Tapered ring with thin wall and three high ribs(TRTWTHR),showing complicated geometry(wall thickness is less than 4 mm and rib height exceeds 20 mm),is extensively utilized to fabricate the critical structural parts o...Tapered ring with thin wall and three high ribs(TRTWTHR),showing complicated geometry(wall thickness is less than 4 mm and rib height exceeds 20 mm),is extensively utilized to fabricate the critical structural parts of aerospace equipment such as spacecraft cabin,rocket body and fuel tank because of light weight and high carrying capacity.How to fabricate TRTWTHR with high performance is a critical problem that aerospace area needs to solve.In this work,constraining ring rolling(CRR)technique is first adopted to form TRTWTHR.However.unreasonable metal streamlines(UMS)and uncoordinated growth of three ribs easily occur in CRR of TRTWTHR,which makes the forming quality of TRTWTHR difficult to be controlled.Faced with this difficulty,an analytical model that can predict UMS and the height of three ribs in CRR of TRTWTHR is established so as to guide the process design of CRR.Subsequently,the reliability of the established analytical model and the feasibility of CRR of TRTWTHR are confirmed by FE simulation and experiment.Then,using the established analytical model,the window of UMS occurring relevant to the tapered angle of TRTWTHR and the location of the rib of middle end is developed.Finally,three uncoordinated growth modes among three ribs are found when the width of three ribs is identical and UMS do not occur,and the mechanisms of three uncoordinated growth modes are revealed.展开更多
Based on the particle-in-cell technology and the secondary electron emission theory, a three-dimensional simulation method for multipactor is presented in this paper. By combining the finite difference time domain met...Based on the particle-in-cell technology and the secondary electron emission theory, a three-dimensional simulation method for multipactor is presented in this paper. By combining the finite difference time domain method and the panicle tracing method, such an algorithm is self-consistent and accurate since the interaction between electromagnetic fields and particles is properly modeled. In the time domain aspect, the generation of multipactor can be easily visualized, which makes it possible to gain a deeper insight into the physical mechanism of this effect. In addition to the classic secondary electron emission model, the measured practical secondary electron yield is used, which increases the accuracy of the algorithm. In order to validate the method, the impedance transformer and ridge waveguide filter are studied. By analyzing the evolution of the secondaries obtained by our method, multipactor thresholds of these components are estimated, which show good agreement with the experimental results. Furthermore, the most sensitive positions where multipactor occurs are determined from the phase focusing phenomenon, which is very meaningful for multipactor analysis and design.展开更多
This paper presents a scheme for high-capacity three-party quantum secret sharing with quantum superdense coding, following some ideas in the work by Liuet al (2002 Phys. Rev. A 65 022304) and the quantum secret sha...This paper presents a scheme for high-capacity three-party quantum secret sharing with quantum superdense coding, following some ideas in the work by Liuet al (2002 Phys. Rev. A 65 022304) and the quantum secret sharing scheme by Deng et al (2008 Phys. Lett. A 372 1957). Instead of using two sets of nonorthogonal states, the boss Alice needs only to prepare a sequence of Einstei^Podolsky-l^osen pairs in d-dimension. The two agents Bob and Charlie encode their information with dense coding unitary operations, and security is checked by inserting decoy photons. The scheme has a high capacity and intrinsic efficiency as each pair can carry 21bd bits of information, and almost all the pairs can be used for carrying useful information.展开更多
The thermogravimetric analysis of a ternary Cu-25Ni-30Cr alloy prepared by conventional casting was performed in 0.1MPa pure O2 at 700-800℃. The results show that the alloy is composed of three phases, where the ...The thermogravimetric analysis of a ternary Cu-25Ni-30Cr alloy prepared by conventional casting was performed in 0.1MPa pure O2 at 700-800℃. The results show that the alloy is composed of three phases, where the phase with the largest copper and lowest chromium content forms the matrix, while the other two, much richer in chromium, form a dispersion of isolated particles. At variance with another three-phase Cu-20Ni-20Cr alloy, which forms complex scales containing the oxides of the various components and double oxides plus an irregular region composed of alloy and oxides, the present alloy can form a very irregular but continuous chromia layer at the base of the mixed internal region, producing a gradual decrease of the oxidation rate down to very low values. A larger chromium content needed to form chromia layer for a ternary three-phase alloy is attributed to the limitations to the diffusion of the alloy components in the metal substrate imposed by their multiphase nature.展开更多
