This paper presents a formulation for three-dimensional elasto-dynamics with an elliptic crack based on the Laplace and Fourier transforms and the convolution theorem. The dynamic stress intensity factor for the crack...This paper presents a formulation for three-dimensional elasto-dynamics with an elliptic crack based on the Laplace and Fourier transforms and the convolution theorem. The dynamic stress intensity factor for the crack is determined by solving a Fredholm integral equation of the first kind. The results of this paper are very close to those given by the two-dimensional dual integral equation method.展开更多
A new formula is obtained to calculate dynamic stress intensity factors of the three-point bending specimen containing a single edge crack in this study. Firstly, the weight function for three-point bending specimen c...A new formula is obtained to calculate dynamic stress intensity factors of the three-point bending specimen containing a single edge crack in this study. Firstly, the weight function for three-point bending specimen containing a single edge crack is derived from a general weight function form and two reference stress intensity factors, the coefficients of the weight function are given. Secondly, the history and distribution of dynamic stresses in uncracked three-point bending specimen are derived based on the vibration theory. Finally~ the dynamic stress intensity factors equations for three-pointing specimen with a single edge crack subjected to impact loadings are obtained by the weight function method. The obtained formula is verified by the comparison with the numerical results of the finite element method (FEM). Good agreements have been achieved. The law of dynamic stress intensity factors of the three-point bending specimen under impact loadings varing with crack depths and loading rates is studied.展开更多
In this paper, a new analytical-engineering method of closed form solution about stress intensity factors for three dimensional finite bodies with eccentric cracks is derived by means of energy release rate method. Th...In this paper, a new analytical-engineering method of closed form solution about stress intensity factors for three dimensional finite bodies with eccentric cracks is derived by means of energy release rate method. The results of stress intensity factors can be obtained. The results provided ir this method are in nice agreement with those of the famous alternating method by which only special cases can be solved.展开更多
The dynamic stress intensity factor history for a half plane crack in an otherwise unbounded elastic body,with the crack faces subjected to a traction distribution consisting of two pairs of combined mode point loads ...The dynamic stress intensity factor history for a half plane crack in an otherwise unbounded elastic body,with the crack faces subjected to a traction distribution consisting of two pairs of combined mode point loads that move in a direction perpendicular to the crack edge is considered.The analytic expression for the combined mode stress intensity factors as a function of time for any point along the crack edge is obtained.The method of solution is based on the application of integral transform together with the Wiener-Hopf technique and the Cagniard-de Hoop method. Some features of the solution are discussed and graphical results for various point load speeds are presented.展开更多
The dynamic stress intensity factor (DSIF) and the scattering of SH wave by circle canyon and crack are studied with Green's function. In order to solve the problem, a suitable Green's function is constructed...The dynamic stress intensity factor (DSIF) and the scattering of SH wave by circle canyon and crack are studied with Green's function. In order to solve the problem, a suitable Green's function is constructed first, which is the solution of displacement fields for elastic half space with circle canyon under output plane harmonic line loading at horizontal surface. Then the integral equation for determining the unknown forces in the problem can be changed into the algebraic one and solved numerically so that crack DSIF can be determined. Last when the medium parameters are altered, the influence on the crack DSIF is discussed partially with the displacement between circle canyon and crack.展开更多
In this paper,the dynamic propagation problem of a mixed-mode crack was studied by means of the experimental method of caustics.The initial curve and caustic equations were derived un- der the mixed-mode dynamic condi...In this paper,the dynamic propagation problem of a mixed-mode crack was studied by means of the experimental method of caustics.The initial curve and caustic equations were derived un- der the mixed-mode dynamic condition.A multi-point measurement method for determining the dy- namic stress intensity factors,K_Ⅰ~d and K_Ⅱ~d,and the position of the crack tip was developed.Several other methods were adopted to check this method,and showed that it has a good precision.Finally, the dynamic propagating process of a mixed-mode crack in a three-point bending beam specimen was investigated with our method.展开更多
