Electricity theft is one of the major issues in developing countries which is affecting their economy badly.Especially with the introduction of emerging technologies,this issue became more complicated.Though many new ...Electricity theft is one of the major issues in developing countries which is affecting their economy badly.Especially with the introduction of emerging technologies,this issue became more complicated.Though many new energy theft detection(ETD)techniques have been proposed by utilising different data mining(DM)techniques,state&network(S&N)based techniques,and game theory(GT)techniques.Here,a detailed survey is presented where many state-of-the-art ETD techniques are studied and analysed for their strengths and limitations.Three levels of taxonomy are presented to classify state-of-the-art ETD techniques.Different types and ways of energy theft and their consequences are studied and summarised and different parameters to benchmark the performance of proposed techniques are extracted from literature.The challenges of different ETD techniques and their mitigation are suggested for future work.It is observed that the literature on ETD lacks knowledge management techniques that can be more effective,not only for ETD but also for theft tracking.This can help in the prevention of energy theft,in the future,as well as for ETD.展开更多
Grid direction selection and grid size design are two important elements that need to be considered in the grid direction design in reservoir numerical simulation. Reservoir engineers normally utilize geological data ...Grid direction selection and grid size design are two important elements that need to be considered in the grid direction design in reservoir numerical simulation. Reservoir engineers normally utilize geological data (such as the distribution of fractures, low permeability zones, faults and major stress) and simulation experiences to design the grid direction of simulation model qualitatively. The research of the paper indicates that the key to determine the grid direction is to determine the principal permeability direction. Under the circumstances of few static materials, a new grid direction determination method has been developed by using field data (well location map and inter-well permeability) on the bases of Darcy’s law and tensor analysis theory. The grid direction of WZ11-7 Oilfield simulation model has been determined using four production wells and two production zones (L1 and L3) in WZ11-7-2 well group, the results are in conformity with the geological studied major stress. Therefore, this method can give insights into the numerical simulation study.展开更多
Directed diffusion is a data dissemination protocol for wireless sensor networks. In directed diffusion, flooding is used for dissemination of interest and exploratory data, which will bring broadcast storm resulting ...Directed diffusion is a data dissemination protocol for wireless sensor networks. In directed diffusion, flooding is used for dissemination of interest and exploratory data, which will bring broadcast storm resulting in substantial energy consumption of networks. A grid-based directed diffusion is presented to improve the energy efficiency of directed diffusion. Virtual geographic grid clusters are constructed by self-organization of nodes using geographic location information. The flooding of interest and exploratory data of original directed diffusion is limited in cluster head nodes. The simulation results and testbed experiments show that the method effectively reduces the network energy consumption. This gain is not achieved at the cost of either delivery ratio or the delay. Importantly, the decreased load also leads to a better delivery ratio and lower delay.展开更多
Explicit solution techniques have been widely used in geotechnical engineering for simulating the coupled hydro-mechanical(H-M) interaction of fluid flow and deformation induced by structures built above and under sat...Explicit solution techniques have been widely used in geotechnical engineering for simulating the coupled hydro-mechanical(H-M) interaction of fluid flow and deformation induced by structures built above and under saturated ground, i.e. circular footing and deep tunnel. However, the technique is only conditionally stable and requires small time steps, portending its inefficiency for simulating large-scale H-M problems. To improve its efficiency, the unconditionally stable alternating direction explicit(ADE)scheme could be used to solve the flow problem. The standard ADE scheme, however, is only moderately accurate and is restricted to uniform grids and plane strain flow conditions. This paper aims to remove these drawbacks by developing a novel high-order ADE scheme capable of solving flow problems in nonuniform grids and under axisymmetric conditions. The new scheme is derived by performing a fourthorder finite difference(FD) approximation to the spatial derivatives of the axisymmetric fluid-diffusion equation in a non-uniform grid configuration. The implicit Crank-Nicolson technique is then applied to the resulting approximation, and the subsequent equation is split into two alternating direction sweeps,giving rise to a new axisymmetric ADE scheme. The pore pressure solutions from the new scheme are then sequentially coupled with an existing geomechanical simulator in the computer code fast Lagrangian analysis of continua(FLAC). This coupling procedure is called the sequentially-explicit coupling technique based on the fourth-order axisymmetric ADE scheme or SEA-4-AXI. Application of SEA-4-AXI for solving axisymmetric consolidation of a circular footing and of advancing tunnel in deep saturated ground shows that SEA-4-AXI reduces computer runtime up to 42%-50% that of FLAC’s basic scheme without numerical instability. In addition, it produces high numerical accuracy of the H-M solutions with average percentage difference of only 0.5%-1.8%.展开更多