By reviewing the development of “three-high” oil and gas well testing technology of Sinopec in recent years, this paper systematically summarizes the application of “three-high” oil and gas well testing technology...By reviewing the development of “three-high” oil and gas well testing technology of Sinopec in recent years, this paper systematically summarizes the application of “three-high” oil and gas well testing technology of Sinopec in engineering optimization design technology, and high temperature and high pressure testing technology, high pressure and high temperature transformation completion integration technology. Major progress has been made in seven aspects: plug removal and re-production technology of production wells in high acid gas fields;wellbore preparation technology of ultra-deep, high-pressure, and high-temperature oil and gas wells;surface metering technology;and supporting tool development technology. This paper comprehensively analyzes the challenges faced by the “three-high” oil and gas well production testing technology in four aspects: downhole tools, production testing technology, safe production testing, and the development of low-cost production test tools. Four development directions are put forward: 1) Improve ultra-deep oil and gas testing technology and strengthen integrated geological engineering research. 2) Deepen oil and gas well integrity evaluation technology to ensure the life cycle of oil and gas wells. 3) Carry out high-end, customized, and intelligent research on oil test tools to promote the low-cost and efficient development of ultra deep reservoirs. 4) Promote the fully automatic control of the surface metering process to realize the safe development of “three-high” reservoirs.展开更多
Although the recent advances in stem cell engineering have gained a great deal of attention due to their high potential in clinical research,the applicability of stem cells for preclinical screening in the drug discov...Although the recent advances in stem cell engineering have gained a great deal of attention due to their high potential in clinical research,the applicability of stem cells for preclinical screening in the drug discovery process is still challenging due to difficulties in controlling the stem cell microenvironment and the limited availability of high-throughput systems.Recently,researchers have been actively developing and evaluating three-dimensional(3D)cell culture-based platforms using microfluidic technologies,such as organ-on-a-chip and organoid-on-a-chip platforms,and they have achieved promising breakthroughs in stem cell engineering.In this review,we start with a comprehensive discussion on the importance of microfluidic 3D cell culture techniques in stem cell research and their technical strategies in the field of drug discovery.In a subsequent section,we discuss microfluidic 3D cell culture techniques for high-throughput analysis for use in stem cell research.In addition,some potential and practical applications of organ-on-a-chip or organoid-on-a-chip platforms using stem cells as drug screening and disease models are highlighted.展开更多
We study the features of electromagnetically induced transparency(EIT) in a single Λ-type three-level atom placed in a high-finesse cavity under the action of a coupling laser and a probe laser.Our calculations sho...We study the features of electromagnetically induced transparency(EIT) in a single Λ-type three-level atom placed in a high-finesse cavity under the action of a coupling laser and a probe laser.Our calculations show that three transparency windows appear when the pump strength is large enough.This can be explained by the residual pump in the cavity mostly resulting in energy splitting.The level |3 is split into four slightly different energy levels,and interference takes place between the excitation pathways.Furthermore,it is also shown that the frequencies of the EIT windows can be tuned by changing the coupling field detuning 2,and that the reflection profile is very sensitive to the cavity field detuning △c.展开更多
A theoretical study is carried out for the modification and implication of the effect on the type three level atom in a high-finesse optical cavity driven by light field including spontaneous emission and the cavity d...A theoretical study is carried out for the modification and implication of the effect on the type three level atom in a high-finesse optical cavity driven by light field including spontaneous emission and the cavity decay. Analytic expressions for the dipole force, the friction force, the optical potentials and the friction coefficient are obtained. Then the numerical and graphical methods are used to investigate the friction coefficient with the controlling parameters. It is shown that the friction coefficient is strongly dependent on the controlling parameters. The cooling rate can increase by one order of magnitude more than that of a two-level atomic system. The reason can be given using the dressed states and the Sisyphus cooling mechanism, which would stimulate further experimental investigations.展开更多