Fractional differential constitutive relationships are introduced to depict the history of dynamic stress inten- sity factors (DSIFs) for a semi-infinite crack in infinite viscoelastic material subjected to anti-pla...Fractional differential constitutive relationships are introduced to depict the history of dynamic stress inten- sity factors (DSIFs) for a semi-infinite crack in infinite viscoelastic material subjected to anti-plane shear impact load. The basic equations which govern the anti-plane deformation behavior are converted to a fractional wave-like equation. By utilizing Laplace and Fourier integral transforms, the fractional wave-like equation is cast into an ordinary differential equation (ODE). The unknown function in the solution of ODE is obtained by applying Fourier transform directly to the boundary conditions of fractional wave-like equation in Laplace domain instead of solving dual integral equations. Analytical solutions of DSIFs in Laplace domain are derived by Wiener-Hopf technique and the numerical solutions of DSIFs in time domain are obtained by Talbot algorithm. The effects of four parameters α, β, b1, b2 of the fractional dif- ferential constitutive model on DSIFs are discussed. The numerical results show that the present fractional differential constitutive model can well describe the behavior of DSIFs of anti-plane fracture in viscoelastic materials, and the model is also compatible with solutions of DSIFs of anti-plane fracture in elastic materials.展开更多
This paper studies the dynamic stress intensity factor (DSIF) at the interface in an adhesive joint under shear loading. Material damage is considered. By introducing the dislocation density function and using the i...This paper studies the dynamic stress intensity factor (DSIF) at the interface in an adhesive joint under shear loading. Material damage is considered. By introducing the dislocation density function and using the integral transform, the problem is reduced to algebraic equations and can be solved with the collocation dots method in the Laplace domain. Time response of DSIF is calculated with the inverse Laplace integral transform. The results show that the mode Ⅱ DSIF increases with the shear relaxation parameter, shear module and Poisson ratio, while decreases with the swell relaxation parameter. Damage shielding only occurs at the initial stage of crack propagation. The singular index of crack tip is -0.5 and independent on the material parameters, damage conditions of materials, and time. The oscillatory index is controlled by viscoelastic material parameters.展开更多
A dynamic weight function method is presented for dynamic stress intensity factors of circular disk with a radial edge crack under external impulsive pressure. The dynamic stresses in a circular disk are solved under ...A dynamic weight function method is presented for dynamic stress intensity factors of circular disk with a radial edge crack under external impulsive pressure. The dynamic stresses in a circular disk are solved under abrupt step external pressure using the eigenfunction method. The solution consists of a quasi-static solution satisfying inhomogeneous boundary conditions and a dynamic solution satisfying homogeneous boundary conditions. By making use of Fourier- Bessel series expansion, the history and distribution of dynamic stresses in the circular disk are derived. Furthermore, the equation for stress intensity factors under uniform pressure is used as the reference case, the weight function equation for the circular disk containing an edge crack is worked out, and the dynamic stress intensity factor equation for the circular disk containing a radial edge crack can be given. The results indicate that the stress intensity factors under sudden step external pressure vary periodically with time, and the ratio of the maximum value of dynamic stress intensity factors to the corresponding static value is about 2.0.展开更多
The time-domain BEM was developed to analyze the dynamic stress intensity factor ( DSIF) of 3-D elastodynamic crack problems. To simulate the stress singularity along the front of a crack, eight-node isoparametric sin...The time-domain BEM was developed to analyze the dynamic stress intensity factor ( DSIF) of 3-D elastodynamic crack problems. To simulate the stress singularity along the front of a crack, eight-node isoparametric singular elements were used, and the DSIF for a semi-circular surface crack was firstly calculated based on displacement equation using the time-domain BEM formulation. The new scheme to determine the time step was brought forward. By the dynamic analysis program of time-domain BEM compiled by its, several numerical examples are presented, which demonstrate the unconditional stability and high accuracy of time-domain BEM applied to 3-D elastodynamic crack problems.展开更多
