The conventional two dimensional(2D)inverse synthetic aperture radar(ISAR)imaging fails to provide the targets'three dimensional(3D)information.In this paper,a 3D ISAR imaging method for the space target is propos...The conventional two dimensional(2D)inverse synthetic aperture radar(ISAR)imaging fails to provide the targets'three dimensional(3D)information.In this paper,a 3D ISAR imaging method for the space target is proposed based on mutliorbit observation data and an improved orthogonal matching pursuit(OMP)algorithm.Firstly,the 3D scattered field data is converted into a set of 2D matrix by stacking slices of the 3D data along the elevation direction dimension.Then,an improved OMP algorithm is applied to recover the space target's amplitude information via the 2D matrix data.Finally,scattering centers can be reconstructed with specific three dimensional locations.Numerical simulations are provided to demonstrate the effectiveness and superiority of the proposed 3D imaging method.展开更多
AIM To apply real time three-dimensional transesophageal echocardiography(RT3D TEE) for quantitative and qualitative assessment of the mitral valve annulus(MVA) and tricuspid valve annulus(TVA) in the same patient.MET...AIM To apply real time three-dimensional transesophageal echocardiography(RT3D TEE) for quantitative and qualitative assessment of the mitral valve annulus(MVA) and tricuspid valve annulus(TVA) in the same patient.METHODS Our retrospective cohort study examined the MVA and TVA in 49 patients by RT3 D TEE. MVA and TVA shape were examined by TEE. The MVA and TVA volume data set images were acquired in the mid esophageal 4-chamber view. The MVA and TVA were acquired separately, with optimization of each for the highest frame rate and image quality. The 3D shape of the annuli was reconstructed using the Philips~? Q lab, MVQ ver. 6.0 MVA model software. The end-systolic frame was used. The parameters measured and compared were annular area, circumference, high-low distances(height), anterolateralposterolateral(ALPM), and anteroposterior(AP) axes. RESULTS A total of 49 patients(mean age 61 ± 14 years, 45% males) were studied. The ALPM and the AP axes of the MVA and TVA are not significantly different. The ALPM axis of the MVA was 37.9 ± 6.4 mm and 38.0 ± 5.6 mm for the TVA(P = 0.70). The AP axis of the MVA was 34.8 ± 5.7 mm and 34.9 ± 6.2 mm for the TVA(P = 0.90). The MVA and the TVA had similar circumference and area. The circumference of the MVA was 127.9 ± 16.8 mm and 125.92 ± 16.12 mm for the TVA(P = 0.23). The area of the MVA was 1103.7 ± 307.8 mm^2 and 1131.7 ± 302.0 mm^2 for the TVA(P = 0.41). The MVA and TVA are similar oval structures, but with significantly different heights. The ALPM/AP ratio for the MVA was 1.08 ± 0.33 and 1.09 ± 0.28 for the TVA(P < 0.001). The height for the MVA and TVA was 9.23 ± 2.11 mm and 4.37 ± 1.48 mm, respectively(P < 0.0001). CONCLUSION RT3 D TEE plays an unprecedented role in the management of valvular heart disease. The specific and exclusive shape of the MVA and TVA was revealed in our study of patients studied. Moreover, the intricate codependence of the MVA and the TVA depends on their distinctive shapes. This realization seen from our study will allow us to better understand the role valvular disease plays in disease states such as hypertrophic cardiomyopathy and pulmonary hypertension.展开更多
In order to improve the diagnosis and analysis ability of 3D spiral CT and to reconstruct the contour of 3D spiral CT damage image,a contour reconstruction method based on sharpening template enhancement for 3D spiral...In order to improve the diagnosis and analysis ability of 3D spiral CT and to reconstruct the contour of 3D spiral CT damage image,a contour reconstruction method based on sharpening template enhancement for 3D spiral CT damage image is proposed.This method uses the active contour LasSO model to extract the contour feature of the 3D spiral CT damage image and enhances the information by sharpening the template en.hancement technique and makes the noise separation of the 3D spiral CT damage image.The spiral CT image was procesed with ENT,and the