The purpose of this study was to evaluate the outcome of patients with unresectable hepatocellular carcinoma(HCC) treated by sequential therapy of transcatheter arterial chemoembolization(TACE),three-dimensional c...The purpose of this study was to evaluate the outcome of patients with unresectable hepatocellular carcinoma(HCC) treated by sequential therapy of transcatheter arterial chemoembolization(TACE),three-dimensional conformal radiotherapy(3-DCRT) and high-intensity focused ultrasound(HIFU).From October,2005 to September,2010,120 patients with unresectable HCC received the sequential treatments of several courses of TACE followed in 2-4 weeks by 3-DCRT and then a single session of HIFU with a curative intent.The median tumor irradiation dose was 40 Gy.Tumor response,toxicity and overall survival rate were analyzed.Clinicopathologic factors affecting the primary technique effectiveness and overall survival rates were investigated by univariate analysis or multivariate analysis.All 120 HCC patients were followed up by the last follow-up time.Among these patients,hepatic toxicities due to treatment were notable in 9 cases.Gastrointestinal bleeding after the overall treatment occurred in 2 cases,leukopenia of grade III was detected in 1 case,radiation-induced liver disease(RILD) was observed in 2 patients,and first-and second-degree skin burn around the HIFU treatment zone were observed in 2 patients and 1 patient,respectively.Among 120 patients,23,83 and 14 cases achieved partial response,stable disease and progressive disease,respectively.The overall survival rates at 1 year,3 years and 5 years were 70%,35% and 15%,respectively,with a median survival time of 26 months.Both Child-Pugh liver function grading and radiation dose were determined to be independent predictors for overall survival revealed by the multivariate analysis.It is concluded that the sequential therapy of TACE,3-DCRT and HIFU is a promising therapeutic regimen for unresectable HCC.展开更多
Melanosomes, isolated by centrifugal separation from culture broth of B16 melanoma cells derived from mouse, were observed by scanning electron microscopy (SEM), and by transmission electron microscopy (TEM). Some int...Melanosomes, isolated by centrifugal separation from culture broth of B16 melanoma cells derived from mouse, were observed by scanning electron microscopy (SEM), and by transmission electron microscopy (TEM). Some interesting structural features were found inside and outside of the melanosomes. By SEM observation, the melanosomes were ellipsoid shape, their surface was not smooth and was covered with rough substructure, 10 to 20 nm particles. By TEM, uneven structure and micro particles were observed in the melanosomes. Furthermore, three-dimensional analysis was tried by using the ultra-high voltage electron microscopy(UHVEM). Micrographs of the melanosomes were taken at various tilted angles by UHVEM, after preparing 500 nm thickness specimens stained with lead citrate. From the micrographs collected, the three-dimensional structures were reconstructed by using i-mode software. Melanin stained by lead and non stained parts was clearly observed in the reconstructed structure. Non stained parts were round, regular size, and distributed widely in the melanosomes.展开更多
Superconducting magnetic levitation performance, including levitation force and guidance force, is important for the application of high-temperature super- conducting maglev. Both of them are not only affected by diff...Superconducting magnetic levitation performance, including levitation force and guidance force, is important for the application of high-temperature super- conducting maglev. Both of them are not only affected by different arrays of superconductors and magnets, but also by the thickness of the iron shim between permanent magnets. In order to obtain the best levitation performance, the magnetic field distribution, levitation force, and guidance force of a new type of three magnetic hills of permanent magnet guideway with iron shim of different thicknesses (4, 6, and 8 mm) are discussed in this paper. Simulation analysis and experiment results show that the guideway with iron shim of 8 mm thickness possesses the strongest magnetic field and levitation performance when the suspension gap is larger than 10 mm. However, with the decreasing of suspension gap, the guideway with iron shim of 4 mm thickness possesses the best levitation performance. The phenomena can be attributed to the density distribution of flux and magnetization of iron shim.展开更多