Dynamic stress intensity factors are evaluated for thick-walled cylinder with a radial edge crack under internal impulsive pressure. Firstly, the equation for stress intensity factors under static uniform pressure is ...Dynamic stress intensity factors are evaluated for thick-walled cylinder with a radial edge crack under internal impulsive pressure. Firstly, the equation for stress intensity factors under static uniform pressure is used as the reference case, and then the weight function for a thick-walled cylinder containing a radial edge crack can be worked out. Secondly, the dynamic stresses in uncracked thick-walled cylinders are solved under internal impulsive pressure by using mode shape function method. The solution consists of a quasi-static solution satisfying inhomogeneous boundary conditions and a dynamic solution satisfying homogeneous boundary condi- tions, and the history and distribution of dynamic stresses in thick-walled cylinders are derived in terms of Fourier-Bessel series. Finally, the dynamic stress intensity factor equations for thick-walled cylinder containing a radial edge crack sub- jected to internal impulsive pressure are given by dynamic weight function method. The finite element method is utilized to verify the results of numerical examples, showing the validity and feasibility of the proposed method.展开更多
Based on the mechanics of anisotropic materials, the dynamic propagation problem of a mode Ⅲ crack in an infinite anisotropic body is investigated. Stress, strain and displacement around the crack tip are expressed a...Based on the mechanics of anisotropic materials, the dynamic propagation problem of a mode Ⅲ crack in an infinite anisotropic body is investigated. Stress, strain and displacement around the crack tip are expressed as an analytical complex function, which can be represented in power series. Constant coefficients of series are determined by boundary conditions. Expressions of dynamic stress intensity factors for a mode Ⅲ crack are obtained. Components of dynamic stress, dynamic strain and dynamic displacement around the crack tip are derived. Crack propagation characteristics are represented by the mechanical properties of the anisotropic materials, i.e., crack propagation velocity M and the parameter ~. The faster the crack velocity is, the greater the maximums of stress components and dynamic displacement components around the crack tip are. In particular, the parameter α affects stress and dynamic displacement around the crack tip.展开更多
In order to determine the dynamic stress intensity factors(DSIFs)for a single edge crack at the center hole of a finite plate under a compressive step loading parallel to the crack,the finite element method was employ...In order to determine the dynamic stress intensity factors(DSIFs)for a single edge crack at the center hole of a finite plate under a compressive step loading parallel to the crack,the finite element method was employed to solve the cracked plate problem.The square-root stress singularity around the crack tip was simulated by quarter point singular elements collapsed by 8-node two-dimensional isoparametric elements.The DSIFs with and without considering crack face contact situations were evaluated by using the displacement correlation technique,and the influence of contact interaction between crack surfaces on DSIFs was investigated.The numerical results show that if the contact interaction between crack surfaces is ignored,the negative mode I DSIFs may be obtained and a physically impossible interpenetration or overlap of the crack surfaces will occur.Thus the crack face contact has a significant influence on the mode I DSIFs.展开更多
Three dimensional dynamic stress intensity factors are analyzed for a curved crack with a second order perturbation method. The method is extended to obtain an approximate representation of a three dimensional dynamic...Three dimensional dynamic stress intensity factors are analyzed for a curved crack with a second order perturbation method. The method is extended to obtain an approximate representation of a three dimensional dynamic stress intensity factors at the tip of a curved crack. Due to three dimensional curved crack growth the dynamic energy release rate can be calculated by using the Irwin's formula. A three dimensional curved crack in materials with inhomogeneous fracture toughness are considered. Paths of a brittle three dimensional curved crack propagating along a welded joint are predicted via the present method, where the effects of dynamic applied stresses, residual stresses, and material deterioration due to welding are taken into considerations.展开更多