statistical shape model of 3D spiral CT damage image was established.The.gradient algorithm is used to decompose the feature to realize the analysis and reconstruction of the contour feature of the 3D spiral CT damage image,so as to improve the adaptive feature matching ability and the ability to locate the abnormal feature points.The simulation results show that in the 3D spiral CT damage image contour reconstruction,the proposed method performs well in the feature matching of the output pixels,shortens the contour reconstruction time by 20/ms,and provides a strong ability to express the image information.The normalized reconstruction error of CES is 30%,which improves the recognition ability of 3D spiral CT damage image,and increases the signal-to noise ratio of peak output by 40 dB over other methods.展开更多
In order to improve the registration accuracy of brain magnetic resonance images(MRI),some deep learning registration methods use segmentation images for training model.How-ever,the segmentation values are constant fo...In order to improve the registration accuracy of brain magnetic resonance images(MRI),some deep learning registration methods use segmentation images for training model.How-ever,the segmentation values are constant for each label,which leads to the gradient variation con-centrating on the boundary.Thus,the dense deformation field(DDF)is gathered on the boundary and there even appears folding phenomenon.In order to fully leverage the label information,the morphological opening and closing information maps are introduced to enlarge the non-zero gradi-ent regions and improve the accuracy of DDF estimation.The opening information maps supervise the registration model to focus on smaller,narrow brain regions.The closing information maps supervise the registration model to pay more attention to the complex boundary region.Then,opening and closing morphology networks(OC_Net)are designed to automatically generate open-ing and closing information maps to realize the end-to-end training process.Finally,a new registra-tion architecture,VM_(seg+oc),is proposed by combining OC_Net and VoxelMorph.Experimental results show that the registration accuracy of VM_(seg+oc) is significantly improved on LPBA40 and OASIS1 datasets.Especially,VM_(seg+oc) can well improve registration accuracy in smaller brain regions and narrow regions.展开更多
As a novel three dimensional digital image correlation (3D DIC) method, the bi-prism-based single lens (BSL) 3D DIC method has been proposed and developed in recent years. Making use ofa bi-prism, this method is a...As a novel three dimensional digital image correlation (3D DIC) method, the bi-prism-based single lens (BSL) 3D DIC method has been proposed and developed in recent years. Making use ofa bi-prism, this method is able to perform a 3D DIC measurement using only a single camera. Thus, the integration level of a BSL 3D DIC system could be much higher than that of the double-camera 3D DIC system. In this paper, using a small-angle bi-prism and a camera with a longer focal length, a special BSL 3D DIC system with a long working distance is designed for measurements in extreme environments. The principle of the system is first studied, and practical methods are then proposed for the system set-up and the determination of system parameters. Then, feasibility of the measurement system is verified by out-of-plane rigid-body translation tests. Finally, the BSL 3D DIC system is proven to be capable of combining with a high-temperature testing instrument to perform deformation tests in a high-temperature environment of up to 1500℃.展开更多