In predictive direct power control(PDPC)system of three-phase pulse width modulation(PWM)rectifier,grid voltage sensor makes the whole system more complex and costly.Therefore,third-order generalized integrator(TOGI)i...In predictive direct power control(PDPC)system of three-phase pulse width modulation(PWM)rectifier,grid voltage sensor makes the whole system more complex and costly.Therefore,third-order generalized integrator(TOGI)is used to generate orthogonal signals with the same frequency to estimate the grid voltage.In addition,in view of the deviation between actual and reference power in the three-phase PWM rectifier traditional PDPC strategy,a power correction link is designed to correct the power reference value.The grid voltage sensor free algorithm based on TOGI and the corrected PDPC strategy are applied to three-phase PWM rectifier and simulated on the simulation platform.Simulation results show that the proposed method can effectively eliminate the power tracking deviation and the grid voltage.The effectiveness of the proposed method is verified by comparing the simulation results.展开更多
传统的基于稀疏恢复的波达方向(direction of arrival,DOA)估计算法使用密集的采样网格,导致计算量显著增加,且对邻近入射信号的估计精度不高。针对这一问题,提出一种快速高精度DOA估计算法。该算法首先使用网格进化方法降低网格点总数...传统的基于稀疏恢复的波达方向(direction of arrival,DOA)估计算法使用密集的采样网格,导致计算量显著增加,且对邻近入射信号的估计精度不高。针对这一问题,提出一种快速高精度DOA估计算法。该算法首先使用网格进化方法降低网格点总数。然后,对噪声方差和信号功率进行二次估计,进而使用离网求根稀疏贝叶斯学习(off-grid root sparse Bayesian learning,OGRSBL)技术来实现入射角的精确估计。仿真表明,相比传统稀疏贝叶斯学习类算法,所提算法计算效率高,同时对紧邻信号有着更好的估计能力。展开更多
针对外界扰动情况下的光伏并网模型预测直接功率控制(model predictive direct power control,MPDPC)系统中存在系统抖振、功率跟踪速度慢、并网电流总谐波失真率较高等问题,提出一种改进分数阶滑模电压控制器,该策略在直流侧母线电压...针对外界扰动情况下的光伏并网模型预测直接功率控制(model predictive direct power control,MPDPC)系统中存在系统抖振、功率跟踪速度慢、并网电流总谐波失真率较高等问题,提出一种改进分数阶滑模电压控制器,该策略在直流侧母线电压外环采用了分数阶微积分理论.首先,构造分数阶非奇异快速终端滑模面函数,削弱系统抖振,提高系统动态性能;然后,构造分数阶双幂次指数趋近律,引入加权积分型增益和饱和函数,有效避免系统在非滑动模态阶段时切换增益的增大,提高系统控制精度;最后,设计新型分数阶电压环控制器并运用于光伏并网系统中.研究结果表明,改进后的分数阶滑模电压控制器能够满足光伏并网MPDPC系统的各项基本需求,抑制系统抖振,提高功率跟踪性能,降低并网电流总谐波失真率,有效解决可再生能源和公共电网电能转化的关键难题,对光伏并网系统高性能控制的理论研究具有重要意义.展开更多
基金supported by the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Sk?odowska-Curie Grant Agreement(801522)Science Foundation Ireland and co-funded by the European Regional Development Fund through the ADAPT Centre for Digital Content Technology(13/RC/2106_P2)。
文摘Electricity theft is one of the major issues in developing countries which is affecting their economy badly.Especially with the introduction of emerging technologies,this issue became more complicated.Though many new energy theft detection(ETD)techniques have been proposed by utilising different data mining(DM)techniques,state&network(S&N)based techniques,and game theory(GT)techniques.Here,a detailed survey is presented where many state-of-the-art ETD techniques are studied and analysed for their strengths and limitations.Three levels of taxonomy are presented to classify state-of-the-art ETD techniques.Different types and ways of energy theft and their consequences are studied and summarised and different parameters to benchmark the performance of proposed techniques are extracted from literature.The challenges of different ETD techniques and their mitigation are suggested for future work.It is observed that the literature on ETD lacks knowledge management techniques that can be more effective,not only for ETD but also for theft tracking.This can help in the prevention of energy theft,in the future,as well as for ETD.
文摘Grid direction selection and grid size design are two important elements that need to be considered in the grid direction design in reservoir numerical simulation. Reservoir engineers normally utilize geological data (such as the distribution of fractures, low permeability zones, faults and major stress) and simulation experiences to design the grid direction of simulation model qualitatively. The research of the paper indicates that the key to determine the grid direction is to determine the principal permeability direction. Under the circumstances of few static materials, a new grid direction determination method has been developed by using field data (well location map and inter-well permeability) on the bases of Darcy’s law and tensor analysis theory. The grid direction of WZ11-7 Oilfield simulation model has been determined using four production wells and two production zones (L1 and L3) in WZ11-7-2 well group, the results are in conformity with the geological studied major stress. Therefore, this method can give insights into the numerical simulation study.