Stress waves affect the stress field at the crack tip and dominate the dynamic crack propagation.Therefore,evaluating the influence of blasting stress waves on the crack propagation behavior and the mechanical charact...Stress waves affect the stress field at the crack tip and dominate the dynamic crack propagation.Therefore,evaluating the influence of blasting stress waves on the crack propagation behavior and the mechanical characteristics of crack propagation is of great significance for engineering blasting.In this study,ANSYS/LS-DYNA was used for blasting numerical simulation,in which the propagation characteristics of blasting stress waves and stress field distribution at the crack tip were closely observed.Moreover,ABAQUS was applied for simulating the crack propagation path and calculating dynamic stress intensity factors(DSIFs).The universal function was calculated by the fractalmethod.The results show that:the compressive wave causes the crack to close and the reflected tensile wave drives the crack to initiate and propagate,and failure mode is mainly tensile failure.The crack propagation velocity varies with time,which increases at first and then decreases,and the crack arrest occurs due to the attenuation of stress waves and dissipation of the blasting energy.In addition,crack arrest toughness is smaller than the crack initiation toughness,applied pressure waveforms(such as the peak pressure,duration,waveforms,wavelengths and loading rates)have a great influence on DSIFs.It is conducive to our deep understanding or the study of blasting stress waves dominated fracture,suggesting a broad reference for the further development of rock blasting in engineering practice.展开更多
Through detailed three-dimensional (3D) finite element (FE) calculations, the out-of-plane constraints Tz along embedded center-elliptical cracks in mode I elastic plates are studied. The distributions of Tz are o...Through detailed three-dimensional (3D) finite element (FE) calculations, the out-of-plane constraints Tz along embedded center-elliptical cracks in mode I elastic plates are studied. The distributions of Tz are obtained near the crack front with aspect ratios (a/c) of 0.2, 0.4, 0.5, 0.6, 0.8 and 1.0. Tz decreases from an approximate value of Poisson ratio v at the crack tip to zero with increasing normalized radial distances (r/a) in the normal plane of the crack front line, and increases gradually when the elliptical parameter angle φ changes from 0° to 90°at the same r/a. With a/c rising to 1.0, Tz is getting nearly independent of φ and is only related to r/a. Based on the present FE calculations for Tz, empirical formulas for Tz are obtained to describe the 3D distribution of Tz for embedded center-elliptical cracks using the least squares method in the range of 0.2 ≤ a/c ≤ 1.0. These Tz results together with the corresponding stress intensity factor K are well suitable for the analysis of the 3D embedded centerelliptical crack from field, and a two-parameter K-Tz principle is proposed.展开更多
An experimental technique for determining the anti plane stress intensity factor K Ⅲ of a three dimensional crack, which is very difficult to obtain by other experimental methods, has been presented by using...An experimental technique for determining the anti plane stress intensity factor K Ⅲ of a three dimensional crack, which is very difficult to obtain by other experimental methods, has been presented by using reflected caustics in combination with the stress freezing and stress releasing technique. The results of this experimental method coincided favorably with the theoretical analysis results of Tweed and Rooke.展开更多
The three-dimensional weight function method recently developed by the authors is used to determine stress intensity factors for two symmetric quarter-elliptical corner cracks at a hole in a wide finite-thickness plat...The three-dimensional weight function method recently developed by the authors is used to determine stress intensity factors for two symmetric quarter-elliptical corner cracks at a hole in a wide finite-thickness plate subjected to remote tensile loading. The geometry parameters considered are r / t = 0.5, 1, 2; a / c= 0.2, 0.5, 1, 2; a / t = 0.2, 0.5 within c/r= 2. The results are compared, where possible, with other solutions available in the literature. Generally good agreement is observed. The effect of an approximation of the two-dimensional unflawed stress distribution on the accuracy of stress intensity factors by the weight function method is discussed.展开更多