基金the National Natural Science Foundation of China (No. U2037204)the 111 Project (No. B17034)+1 种基金Innovative Research Team Development Program of Ministry of Education of China (No. IRT17R83)the National Natural Science Foundation of China (No. 52005375)
文摘Tapered ring with thin wall and three high ribs(TRTWTHR),showing complicated geometry(wall thickness is less than 4 mm and rib height exceeds 20 mm),is extensively utilized to fabricate the critical structural parts of aerospace equipment such as spacecraft cabin,rocket body and fuel tank because of light weight and high carrying capacity.How to fabricate TRTWTHR with high performance is a critical problem that aerospace area needs to solve.In this work,constraining ring rolling(CRR)technique is first adopted to form TRTWTHR.However.unreasonable metal streamlines(UMS)and uncoordinated growth of three ribs easily occur in CRR of TRTWTHR,which makes the forming quality of TRTWTHR difficult to be controlled.Faced with this difficulty,an analytical model that can predict UMS and the height of three ribs in CRR of TRTWTHR is established so as to guide the process design of CRR.Subsequently,the reliability of the established analytical model and the feasibility of CRR of TRTWTHR are confirmed by FE simulation and experiment.Then,using the established analytical model,the window of UMS occurring relevant to the tapered angle of TRTWTHR and the location of the rib of middle end is developed.Finally,three uncoordinated growth modes among three ribs are found when the width of three ribs is identical and UMS do not occur,and the mechanisms of three uncoordinated growth modes are revealed.
基金Project supported by the National Key Laboratory Foundation,China(Grant No.9140C530103110C5301)
文摘Based on the particle-in-cell technology and the secondary electron emission theory, a three-dimensional simulation method for multipactor is presented in this paper. By combining the finite difference time domain method and the panicle tracing method, such an algorithm is self-consistent and accurate since the interaction between electromagnetic fields and particles is properly modeled. In the time domain aspect, the generation of multipactor can be easily visualized, which makes it possible to gain a deeper insight into the physical mechanism of this effect. In addition to the classic secondary electron emission model, the measured practical secondary electron yield is used, which increases the accuracy of the algorithm. In order to validate the method, the impedance transformer and ridge waveguide filter are studied. By analyzing the evolution of the secondaries obtained by our method, multipactor thresholds of these components are estimated, which show good agreement with the experimental results. Furthermore, the most sensitive positions where multipactor occurs are determined from the phase focusing phenomenon, which is very meaningful for multipactor analysis and design.
基金Project supported by the National Natural Science Foundation (NSF) of China (Grant No 10847147)the NSF of Jiangsu Province, China (Grant No BK2008437)+1 种基金Jiangsu Provincial Universities (Grant No 07KJB510066)the Science Foundation of NUIST, China
文摘This paper presents a scheme for high-capacity three-party quantum secret sharing with quantum superdense coding, following some ideas in the work by Liuet al (2002 Phys. Rev. A 65 022304) and the quantum secret sharing scheme by Deng et al (2008 Phys. Lett. A 372 1957). Instead of using two sets of nonorthogonal states, the boss Alice needs only to prepare a sequence of Einstei^Podolsky-l^osen pairs in d-dimension. The two agents Bob and Charlie encode their information with dense coding unitary operations, and security is checked by inserting decoy photons. The scheme has a high capacity and intrinsic efficiency as each pair can carry 21bd bits of information, and almost all the pairs can be used for carrying useful information.
文摘The thermogravimetric analysis of a ternary Cu-25Ni-30Cr alloy prepared by conventional casting was performed in 0.1MPa pure O2 at 700-800℃. The results show that the alloy is composed of three phases, where the phase with the largest copper and lowest chromium content forms the matrix, while the other two, much richer in chromium, form a dispersion of isolated particles. At variance with another three-phase Cu-20Ni-20Cr alloy, which forms complex scales containing the oxides of the various components and double oxides plus an irregular region composed of alloy and oxides, the present alloy can form a very irregular but continuous chromia layer at the base of the mixed internal region, producing a gradual decrease of the oxidation rate down to very low values. A larger chromium content needed to form chromia layer for a ternary three-phase alloy is attributed to the limitations to the diffusion of the alloy components in the metal substrate imposed by their multiphase nature.