基金the National High Technology Research and Development Programme of China(No.2002AA142020)the National Natural Science Foundation of China(No.60475012)
文摘Directed diffusion is a data dissemination protocol for wireless sensor networks. In directed diffusion, flooding is used for dissemination of interest and exploratory data, which will bring broadcast storm resulting in substantial energy consumption of networks. A grid-based directed diffusion is presented to improve the energy efficiency of directed diffusion. Virtual geographic grid clusters are constructed by self-organization of nodes using geographic location information. The flooding of interest and exploratory data of original directed diffusion is limited in cluster head nodes. The simulation results and testbed experiments show that the method effectively reduces the network energy consumption. This gain is not achieved at the cost of either delivery ratio or the delay. Importantly, the decreased load also leads to a better delivery ratio and lower delay.
基金the support from the University Transportation Center for Underground Transportation Infrastructure at the Colorado School of Mines for partially funding this research under Grant No. 69A3551747118 of the Fixing America's Surface Transportation Act (FAST Act) of U.S. DoT FY2016
文摘Explicit solution techniques have been widely used in geotechnical engineering for simulating the coupled hydro-mechanical(H-M) interaction of fluid flow and deformation induced by structures built above and under saturated ground, i.e. circular footing and deep tunnel. However, the technique is only conditionally stable and requires small time steps, portending its inefficiency for simulating large-scale H-M problems. To improve its efficiency, the unconditionally stable alternating direction explicit(ADE)scheme could be used to solve the flow problem. The standard ADE scheme, however, is only moderately accurate and is restricted to uniform grids and plane strain flow conditions. This paper aims to remove these drawbacks by developing a novel high-order ADE scheme capable of solving flow problems in nonuniform grids and under axisymmetric conditions. The new scheme is derived by performing a fourthorder finite difference(FD) approximation to the spatial derivatives of the axisymmetric fluid-diffusion equation in a non-uniform grid configuration. The implicit Crank-Nicolson technique is then applied to the resulting approximation, and the subsequent equation is split into two alternating direction sweeps,giving rise to a new axisymmetric ADE scheme. The pore pressure solutions from the new scheme are then sequentially coupled with an existing geomechanical simulator in the computer code fast Lagrangian analysis of continua(FLAC). This coupling procedure is called the sequentially-explicit coupling technique based on the fourth-order axisymmetric ADE scheme or SEA-4-AXI. Application of SEA-4-AXI for solving axisymmetric consolidation of a circular footing and of advancing tunnel in deep saturated ground shows that SEA-4-AXI reduces computer runtime up to 42%-50% that of FLAC’s basic scheme without numerical instability. In addition, it produces high numerical accuracy of the H-M solutions with average percentage difference of only 0.5%-1.8%.
基金National Natural Science Foundation of China(Nos.51767013,52067013)。
文摘In predictive direct power control(PDPC)system of three-phase pulse width modulation(PWM)rectifier,grid voltage sensor makes the whole system more complex and costly.Therefore,third-order generalized integrator(TOGI)is used to generate orthogonal signals with the same frequency to estimate the grid voltage.In addition,in view of the deviation between actual and reference power in the three-phase PWM rectifier traditional PDPC strategy,a power correction link is designed to correct the power reference value.The grid voltage sensor free algorithm based on TOGI and the corrected PDPC strategy are applied to three-phase PWM rectifier and simulated on the simulation platform.Simulation results show that the proposed method can effectively eliminate the power tracking deviation and the grid voltage.The effectiveness of the proposed method is verified by comparing the simulation results.
文摘针对外界扰动情况下的光伏并网模型预测直接功率控制(model predictive direct power control,MPDPC)系统中存在系统抖振、功率跟踪速度慢、并网电流总谐波失真率较高等问题,提出一种改进分数阶滑模电压控制器,该策略在直流侧母线电压外环采用了分数阶微积分理论.首先,构造分数阶非奇异快速终端滑模面函数,削弱系统抖振,提高系统动态性能;然后,构造分数阶双幂次指数趋近律,引入加权积分型增益和饱和函数,有效避免系统在非滑动模态阶段时切换增益的增大,提高系统控制精度;最后,设计新型分数阶电压环控制器并运用于光伏并网系统中.研究结果表明,改进后的分数阶滑模电压控制器能够满足光伏并网MPDPC系统的各项基本需求,抑制系统抖振,提高功率跟踪性能,降低并网电流总谐波失真率,有效解决可再生能源和公共电网电能转化的关键难题,对光伏并网系统高性能控制的理论研究具有重要意义.