Three-dimensional analysis of a half plane crack in a transversely isotropic solid is performed. The crack is subjected to a pair of normal point loads moving in a direction perpendicular to the crack edge on its face...Three-dimensional analysis of a half plane crack in a transversely isotropic solid is performed. The crack is subjected to a pair of normal point loads moving in a direction perpendicular to the crack edge on its faces. Transform methods are used to reduce the boundary value problem to a single integral equation that can be solved by the Wiener-Hopf technique. The Cagniard-de Hoop method is employed to invert the transforms. An exact expression is derived for the mode I stress intensity factor as a function of time and position along the crack edge. Some features of the solution are discussed through numerical results.展开更多
In this paper, a new semi-analytical and semi-engineering method of the closed form solution of stress intensity factors (SIFs) of cracks emanating from a surface semi-spherical cavity in a finite body is derived us...In this paper, a new semi-analytical and semi-engineering method of the closed form solution of stress intensity factors (SIFs) of cracks emanating from a surface semi-spherical cavity in a finite body is derived using the energy release rate theory. A mode of crack opening displacements of a normal slice is established, and the normal slice relevant functions are introduced. The proposed method is both effective and accurate for the problem of three-dimensional cracks emanating from a surface cavity. A series of useful results of SIFs are obtained.展开更多
基金The project supported by the National Natural Science Foundation of China (K19672007)
文摘This paper presents a formulation for three-dimensional elasto-dynamics with an elliptic crack based on the Laplace and Fourier transforms and the convolution theorem. The dynamic stress intensity factor for the crack is determined by solving a Fredholm integral equation of the first kind. The results of this paper are very close to those given by the two-dimensional dual integral equation method.
基金supported by the China Aviation Industry Corporation I Program (No.ATPD-1104-02)the Science Foundation of Nanjing University of Science and Technology (No.2010GJPY026)
文摘A new formula is obtained to calculate dynamic stress intensity factors of the three-point bending specimen containing a single edge crack in this study. Firstly, the weight function for three-point bending specimen containing a single edge crack is derived from a general weight function form and two reference stress intensity factors, the coefficients of the weight function are given. Secondly, the history and distribution of dynamic stresses in uncracked three-point bending specimen are derived based on the vibration theory. Finally~ the dynamic stress intensity factors equations for three-pointing specimen with a single edge crack subjected to impact loadings are obtained by the weight function method. The obtained formula is verified by the comparison with the numerical results of the finite element method (FEM). Good agreements have been achieved. The law of dynamic stress intensity factors of the three-point bending specimen under impact loadings varing with crack depths and loading rates is studied.
文摘In this paper, a new analytical-engineering method of closed form solution about stress intensity factors for three dimensional finite bodies with eccentric cracks is derived by means of energy release rate method. The results of stress intensity factors can be obtained. The results provided ir this method are in nice agreement with those of the famous alternating method by which only special cases can be solved.
基金the National Natural Science Foundation of China
文摘The dynamic stress intensity factor history for a half plane crack in an otherwise unbounded elastic body,with the crack faces subjected to a traction distribution consisting of two pairs of combined mode point loads that move in a direction perpendicular to the crack edge is considered.The analytic expression for the combined mode stress intensity factors as a function of time for any point along the crack edge is obtained.The method of solution is based on the application of integral transform together with the Wiener-Hopf technique and the Cagniard-de Hoop method. Some features of the solution are discussed and graphical results for various point load speeds are presented.
文摘The dynamic stress intensity factor (DSIF) and the scattering of SH wave by circle canyon and crack are studied with Green's function. In order to solve the problem, a suitable Green's function is constructed first, which is the solution of displacement fields for elastic half space with circle canyon under output plane harmonic line loading at horizontal surface. Then the integral equation for determining the unknown forces in the problem can be changed into the algebraic one and solved numerically so that crack DSIF can be determined. Last when the medium parameters are altered, the influence on the crack DSIF is discussed partially with the displacement between circle canyon and crack.