文摘By reviewing the development of “three-high” oil and gas well testing technology of Sinopec in recent years, this paper systematically summarizes the application of “three-high” oil and gas well testing technology of Sinopec in engineering optimization design technology, and high temperature and high pressure testing technology, high pressure and high temperature transformation completion integration technology. Major progress has been made in seven aspects: plug removal and re-production technology of production wells in high acid gas fields;wellbore preparation technology of ultra-deep, high-pressure, and high-temperature oil and gas wells;surface metering technology;and supporting tool development technology. This paper comprehensively analyzes the challenges faced by the “three-high” oil and gas well production testing technology in four aspects: downhole tools, production testing technology, safe production testing, and the development of low-cost production test tools. Four development directions are put forward: 1) Improve ultra-deep oil and gas testing technology and strengthen integrated geological engineering research. 2) Deepen oil and gas well integrity evaluation technology to ensure the life cycle of oil and gas wells. 3) Carry out high-end, customized, and intelligent research on oil test tools to promote the low-cost and efficient development of ultra deep reservoirs. 4) Promote the fully automatic control of the surface metering process to realize the safe development of “three-high” reservoirs.
基金supported by the National Research Foundation of Korea (NRF) (NRF2017R1C1B2002377, NRF-2016R1A5A1010148, and NRF2019R1A2C1003111)funded by the Ministry of Science and ICT (MSIT)partly supported by the Technology Innovation Program (No.10067787)funded by the Ministry of Trade, Industry & Energy (MOTE, Korea)
文摘Although the recent advances in stem cell engineering have gained a great deal of attention due to their high potential in clinical research,the applicability of stem cells for preclinical screening in the drug discovery process is still challenging due to difficulties in controlling the stem cell microenvironment and the limited availability of high-throughput systems.Recently,researchers have been actively developing and evaluating three-dimensional(3D)cell culture-based platforms using microfluidic technologies,such as organ-on-a-chip and organoid-on-a-chip platforms,and they have achieved promising breakthroughs in stem cell engineering.In this review,we start with a comprehensive discussion on the importance of microfluidic 3D cell culture techniques in stem cell research and their technical strategies in the field of drug discovery.In a subsequent section,we discuss microfluidic 3D cell culture techniques for high-throughput analysis for use in stem cell research.In addition,some potential and practical applications of organ-on-a-chip or organoid-on-a-chip platforms using stem cells as drug screening and disease models are highlighted.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11274148 and 10704031)the Basic Scientific Research Business Expenses of the Central University,China (Grant No. lzujbky-2010-75)the Open Project of Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education,Lanzhou University,China
文摘We study the features of electromagnetically induced transparency(EIT) in a single Λ-type three-level atom placed in a high-finesse cavity under the action of a coupling laser and a probe laser.Our calculations show that three transparency windows appear when the pump strength is large enough.This can be explained by the residual pump in the cavity mostly resulting in energy splitting.The level |3 is split into four slightly different energy levels,and interference takes place between the excitation pathways.Furthermore,it is also shown that the frequencies of the EIT windows can be tuned by changing the coupling field detuning 2,and that the reflection profile is very sensitive to the cavity field detuning △c.
基金Project supported by the National Natural Science Foundation of China(Grant No.10704031)the National Science Foundation for Fostering Talents in Basic Research of the National Natural Science Foundation of China(Grant No.J0630313)+1 种基金the Fundamental Research Fund for Physics and Mathematics of Lanzhou University,China(Grant No.Lzu05001)the Natural Science Foundation of Gansu Province,China(Grant No.3ZS061-A25-035)
文摘A theoretical study is carried out for the modification and implication of the effect on the type three level atom in a high-finesse optical cavity driven by light field including spontaneous emission and the cavity decay. Analytic expressions for the dipole force, the friction force, the optical potentials and the friction coefficient are obtained. Then the numerical and graphical methods are used to investigate the friction coefficient with the controlling parameters. It is shown that the friction coefficient is strongly dependent on the controlling parameters. The cooling rate can increase by one order of magnitude more than that of a two-level atomic system. The reason can be given using the dressed states and the Sisyphus cooling mechanism, which would stimulate further experimental investigations.