Aiming at the interferometric inverse synthetic aperture radar (InlSAR) imaging in the presence of squint, we investigate the influence of squint on the InlSAR imaging. First, coupling of the squint additive phase a...Aiming at the interferometric inverse synthetic aperture radar (InlSAR) imaging in the presence of squint, we investigate the influence of squint on the InlSAR imaging. First, coupling of the squint additive phase and the target azimuth/altitude coordinates to be solved may make the solution more difficult. Second, the squint angle may lead to estimation error of the vertical coordinates and distortion of the ultimate image. Traditional InlSAR imaging algorithms can not solve the above two problems effectively, so we propose a new method which combines the nonlinear least square (NLS) and coordinates transform (CT) to estimate the target coordinates, and a three-dimensional (3-D) image consistent with the real target is obtained accordingly. Simulations show that the proposed method is effective for the squint-mode InlSAR imaging.展开更多
The extremely complex anatomic relationships among bone, tumor, blood vessels and cranial nervesremains a big challenge for cranial base tumor surgery. Therefore, a good understanding of the patient specific anatomy a...The extremely complex anatomic relationships among bone, tumor, blood vessels and cranial nervesremains a big challenge for cranial base tumor surgery. Therefore, a good understanding of the patient specific anatomy and a preoperative planning are helpful and crucial for the neurosurgeons. Three dimensional (3-D) visualization of various imaging techniques have been widely explored to enhance the comprehension of volumetric data for surgical planning.展开更多
文摘The conventional two dimensional(2D)inverse synthetic aperture radar(ISAR)imaging fails to provide the targets'three dimensional(3D)information.In this paper,a 3D ISAR imaging method for the space target is proposed based on mutliorbit observation data and an improved orthogonal matching pursuit(OMP)algorithm.Firstly,the 3D scattered field data is converted into a set of 2D matrix by stacking slices of the 3D data along the elevation direction dimension.Then,an improved OMP algorithm is applied to recover the space target's amplitude information via the 2D matrix data.Finally,scattering centers can be reconstructed with specific three dimensional locations.Numerical simulations are provided to demonstrate the effectiveness and superiority of the proposed 3D imaging method.
文摘AIM To apply real time three-dimensional transesophageal echocardiography(RT3D TEE) for quantitative and qualitative assessment of the mitral valve annulus(MVA) and tricuspid valve annulus(TVA) in the same patient.METHODS Our retrospective cohort study examined the MVA and TVA in 49 patients by RT3 D TEE. MVA and TVA shape were examined by TEE. The MVA and TVA volume data set images were acquired in the mid esophageal 4-chamber view. The MVA and TVA were acquired separately, with optimization of each for the highest frame rate and image quality. The 3D shape of the annuli was reconstructed using the Philips~? Q lab, MVQ ver. 6.0 MVA model software. The end-systolic frame was used. The parameters measured and compared were annular area, circumference, high-low distances(height), anterolateralposterolateral(ALPM), and anteroposterior(AP) axes. RESULTS A total of 49 patients(mean age 61 ± 14 years, 45% males) were studied. The ALPM and the AP axes of the MVA and TVA are not significantly different. The ALPM axis of the MVA was 37.9 ± 6.4 mm and 38.0 ± 5.6 mm for the TVA(P = 0.70). The AP axis of the MVA was 34.8 ± 5.7 mm and 34.9 ± 6.2 mm for the TVA(P = 0.90). The MVA and the TVA had similar circumference and area. The circumference of the MVA was 127.9 ± 16.8 mm and 125.92 ± 16.12 mm for the TVA(P = 0.23). The area of the MVA was 1103.7 ± 307.8 mm^2 and 1131.7 ± 302.0 mm^2 for the TVA(P = 0.41). The MVA and TVA are similar oval structures, but with significantly different heights. The ALPM/AP ratio for the MVA was 1.08 ± 0.33 and 1.09 ± 0.28 for the TVA(P < 0.001). The height for the MVA and TVA was 9.23 ± 2.11 mm and 4.37 ± 1.48 mm, respectively(P < 0.0001). CONCLUSION RT3 D TEE plays an unprecedented role in the management of valvular heart disease. The specific and exclusive shape of the MVA and TVA was revealed in our study of patients studied. Moreover, the intricate codependence of the MVA and the TVA depends on their distinctive shapes. This realization seen from our study will allow us to better understand the role valvular disease plays in disease states such as hypertrophic cardiomyopathy and pulmonary hypertension.