文摘In this paper,the dynamic propagation problem of a mixed-mode crack was studied by means of the experimental method of caustics.The initial curve and caustic equations were derived un- der the mixed-mode dynamic condition.A multi-point measurement method for determining the dy- namic stress intensity factors,K_Ⅰ~d and K_Ⅱ~d,and the position of the crack tip was developed.Several other methods were adopted to check this method,and showed that it has a good precision.Finally, the dynamic propagating process of a mixed-mode crack in a three-point bending beam specimen was investigated with our method.
基金supported by the National Natural Science Foundation of China(11072060)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Fractional differential constitutive relationships are introduced to depict the history of dynamic stress inten- sity factors (DSIFs) for a semi-infinite crack in infinite viscoelastic material subjected to anti-plane shear impact load. The basic equations which govern the anti-plane deformation behavior are converted to a fractional wave-like equation. By utilizing Laplace and Fourier integral transforms, the fractional wave-like equation is cast into an ordinary differential equation (ODE). The unknown function in the solution of ODE is obtained by applying Fourier transform directly to the boundary conditions of fractional wave-like equation in Laplace domain instead of solving dual integral equations. Analytical solutions of DSIFs in Laplace domain are derived by Wiener-Hopf technique and the numerical solutions of DSIFs in time domain are obtained by Talbot algorithm. The effects of four parameters α, β, b1, b2 of the fractional dif- ferential constitutive model on DSIFs are discussed. The numerical results show that the present fractional differential constitutive model can well describe the behavior of DSIFs of anti-plane fracture in viscoelastic materials, and the model is also compatible with solutions of DSIFs of anti-plane fracture in elastic materials.
基金the National Natural Science Foundation of China(No.10672027)the National Basic Research Program of China(No.2006CB601205)the National Science Fund for Distin-guished Young Scholars of China(No.50625414)
文摘This paper studies the dynamic stress intensity factor (DSIF) at the interface in an adhesive joint under shear loading. Material damage is considered. By introducing the dislocation density function and using the integral transform, the problem is reduced to algebraic equations and can be solved with the collocation dots method in the Laplace domain. Time response of DSIF is calculated with the inverse Laplace integral transform. The results show that the mode Ⅱ DSIF increases with the shear relaxation parameter, shear module and Poisson ratio, while decreases with the swell relaxation parameter. Damage shielding only occurs at the initial stage of crack propagation. The singular index of crack tip is -0.5 and independent on the material parameters, damage conditions of materials, and time. The oscillatory index is controlled by viscoelastic material parameters.
文摘A dynamic weight function method is presented for dynamic stress intensity factors of circular disk with a radial edge crack under external impulsive pressure. The dynamic stresses in a circular disk are solved under abrupt step external pressure using the eigenfunction method. The solution consists of a quasi-static solution satisfying inhomogeneous boundary conditions and a dynamic solution satisfying homogeneous boundary conditions. By making use of Fourier- Bessel series expansion, the history and distribution of dynamic stresses in the circular disk are derived. Furthermore, the equation for stress intensity factors under uniform pressure is used as the reference case, the weight function equation for the circular disk containing an edge crack is worked out, and the dynamic stress intensity factor equation for the circular disk containing a radial edge crack can be given. The results indicate that the stress intensity factors under sudden step external pressure vary periodically with time, and the ratio of the maximum value of dynamic stress intensity factors to the corresponding static value is about 2.0.
文摘The time-domain BEM was developed to analyze the dynamic stress intensity factor ( DSIF) of 3-D elastodynamic crack problems. To simulate the stress singularity along the front of a crack, eight-node isoparametric singular elements were used, and the DSIF for a semi-circular surface crack was firstly calculated based on displacement equation using the time-domain BEM formulation. The new scheme to determine the time step was brought forward. By the dynamic analysis program of time-domain BEM compiled by its, several numerical examples are presented, which demonstrate the unconditional stability and high accuracy of time-domain BEM applied to 3-D elastodynamic crack problems.