文摘The purpose of this study was to evaluate the outcome of patients with unresectable hepatocellular carcinoma(HCC) treated by sequential therapy of transcatheter arterial chemoembolization(TACE),three-dimensional conformal radiotherapy(3-DCRT) and high-intensity focused ultrasound(HIFU).From October,2005 to September,2010,120 patients with unresectable HCC received the sequential treatments of several courses of TACE followed in 2-4 weeks by 3-DCRT and then a single session of HIFU with a curative intent.The median tumor irradiation dose was 40 Gy.Tumor response,toxicity and overall survival rate were analyzed.Clinicopathologic factors affecting the primary technique effectiveness and overall survival rates were investigated by univariate analysis or multivariate analysis.All 120 HCC patients were followed up by the last follow-up time.Among these patients,hepatic toxicities due to treatment were notable in 9 cases.Gastrointestinal bleeding after the overall treatment occurred in 2 cases,leukopenia of grade III was detected in 1 case,radiation-induced liver disease(RILD) was observed in 2 patients,and first-and second-degree skin burn around the HIFU treatment zone were observed in 2 patients and 1 patient,respectively.Among 120 patients,23,83 and 14 cases achieved partial response,stable disease and progressive disease,respectively.The overall survival rates at 1 year,3 years and 5 years were 70%,35% and 15%,respectively,with a median survival time of 26 months.Both Child-Pugh liver function grading and radiation dose were determined to be independent predictors for overall survival revealed by the multivariate analysis.It is concluded that the sequential therapy of TACE,3-DCRT and HIFU is a promising therapeutic regimen for unresectable HCC.
文摘Melanosomes, isolated by centrifugal separation from culture broth of B16 melanoma cells derived from mouse, were observed by scanning electron microscopy (SEM), and by transmission electron microscopy (TEM). Some interesting structural features were found inside and outside of the melanosomes. By SEM observation, the melanosomes were ellipsoid shape, their surface was not smooth and was covered with rough substructure, 10 to 20 nm particles. By TEM, uneven structure and micro particles were observed in the melanosomes. Furthermore, three-dimensional analysis was tried by using the ultra-high voltage electron microscopy(UHVEM). Micrographs of the melanosomes were taken at various tilted angles by UHVEM, after preparing 500 nm thickness specimens stained with lead citrate. From the micrographs collected, the three-dimensional structures were reconstructed by using i-mode software. Melanin stained by lead and non stained parts was clearly observed in the reconstructed structure. Non stained parts were round, regular size, and distributed widely in the melanosomes.
基金supported by the National Magnetic Confinement Fusion Science Program (2011GB112001)the Program of International S&T Cooperation (S2013ZR0595)+2 种基金the National Natural Science Foundation of China (No. 51271155)the Fundamental Research Funds for the Central Universities (SWJTU11CX073, SWJTU11ZT16 and SWJTU11ZT31)the Science Foundation of Sichuan Province (2011JY0031 and 2011JY0130)
文摘Superconducting magnetic levitation performance, including levitation force and guidance force, is important for the application of high-temperature super- conducting maglev. Both of them are not only affected by different arrays of superconductors and magnets, but also by the thickness of the iron shim between permanent magnets. In order to obtain the best levitation performance, the magnetic field distribution, levitation force, and guidance force of a new type of three magnetic hills of permanent magnet guideway with iron shim of different thicknesses (4, 6, and 8 mm) are discussed in this paper. Simulation analysis and experiment results show that the guideway with iron shim of 8 mm thickness possesses the strongest magnetic field and levitation performance when the suspension gap is larger than 10 mm. However, with the decreasing of suspension gap, the guideway with iron shim of 4 mm thickness possesses the best levitation performance. The phenomena can be attributed to the density distribution of flux and magnetization of iron shim.