文摘In order to improve the diagnosis and analysis ability of 3D spiral CT and to reconstruct the contour of 3D spiral CT damage image,a contour reconstruction method based on sharpening template enhancement for 3D spiral CT damage image is proposed.This method uses the active contour LasSO model to extract the contour feature of the 3D spiral CT damage image and enhances the information by sharpening the template en.hancement technique and makes the noise separation of the 3D spiral CT damage image.The spiral CT image was procesed with ENT,and the statistical shape model of 3D spiral CT damage image was established.The.gradient algorithm is used to decompose the feature to realize the analysis and reconstruction of the contour feature of the 3D spiral CT damage image,so as to improve the adaptive feature matching ability and the ability to locate the abnormal feature points.The simulation results show that in the 3D spiral CT damage image contour reconstruction,the proposed method performs well in the feature matching of the output pixels,shortens the contour reconstruction time by 20/ms,and provides a strong ability to express the image information.The normalized reconstruction error of CES is 30%,which improves the recognition ability of 3D spiral CT damage image,and increases the signal-to noise ratio of peak output by 40 dB over other methods.
基金supported by Shandong Provincial Natural Science Foundation(No.ZR2023MF062)the National Natural Science Foundation of China(No.61771230).
文摘In order to improve the registration accuracy of brain magnetic resonance images(MRI),some deep learning registration methods use segmentation images for training model.How-ever,the segmentation values are constant for each label,which leads to the gradient variation con-centrating on the boundary.Thus,the dense deformation field(DDF)is gathered on the boundary and there even appears folding phenomenon.In order to fully leverage the label information,the morphological opening and closing information maps are introduced to enlarge the non-zero gradi-ent regions and improve the accuracy of DDF estimation.The opening information maps supervise the registration model to focus on smaller,narrow brain regions.The closing information maps supervise the registration model to pay more attention to the complex boundary region.Then,opening and closing morphology networks(OC_Net)are designed to automatically generate open-ing and closing information maps to realize the end-to-end training process.Finally,a new registra-tion architecture,VM_(seg+oc),is proposed by combining OC_Net and VoxelMorph.Experimental results show that the registration accuracy of VM_(seg+oc) is significantly improved on LPBA40 and OASIS1 datasets.Especially,VM_(seg+oc) can well improve registration accuracy in smaller brain regions and narrow regions.
基金supported by the National Natural Science Foundation of China(Grant Nos.11672153,11232008&11227801)
文摘As a novel three dimensional digital image correlation (3D DIC) method, the bi-prism-based single lens (BSL) 3D DIC method has been proposed and developed in recent years. Making use ofa bi-prism, this method is able to perform a 3D DIC measurement using only a single camera. Thus, the integration level of a BSL 3D DIC system could be much higher than that of the double-camera 3D DIC system. In this paper, using a small-angle bi-prism and a camera with a longer focal length, a special BSL 3D DIC system with a long working distance is designed for measurements in extreme environments. The principle of the system is first studied, and practical methods are then proposed for the system set-up and the determination of system parameters. Then, feasibility of the measurement system is verified by out-of-plane rigid-body translation tests. Finally, the BSL 3D DIC system is proven to be capable of combining with a high-temperature testing instrument to perform deformation tests in a high-temperature environment of up to 1500℃.
基金supported by the China National Funds for Distinguished Young Scientists (Grant No.61025006)
文摘Aiming at the interferometric inverse synthetic aperture radar (InlSAR) imaging in the presence of squint, we investigate the influence of squint on the InlSAR imaging. First, coupling of the squint additive phase and the target azimuth/altitude coordinates to be solved may make the solution more difficult. Second, the squint angle may lead to estimation error of the vertical coordinates and distortion of the ultimate image. Traditional InlSAR imaging algorithms can not solve the above two problems effectively, so we propose a new method which combines the nonlinear least square (NLS) and coordinates transform (CT) to estimate the target coordinates, and a three-dimensional (3-D) image consistent with the real target is obtained accordingly. Simulations show that the proposed method is effective for the squint-mode InlSAR imaging.
文摘The extremely complex anatomic relationships among bone, tumor, blood vessels and cranial nervesremains a big challenge for cranial base tumor surgery. Therefore, a good understanding of the patient specific anatomy and a preoperative planning are helpful and crucial for the neurosurgeons. Three dimensional (3-D) visualization of various imaging techniques have been widely explored to enhance the comprehension of volumetric data for surgical planning.