基金supported by the China Aviation Industry Corporation I Program (ATPD-1104-02).
文摘Dynamic stress intensity factors are evaluated for thick-walled cylinder with a radial edge crack under internal impulsive pressure. Firstly, the equation for stress intensity factors under static uniform pressure is used as the reference case, and then the weight function for a thick-walled cylinder containing a radial edge crack can be worked out. Secondly, the dynamic stresses in uncracked thick-walled cylinders are solved under internal impulsive pressure by using mode shape function method. The solution consists of a quasi-static solution satisfying inhomogeneous boundary conditions and a dynamic solution satisfying homogeneous boundary condi- tions, and the history and distribution of dynamic stresses in thick-walled cylinders are derived in terms of Fourier-Bessel series. Finally, the dynamic stress intensity factor equations for thick-walled cylinder containing a radial edge crack sub- jected to internal impulsive pressure are given by dynamic weight function method. The finite element method is utilized to verify the results of numerical examples, showing the validity and feasibility of the proposed method.
文摘Based on the mechanics of anisotropic materials, the dynamic propagation problem of a mode Ⅲ crack in an infinite anisotropic body is investigated. Stress, strain and displacement around the crack tip are expressed as an analytical complex function, which can be represented in power series. Constant coefficients of series are determined by boundary conditions. Expressions of dynamic stress intensity factors for a mode Ⅲ crack are obtained. Components of dynamic stress, dynamic strain and dynamic displacement around the crack tip are derived. Crack propagation characteristics are represented by the mechanical properties of the anisotropic materials, i.e., crack propagation velocity M and the parameter ~. The faster the crack velocity is, the greater the maximums of stress components and dynamic displacement components around the crack tip are. In particular, the parameter α affects stress and dynamic displacement around the crack tip.
基金Sponsored by the National Natural Science Foundation of China(Grant No.10272036)
文摘In order to determine the dynamic stress intensity factors(DSIFs)for a single edge crack at the center hole of a finite plate under a compressive step loading parallel to the crack,the finite element method was employed to solve the cracked plate problem.The square-root stress singularity around the crack tip was simulated by quarter point singular elements collapsed by 8-node two-dimensional isoparametric elements.The DSIFs with and without considering crack face contact situations were evaluated by using the displacement correlation technique,and the influence of contact interaction between crack surfaces on DSIFs was investigated.The numerical results show that if the contact interaction between crack surfaces is ignored,the negative mode I DSIFs may be obtained and a physically impossible interpenetration or overlap of the crack surfaces will occur.Thus the crack face contact has a significant influence on the mode I DSIFs.
基金supported by National Natural Science Foundation of China(No.91016026)Henan Province Natural Science Foundation Subsidy Project(No.152300410003)
文摘Three dimensional dynamic stress intensity factors are analyzed for a curved crack with a second order perturbation method. The method is extended to obtain an approximate representation of a three dimensional dynamic stress intensity factors at the tip of a curved crack. Due to three dimensional curved crack growth the dynamic energy release rate can be calculated by using the Irwin's formula. A three dimensional curved crack in materials with inhomogeneous fracture toughness are considered. Paths of a brittle three dimensional curved crack propagating along a welded joint are predicted via the present method, where the effects of dynamic applied stresses, residual stresses, and material deterioration due to welding are taken into considerations.
基金This researchwas supported by the National Natural Science Foundation of China(No.52227805)the Fundamental Research Funds for Central Universities(No.2022JCCXLJ01).Awards were granted to the author Liyun Yang.
