resist lifting load,uncoupled stiffness in horizontal and vertical directions,etc.In the 3DSIB,the horizontal dimension is designed by combining the Teflon sliding device and helical spring,while the vertical dimension is developed by introducing disk springs or helical springs.The mathematical model of the 3DSIB was established and its performance with the critical parameters was tested on a shaking table.Furthermore,the 3DSIB was applied in a 120 m span hangar structure and simulated using SAP2000 software to evaluate its performance in practical structures.The performance of the structures with and without 3DSIB was compared.It is shown that the hangar structure with 3D bearings achieves a better performance.The axial force and acceleration response of the structures with 3DSIB are effectively reduced,while the displacement response of the bearing is within the predetermined range.
基金the Department of Science and Technology, India, fast track project scheme(SR/FTP/ETA-17-2007)
文摘The smooth convex generalized failure function, which represents 1/6 part of envelope in tile deviatoric plane, is proposed. The proposed function relies on four shape parameters (L, a, b and c), in which two parameters (a and b) are dependent on the others. The parameter Ls is called extension ratio. The proposed failure function could be incorporated with any two-dimensional (2D) failure criteria to make it a three-dimensional (3D) version. In this paper, a mathematical formulation for incorporation of Hoek-Brown failure criterion with the proposed function is presented. The Hoek-Brown failure criterion is the most suited 2D failure criterion tbr geomaterials. Two types of analyses for best-fitting solution of published true tri-axial test data were made by considering (1) constant extension ratio and (2) variable extension ratio. The shape and strength parameters for different types of rocks have been determined by best-fitting the published true tri-axial test data for both the analyses. It is observed from the best-fitting solution by considering uniform extension ratio (L~) that shape constants have a correlation with Hoek-Brown strength parameters. Thus, only two parameters (c~. and m) are needed for representing the 3D failure criterion for intact rock. The statistical expression between shape and Hoek-Brown strength parameters is given. In the second analysis, when considering varying extension ratio, another parameterfis introduced. The modified extension ratio is related tofand extension ratio. The results at minimum mean misfit for all the nine rocks indicate that the range off varies from 0.7 to 1.0. It is found that mean misfit by considering varying extension ratio is lower than that in the first analysis. But it requires three parameters. A statistical expression betweenfand Hoek-Brown strength parameters has been established. Though coefficient of correlation is not reasonable, we may eliminate it as an extra parameter. At the end of the paper, a methodology has also been given for its application to isotropic jointed rock mass, so that it can be implemented in a numerical code for stability analysis of jointed rock mass structures.
文摘Recently, many optimal designs for axial flux permanent magnet (AFPM) motors were performed based on finite- element (FE) analysis. Most of the models are based on reduction of 3D problem to 2D problem which is not accurate for design aspects. This paper describes an accurate electromagnetic analysis of a surface mounted, 28 pole AFPM with concentrated stator winding. The AFPM is modeled with three-dimensional finite-element method. This model in-cludes all geometrical and physical characteristics of the machine components. Using this accurate modeling makes it possible to obtain demanded signals for a very high precision analysis. Magnetic flux density, back-EMF, magnetic axial force and cogging torque of the motor are simulated using FLUX-3D V10.3.2. Meanwhile, the model is paramet-ric and can be used for design process and sensitivity analysis.