文摘Stress waves affect the stress field at the crack tip and dominate the dynamic crack propagation.Therefore,evaluating the influence of blasting stress waves on the crack propagation behavior and the mechanical characteristics of crack propagation is of great significance for engineering blasting.In this study,ANSYS/LS-DYNA was used for blasting numerical simulation,in which the propagation characteristics of blasting stress waves and stress field distribution at the crack tip were closely observed.Moreover,ABAQUS was applied for simulating the crack propagation path and calculating dynamic stress intensity factors(DSIFs).The universal function was calculated by the fractalmethod.The results show that:the compressive wave causes the crack to close and the reflected tensile wave drives the crack to initiate and propagate,and failure mode is mainly tensile failure.The crack propagation velocity varies with time,which increases at first and then decreases,and the crack arrest occurs due to the attenuation of stress waves and dissipation of the blasting energy.In addition,crack arrest toughness is smaller than the crack initiation toughness,applied pressure waveforms(such as the peak pressure,duration,waveforms,wavelengths and loading rates)have a great influence on DSIFs.It is conducive to our deep understanding or the study of blasting stress waves dominated fracture,suggesting a broad reference for the further development of rock blasting in engineering practice.
基金The project supported by the National Natural Science Foundation of China (50275073)
文摘Through detailed three-dimensional (3D) finite element (FE) calculations, the out-of-plane constraints Tz along embedded center-elliptical cracks in mode I elastic plates are studied. The distributions of Tz are obtained near the crack front with aspect ratios (a/c) of 0.2, 0.4, 0.5, 0.6, 0.8 and 1.0. Tz decreases from an approximate value of Poisson ratio v at the crack tip to zero with increasing normalized radial distances (r/a) in the normal plane of the crack front line, and increases gradually when the elliptical parameter angle φ changes from 0° to 90°at the same r/a. With a/c rising to 1.0, Tz is getting nearly independent of φ and is only related to r/a. Based on the present FE calculations for Tz, empirical formulas for Tz are obtained to describe the 3D distribution of Tz for embedded center-elliptical cracks using the least squares method in the range of 0.2 ≤ a/c ≤ 1.0. These Tz results together with the corresponding stress intensity factor K are well suitable for the analysis of the 3D embedded centerelliptical crack from field, and a two-parameter K-Tz principle is proposed.
文摘An experimental technique for determining the anti plane stress intensity factor K Ⅲ of a three dimensional crack, which is very difficult to obtain by other experimental methods, has been presented by using reflected caustics in combination with the stress freezing and stress releasing technique. The results of this experimental method coincided favorably with the theoretical analysis results of Tweed and Rooke.
文摘The three-dimensional weight function method recently developed by the authors is used to determine stress intensity factors for two symmetric quarter-elliptical corner cracks at a hole in a wide finite-thickness plate subjected to remote tensile loading. The geometry parameters considered are r / t = 0.5, 1, 2; a / c= 0.2, 0.5, 1, 2; a / t = 0.2, 0.5 within c/r= 2. The results are compared, where possible, with other solutions available in the literature. Generally good agreement is observed. The effect of an approximation of the two-dimensional unflawed stress distribution on the accuracy of stress intensity factors by the weight function method is discussed.
基金The project supported by the Guangdong Provincial Natural Science Foundationthe Science Foundation of Shantou University
文摘Three-dimensional analysis of a half plane crack in a transversely isotropic solid is performed. The crack is subjected to a pair of normal point loads moving in a direction perpendicular to the crack edge on its faces. Transform methods are used to reduce the boundary value problem to a single integral equation that can be solved by the Wiener-Hopf technique. The Cagniard-de Hoop method is employed to invert the transforms. An exact expression is derived for the mode I stress intensity factor as a function of time and position along the crack edge. Some features of the solution are discussed through numerical results.
文摘In this paper, a new semi-analytical and semi-engineering method of the closed form solution of stress intensity factors (SIFs) of cracks emanating from a surface semi-spherical cavity in a finite body is derived using the energy release rate theory. A mode of crack opening displacements of a normal slice is established, and the normal slice relevant functions are introduced. The proposed method is both effective and accurate for the problem of three-dimensional cracks emanating from a surface cavity. A series of useful results of SIFs are obtained.